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Abstract

We study the complexity of approximating monotone Boolean functions with disjunctive normal
form (DNF) formulas, exploring two main directions. In the first direction we construct DNF approxi-
mators for arbitrary monotone functions achieving one-sided error: we show that every monotone f can
be ε-approximated by a DNF g of size 2n−Ωε(

√
n) satisfying g(x) ≤ f(x) for all x ∈ {0, 1}n. This

represents the first non-trivial universal upper bound even for DNF approximators incurring two-sided
error.

In the second direction we study the power of negations in DNF approximators for monotone func-
tions. We exhibit monotone functions for which non-monotone DNFs perform better than monotone
ones, giving separations with respect to both DNF size and width. Our results, when taken together
with a classical theorem of Quine [Qui54], highlight an interesting contrast between approximation and
exact computation in the DNF complexity of monotone functions, and they add to a line of work on the
surprising role of negations in monotone complexity [Raz85, Oko82, AG87].
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1 Introduction

Monotone Boolean functions constitute a rich and complex class of functions, and their structural and combi-
natorial properties have been intensively studied for decades; see e.g. the monograph [Kor03] for an in-depth
survey. In complexity theory monotone functions play an especially important role in circuit complexity,
where Razborov’s celebrated result [Raz85] has led to a significant body of work centered around monotone
functions and the circuits that compute them [AB87, AG87, KW88, RW90, KRW91, GS95, RR97, GH98,
RM99, Pot10, CP12, FPRC13].

In this paper we study the circuit complexity of approximating monotone functions, focusing on DNF
formulas, one of the simplest and most basic types of circuits. We say that a DNF ε-approximates a function
f : {0, 1}n → {0, 1} if the function g computed by the DNF satisfies f(x) = g(x) on at least a 1−ε fraction
of inputs x in {0, 1}n. Recent works [OW07, BT13] have highlighted interesting qualitative and quantitative
differences in the landscape of DNF complexity when the formula is only required to approximate f rather
than compute it exactly, and while the DNF complexity of exact computation is fairly well-understood, these
papers have also pointed to significant gaps in our understanding of seemingly basic questions regarding the
DNF complexity of approximate computation.

We continue this study and explore two main directions. In the first direction we seek a non-trivial upper
bound on the DNF complexity of approximating an arbitrary monotone function to high accuracy, in the
spirit of the positive results of [BT13]. In the second direction, in the spirit of Razborov’s theorem [Raz85]
we seek a separation between the relative powers of monotone and non-monotone DNF that approximate
monotone functions. As we describe below, our results further illustrate how different DNF complexity can
be in the settings of exact versus approximate computation.

Universal bounds on approximability Recent work of [BT13] established the first non-trivial universal
upper bound on the DNF complexity of approximating an arbitrary Boolean function, achieving logarithmic
savings over the worst-case cost of Ω(2n) necessary for exact computation:

Theorem 1 of [BT13]. Every Boolean function can be ε-approximated by a DNF of size Oε(2n/ log n).

We begin with the simple observation that this result does not say anything meaningful about the ap-
proximation of monotone functions. Since the minterms of a monotone function form a Sperner family,
Sperner’s classical theorem readily translates into an upper bound on the DNF complexity of exactly com-
puting monotone functions that is polynomially stronger:

Fact 1.1. Every monotone function can be computed exactly by a DNF of size
(

n
dn/2e

)
= Θ(2n/

√
n).

This bound is exactly tight by considering the n-variable majority function, and in fact an elementary
combinatorial argument establishes that a 1−on(1) fraction of monotone functions do actually require DNFs
of size Ω(2n/

√
n) to compute. Fact 1.1, taken together with the result of [BT13], raises a basic qualitative

question: are there monotone functions that require DNFs of size Ω(2n/
√
n) to approximate, or can every

monotone function be approximated by a DNF of size o(2n/
√
n)? Despite the vast literature on monotone

functions and Sperner families, this question does not appear to have been explicitly studied before. We
answer this question in the first half of the paper, constructing DNF approximators for arbitrary monotone
functions that achieve exponential savings over the size necessary for exact computation. Our DNF ap-
proximators only make one-sided error, and our construction is based on a new structural decomposition of
monotone functions.
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Power of negations in approximating monotone functions In the second half of the paper we turn our
attention to the role of negations in the DNF complexity of approximating monotone functions. Recall that
a circuit is said to be monotone if it does not contain any NOT gates, and non-monotone otherwise. While
every monotone function can be computed by a monotone circuit, there is a body of results showing the
remarkable fact that for various circuit classes, the optimal circuit computing a monotone function must be
non-monotone. The most prominent example is perhaps Razborov’s celebrated lower bound:

Razborov’s Theorem [Raz85]. There is a polynomial-time computable monotone function that requires
monotone circuits of quasi-polynomial size.

