Learning Sums of Independent Integer Random Variables

Costis Daskalakis (MIT)
Ilias Diakonikolas (Edinburgh)
Ryan O'Donnell (CMU)
Rocco Servedio (Columbia)
Li-Yang Tan (Columbia)

FOCS 2013, Berkeley CA

learning discrete distributions

Probability distributions on $[N] = \{0, 1, \dots, N\}$

- Learning problem defined by class $\mathcal C$ of distributions
- Target distribution $\mathcal{D} \in \mathcal{C}$ unknown to learner
- Learner given sample of i.i.d. draws from ${\cal D}$

Goal: w.p.
$$\geq \frac{9}{10}$$
 output \mathcal{D}' satisfying

Goal: w.p.
$$\geq \frac{9}{10}$$
 output \mathcal{D}' satisfying $d_{\mathrm{TV}}(\mathcal{D},\mathcal{D}') := \frac{1}{2}\|\mathcal{D}-\mathcal{D}'\|_1 \leq arepsilon$

analogies with PAC learning Boolean functions

\underline{x}	$\int f(x)$
10101010010	1
10111111110	1
10101010000	0
:	:

- Class \mathcal{C} of distributions
- Unknown target $\mathcal{D} \in \mathcal{C}$
- Learner gets **i.i.d. samples** from \mathcal{D}
- Output approximation \mathcal{D}' of \mathcal{D}

- Class C of **Boolean functions**
- lacktriangle Unknown target $f \in \mathcal{C}$
- Learner gets **labeled samples** $\langle x, f(x) \rangle$
- Output approximation f' of f

Explicit emphasis on computational efficiency

learning distributions: an easy upper bound

Learning *arbitrary* distributions:

 $\Theta(N/\varepsilon^2)$ samples necessary and sufficient

When can we do better?

Which distributions are easy to learn, which are hard?

This work: Sums of independent, simple random variables

one piece of terminology

k-IRV: Integer-valued Random Variable supported on $\{0, 1, \dots, k-1\}$

k-SIIRV: Sum of *n* Independent (*not necessarily identical*) *k*-IRVs

k-SIIRV

starting small

Simplest imaginable learning problem:

Learning 2-IRVs

 $\Theta(1/arepsilon^2)$ samples necessary and sufficient

Learning 2-SIIRVs:

Sums of *n* independent coin flips with distinct biases?

 $\widetilde{O}(1/arepsilon^3)$ samples, independent of n!

Daskalakis, Diakonikolas, Servedio [STOC 2012]

[Defined by Poisson in 1837]

more ambitious

Learning k-IRVs: $\Theta(k/\varepsilon^2)$ samples necessary and sufficient

Learning k-SIIRVs:

Sum of n independent die rolls, each with distinct biases, in o(n) time?

Our main result: Yes!

 $\operatorname{poly}(k,1/\varepsilon)$ time and sample complexity, independent of \boldsymbol{n} .

from 2 to k: a whole new ball game

Even just 3-SIIRVs have significantly richer structure than 2-SIIRVs

Prior to our work nothing known, even about sample complexity, even for 3-SIIRVs.

our main theorem

Theorem. Let C be the class of k-SIIRVs, i.e. all distributions

$$S = X_1 + \ldots + X_n$$

where $\mathbf{X}_i's$ are independent, distinct r.v.'s supported on $\{0,1,\ldots,k-1\}$. There is an algorithm that learns $\mathcal C$ with time and sample complexity $\operatorname{poly}(k,1/\varepsilon)$, independent of n.

Recall: $\Omega(k/\varepsilon^2)$ samples necessary even for a single k-IRV

our main technical contribution

A new limit theorem for *k*-SIIRVs:

"Every k-SIIRV is close to sum of two simple random variables"

Limit Theorem. Let **S** be a *k*-SIIRV with $Var[S] \ge poly(k/\varepsilon)$.

Then ${\bf S}$ is ε -close to $c\,{\bf Z}+{\bf Y}$, where

- $c \in \{1, 2, \dots, k-1\}$
- **Z** = discretized normal
- \blacksquare $\mathbf{Y} = c\text{-IRV}$

 \mathbf{Y},\mathbf{Z} independent

previous limit theorems

structure = "shift-invariance" of $\mathbf{X}_i's$

But general k-SIIRVs can be far from any disc. norm. ${\bf Z}$

Goal: limit theorem for arbitrary k-SIIRVs

k-SIIRVs can be far from \mathbf{Z}

Trivial but illustrative example:

$$\mathbf{S} = \mathbf{X}_1 + \ldots + \mathbf{X}_n$$
, all \mathbf{X}_i uniform over $\{0, 2, 4, \ldots, k\}$

Our main contribution:

Build on and generalize existing limit theorems to characterize structure of *all* k-SIIRVs

two kinds of numbers

a useful special case: all numbers heavy

a sampling procedure for k-SIIRVs

{3, 5} **heavy**, {0,1,2,4} **light**

- whether outcome will be heavy or light.
- Draw either \mathbf{X}_i^h or \mathbf{X}_i^ℓ according to respective conditional distributions.

analysis

Every outcome \mathcal{O} of Stage 1 induces distribution

$$\mathbf{S}$$
 = mixture of 2^n many $\mathbf{S_O}'s$

Key technical lemma:

With high probability over outcomes $\mathcal O$

$$\sum_{i \in \text{heavy}(\mathcal{O})} \mathbf{X}_i^h \approx c \, \mathbf{Z}$$

where \mathbf{Z} = disc. norm. *independent* of \mathcal{O} .

- Proof uses "all numbers heavy" special case
- $c = \gcd(\text{heavy numbers})$

5 0 1 2

using the limit theorem to learn

Limit Theorem. Let ${\bf S}$ be a k-SIIRV with ${\rm Var}[{\bf S}] \geq {\rm poly}(k/\varepsilon)$.

Then ${\bf S}$ is ε -close to $c\,{\bf Z}+{\bf Y}$, where

- $c \in \{1, 2, \dots, k-1\}$
- **Z** = discretized normal
- \blacksquare $\mathbf{Y} = c\text{-}\mathsf{IRV}$

 \mathbf{Y},\mathbf{Z} independent

- If $Var[S] \le poly(k/\varepsilon)$, S is close to sparse. Easily learn by "brute force".
- Else guess $c \in \{1, 2, \dots, k-1\}$
- For each c, learn ${f Y}$ and ${f Z}$ separately.
- Do hypothesis testing over all k possibilities.

summary of contributions

1. A limit theorem for k-SIIRVs

2. Efficient algorithm for learning k-SIIRVs $\operatorname{poly}(k,1/\varepsilon)$ time and samples.

