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learning discrete distributions

Probability distributions on [V] = {0,1,..., N}
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= Learning problem defined by class C of distributions
= Target distribution D € C unknown to learner
= Learner given sample of i.i.d. draws from D

Goal: w.p. > -2 output I’ satisfying

drv(D, D) = 3D - D], <




analogies with PAC learning Boolean functions

— N M- X f(z)
T i 10101010010 | 1
10111111110 | 1

- i _ 10101010000 | 0
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= Class C of distributions Class C of Boolean functions

= Unknown target D € C Unknown target f € C

= Learner gets i.i.d. samples from D = Learner gets labeled samples (z, f(z))
Output approximation [/ of f

= Qutput approximation D’ of D

Explicit emphasis on computational efficiency



learning distributions: an easy upper bound

Learning arbitrary distributions:
©(N/e?) samples necessary and sufficient
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When can we do better?

Which distributions are easy to learn, which are hard?




two types of structured distributions

= Distributions with “shape restrictions”

monotone

log-concave

e

[l

bimodal

= Simple combinations of simple distributions

Mixtures of simple distributions

This work: Sums of independent, simple random variables
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mixtures of Gaussians
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one piece of terminology

k-IRV: Integer-valued Random Variable supported on {0,1,..., k — 1}

01 =+ 5
2-IRV 6-IRV
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k-SIIRV: Sum of n Independent (not necessarily identical) k-IRVs

2-SIIRV

k-SIIRV



starting small

Simplest imaginable learning problem:
Learning 2-IRVs

@(1/52) samples necessary and sufficient

01
) 3
Learning 2-SIIRVs: 0(1/5 )
Sums of n independent | samples,

coin flips with distinct independent of n!

biases?

[Defined by Poisson in 1837]



more ambitious

01 - k-1

Learning k-SIIRVs:

Sum of n independent die rolls,
each with distinct biases,
in o(n) time?

Our main result: Yes!
poly(k,1/¢) time and sample complexity,
independent of n.




from 2 to k : a whole new ball game

Even just 3-SIIRVs have significantly richer structure than 2-SIIRVs

2-SIIRVs : unimodal, log-concave, close to Binomial @ Eally

3-SIIRVs : - -

(2(1)-far from unimodal -I-h-l‘n.
(2(1)-far from log-concave

(2(1)-far from Binomial

Prior to our work nothing known, even about
sample complexity, even for 3-SIIRVs.



our main theorem
Theorem. Let C be the class of k-SIIRVs, i.e. all distributions
S=X;+...+ X,

where X,’L-S are independent, distinct r.v.’s supported on
{0,1,...,k —1} . There is an algorithm that learns C with time
and sample complexity poly(k, 1/¢), independent of n.

Recall: Q(k/s?) samples necessary
even for a single k-IRV



our main technical contribution

A new limit theorem for k-SIIRVs:

“Every k-SIIRV is close to sum of two simple random variables”



Limit Theorem. Let S be a k-SIIRV with Var[S] > poly(k/e).

Then S is £-closetocZ + Y, where
» ce{l,2,....k—1}
s 7/, =discretized normal

= Y =c-IRV Y, Z independent
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previous limit theorems

Existing k-SIIRV limit theorems: Hl|F

Certain highly structured k-SIIRVs close
to discretized normals

il

structure = “shift-invariance” of X;S

But general k-SIIRVs can be far from any disc. norm. Z

Goal: limit theorem for arbitrary k-SIIRVs



k-SIIRVs can be far from Z

Trivial but illustrative example:

S=X;+...+X,, all X; uniform over {0,2,4,... k}

Our main contribution:

Build on and generalize existing limit theorems to
characterize structure of all k-SIIRVs

Cause for optimism?

dTV(87 Z) Z %
for all disc. norm. 7, dTV(Sa 2 Z) <e¢




two kinds of numbers

S + + .. +

- =L 1 -
012345 012345 012345
X4 X Xn
Z Heavy numbers: 2?21 Pr|(X; = b] large
structured global
component + + eee +
3 95 3 D 3 9

Y Light numbers: 2?21 PI‘[XZ' — b] small

arbitrary local + + +
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a useful special case: all numbers heavy

012345
X4

-
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012345
X
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Intuition: No “mod structure” in S

e.g. S equally likely to be 0 or 1 mod 2

Use [Chen-Goldstein-Shao 2011]
limit theorem to establish
closeness to discretized normal

dTv(S, Z) S E

-
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a sampling procedure for k-SIIRVs

{3, 5} heavy, {0,1,2,4} light

S ; bt

[ O (i
012345 012345 012345
light or
heavy?
= = O M = m
3 o 012 4 3 5 012 4 3 o 012 4
l l 1. Decide independently for each Xz’

whether outcome will be heavy or light.

Xheavy light
) Xz : h /¢ :

2. Draw either Xi or Xi according to

respective conditional distributions.
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light or
heavy?

¢ heavy x light

v 1

analysis

Every outcome O of Stage 1 induces distribution
o= ¥ X+ ¥ X
i€heavy(O) j€light(O

S = mixture of 2" many SO S

Key technical lemma:
With high probability over outcomes O

Z XM~ cZ
i1€heavy (O)

where Zi = disc. norm. independent of O.

=  Proof uses “all numbers heavy” special case
= ¢ = gcd(heavy numbers)



using the limit theorem to learn

Limit Theorem. Let S be a k-SIIRV with Var|S] > poly(k/e).
Then S is e-closetocZ + Y, where
= ce{l,2,....k—1}

» '/, =discretized normal

= Y =c-IRV Y, Z independent

= |f Var[S] < poly(k/e), S is close to sparse.
Easily learn by “brute force”.

= Elseguessce {1,2,...,k—1}
= Foreachc,learn Y and 7, separately.
= Do hypothesis testing over all k possibilities.




summary of contributions

1. Alimit theorem for k-SIIRVs

structured
global component

arbitrary
local component
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2. Efficient algorithm for learning k-SIIRVs v o go N2,
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thank you! |
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