This separation of monotone NP from monotone P/poly was subsequently improved from quasi-
polynomial to exponential by E. Tardos [Tar88]. An analogue of Razborov’s result in the setting of bounded-
depth circuits was established by Okol’nishnikova, Ajtai, and Gurevich:

Okol’nishnikova–Ajtai–Gurevich Theorem [Oko82, AG87]. There is a monotone function in AC0 that is
not in monotone AC0.

For the class of DNFs, however, it is well-known (and straightforward to verify) that the analogue these
separations does not hold:

Quine’s Theorem [Qui54]. The optimal DNF, with respect to both size and width, computing a monotone
function is monotone as well.

In the second half of this paper we investigate the question: does Quine’s theorem hold for approxi-
mation by DNFs? In other words, is the optimal DNF approximator for a monotone function monotone as
well, or do negations buy us power in the setting of approximation? We show that the answer is the latter,
giving separations with respect to both DNF size and width. Our results, taken in contrast with Quine’s the-
orem, highlight an interesting qualitative difference between the DNF complexity of exact and approximate
computation. More broadly, we believe that the role of negations in the circuit complexity of approximat-
ing monotone functions is a topic of intrinsic interest, and we view our separations as the first steps in its
systematic study.

1.1 Our results

Universal bounds on approximability Our first result is the construction of DNF approximators for ar-
bitrary monotone Boolean functions that achieve one-sided error:

Theorem 1. Every monotone function f can be ε-approximated by a monotone function g of DNF size
2n−Ωε(

√
n), satisfying g(x) ≤ f(x) for all x ∈ {0, 1}n.

Prior to our work the only known universal upper bound, even for approximators incurring two-sided
error, was the trivial one of

(
n
dn/2e

)
= Θ(2n/

√
n), the size sufficient for exact computation. A standard

information-theoretic argument (see [BT13] for proof) shows that any ε-approximator for a random Boolean
function has DNF size Ωε(2

n/n); Theorem 1 therefore shows that the structure of monotonicity can be
leveraged to obtain DNF approximators with complexity exponentially smaller than that required for almost
all other functions. Our construction relies on a new structural fact about monotone functions which we
believe may be of independent interest:

Lemma 1.2. Let f be a monotone function and ε > 0. There is a function g = g1 ∨ · · · ∨ gt that ε-
approximates f , where t = Oε(1) and each gi is a monotone DNF with terms of width exactly ki and size at
least (ε/2)

(
n
ki

)
. Furthermore, g(x) ≤ f(x) for all x ∈ {0, 1}n.
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Since g(x) ≤ f(x) for all x ∈ {0, 1}n, we say that g is a lower ε-approximator for f . We prove
Lemma 1.2 in Section 2, and with this structural fact in hand, the task of constructing lower approximators
for an arbitrary monotone function reduces to that of constructing lower approximators for the gi’s. Since g
comprises only a constant number of these gi’s, taking a naive union bound incurs no more than a constant
factor in terms of error and DNF size of the overall approximator. Our lower approximators for the gi’s,
presented in Section 3, are obtained via a randomized algorithm that constructs an approximating DNF. We
complement our positive result with a lower bound showing that Theorem 1 is essentially optimal:

Theorem 2. Let g be a 1
10 -approximator for the majority function MAJn satisfying g(x) ≤ MAJn(x) for

all x ∈ {0, 1}n. Then g has DNF size 2n−O(
√
n logn).

Power of negations in approximating monotone functions The proof of Quine’s classical theorem men-
tioned in the introduction is simple: given a DNF g that computes a monotone function f , if g contains a
term T with a negated variable x̄i, it is easy to check that g still computes the same monotone function f
if x̄i is removed from T . Therefore, by removing all occurrences of negated variables in g, we obtain a
monotone DNF h computing the same function f , where the size and width of h are at most those of g.

It is natural to suspect that the same would be true for DNF approximators, that the optimal DNF
approximator for a monotone function is always monotone as well; indeed, we note that the universal DNF
approximators we construct in Theorem 1 are in fact monotone. To be precise, we consider the following
question:

Question 1. Let f be a monotone function that is ε-approximated by a DNF g of size s (resp. width w). Can
f be ε-approximated by a monotone DNF h of size s (resp. width w)?

The simple proof of Quine’s theorem does not extend to answer this question in the affirmative. In fact,
for all three natural ways of “locally monotonizing” the DNF approximator g — removing x̄i in T (as is
done in the proof of Quine’s theorem); replacing x̄i with xi in T ; and removing T from f entirely — it is
possible to construct examples showing that these operations increase the distance of g from f (i.e. worsens
the quality of approximation).

In the second half of the paper we resolve Question 1 by showing, perhaps somewhat surprisingly, that
the answer is “No” for both complexity measures of DNF size and DNF width. In Section 4 we prove the
following two theorems:

Theorem 3 (Separation for DNF size). For all sufficiently large n, there exists an n-variable monotone
function f and a value ε = ε(n) > 0 such that f can be ε-approximated by a DNF of size O(n), but any
monotone function that ε-approximates f has DNF size Ω(n2).

Theorem 4 (Separation for DNF width). For all sufficiently large n, and for all k = o(n), there exists an
n-variable monotone function f and a value ε = ε(n) > 0 such that f can be ε-approximated by a DNF of
width k + log k, but any monotone function that ε-approximates f has DNF width at least 2k − 1− on(1).

We view these separations as the first steps in quantifying just how powerful negations can be in the
approximation of monotone functions, a question that does not appear to have been explicitly studied before
(despite a significant body of results on the power of negations in the computation of monotone functions,
as discussed above). We conclude the paper by listing a few interesting questions for future work in this
direction.
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1.2 Previous work

The explicit study of the DNF complexity of approximating Boolean functions was initiated by O’Donnell
and Wimmer [OW07]. They showed that DNF size 2Oε(

√
n) is both necessary and sufficient for ε-approximating

the n-variable majority function, and constructed an explicit n-variable monotone function for which any
0.01-approximating DNF must have size 2Ω(n/ logn). As mentioned above, Blais and Tan [BT13] gave uni-
versal upper bounds on DNF size for approximating arbitrary Boolean functions, but [BT13] does not con-
sider monotone functions.

We also note that the earlier work of Bshouty and Tamon [BT96], which established Fourier concentra-
tion bounds for monotone Boolean functions, implies that every n-variable monotone function is ε-close to
a depth-2 circuit of size 2O(

√
n log(n)/ε) in which the bottom-level gates are parity gates and the top gate is

a threshold gate (with unbounded weights). Recall that while threshold-of-parity circuits can simulate DNF
formulas with only a polynomial size increase [Jac97, KP97], the converse is not true (indeed, even a single
parity gate requires exponential DNF size). Thus the [BT96] results do not imply the existence of nontrivial
DNF approximators for monotone functions.

1.3 Preliminaries

Throughout this paper all probabilities and expectations are with respect to the uniform distribution unless
otherwise stated; we will use boldface (e.g. x and X) to denote random variables. For strings x, y ∈ {0, 1}n
we write ‖x‖ to denote the Hamming weight #{i ∈ [n] : xi = 1} of x, and x � y if xi ≤ yi for all i ∈ [n],
and x ≺ y if x � y and x 6= y. For 0 ≤ k ≤ n, we write Vol(n, k) :=

∑k
i=0

(
n
i

)
to denote the volume of

the n-dimensional Hamming ball of radius k.
A monotone Boolean function f : {0, 1}n → {0, 1} is one that satisfies f(x) ≤ f(y) whenever x � y.

A DNF formula is the logical OR of logical ANDs, where we refer to each AND as a term. The size of a
DNF is the number of terms it contains, and the width of a DNF is the maximum width of any term. For a
term T , we write |T | to denote the width of T , the number of literals occurring in it. For any x ∈ {0, 1}n,
we write Tx to denote the monotone conjunction that accepts all y ∈ {0, 1}n such that y � x. That is,
Tx(y) = 1 iff yi = 1 for all i ∈ [n] such that xi = 1. We say that x defines a minterm in a monotone
function f if Tx is a minterm in the canonical DNF computing f , and we write minterm(x, f) to denote the
indicator for this event.

Definition 5 (canonical DNF). Let f be a monotone Boolean function. The canonical DNF for f is the
unique monotone DNF whose terms correspond precisely to the minterms of f .

Definition 6 (ε-approximator). Let f, g : {0, 1}n → {0, 1} be Boolean functions and ε ∈ [0, 1]. We say that
g is an ε-approximator for f , or that f and g are ε-close, if Pr[f(x) 6= g(x)] ≤ ε. We say that g is a lower
approximator for f if g(x) ≤ f(x) for all x ∈ {0, 1}n, and an upper approximator for f if f(x) ≤ g(x) for
all x ∈ {0, 1}n.

Definition 7 (density). Let f : {0, 1}n → {0, 1} and k ∈ {0, 1, . . . , n}. The density of f at level k, denoted
µk(f), is defined to be

µk(f) = Pr
‖x‖=k

[f(x) = 1] = #{x ∈ {0, 1}n : ‖x‖ = k and f(x) = 1} ·
(
n

k

)−1

.

Fact 1.3. Let f be a monotone function. Then µk(f) ≥ µk−1(f) for all k ∈ [n].

We recall two basic facts from probability theory.
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Fact 1.4 (Chernoff bound). Let X ∼ Binomial(n, 1/2). Then for any 0 ≤ t ≤
√
n, we have Pr

[
X ≥ n

2 + t
√
n

2

]
≤

e−t
2/2 and Pr

[
X ≤ n

2 − t
√
n

2

]
≤ e−t2/2.

Fact 1.5 (anti-concentration of the Binomial). For every ε ≥ 1/
√
n and interval I ⊆ [0, n] of width at most

ε
√
n, we have Prx∈{0,1}n [‖x‖ ∈ I] ≤ 2ε.

2 A Regularity Lemma for Monotone DNFs

We begin with a new structural fact about monotone functions, which states that every monotone DNF f
is lower approximated by the disjunction g of a constant number of monotone DNFs that are “dense” and
“regular.” Here a “regular” DNF is one in which all terms have the same width k, and a “dense” regular
DNF is one that contains a constant fraction of the

(
n
k

)
many possible terms of width k. This structural

decomposition is useful as it reduces the task of (lower) approximating an arbitrary monotone DNF f to that
of (lower) approximating a dense regular one. Sine g is the disjunction of only a constant number of dense
regular DNFs, taking a naive union bound incurs only a constant factor in terms of error and DNF size of
the overall approximator.

Definition 8 (regular and dense DNFs). Let k ∈ [n]. We say that a monotone DNF f is k-regular if all
its terms have width exactly k, and regular if it is k-regular for some k. Additionally, we say that f is
(ε, k)-regular if it is a k-regular DNF with at least ε

(
n
k

)
many terms.

Our structural result says that every monotone function is lower ε-approximated by the disjunction of
Oε(1) many (ε/2, ki)-regular DNFs, where each ki = (n/2)±O(

√
n). More precisely:

Lemma 1.2. For any ε > 0,every monotone function f is ε-close to the disjunction g of monotone DNFs,
g(x) = g1(x) ∨ · · · ∨ gt(x), where

1. t ≤ 2/ε,

2. each gi is ki-regular for some ki ∈
[
(n/2)−

√
n ln(4/ε)/2, (n/2) +

√
n ln(4/ε)/2

]
,

3. the DNF size of gi is at least (ε/2)
(
n
ki

)
(i.e., µki(gi) ≥ ε/2).

4. g(x) ≤ f(x) for all x ∈ {0, 1}n.

Proof. Fix ` :=
√
n ln(4/ε)/2. For each k = {0, 1, . . . , n} we define

fk(x) :=
∨
{Tx : ‖x‖ = k and minterm(x, f) = true},

where we recall that Tx is the monotone term that accepts all y such that y � x. By the Chernoff bound
Prx∈{0,1}n [|‖x‖ − n/2| ≥ `] ≤ ε/2, and so f is (ε/2)-close to

f∗(x) = f(n/2)−`(x) ∨ · · · ∨ f(n/2)+`(x).

Furthermore, f∗(x) is an lower approximator for f . By the triangle inequality, it suffices to prove that f∗ is
(ε/2)-close to g satisfying the four claims in the lemma statement.

Consider the algorithm described in Figure 1, and let g be the resulting function when the algorithm
terminates. First, since the algorithm only sets f∗(x) = 0 for inputs x that define a minterm in f∗, we

5



regularize(f∗):

1. for k = (n/2)− `, . . . , (n/2) + `:

2. if Pr‖x‖=k[minterm(x, f∗)] < ε/2

3. set f∗(x) = 0 for all x s.t. ‖x‖ = k and minterm(x, f∗) = true.

Figure 1: The regularize algorithm

have that g is a monotone lower approximator for f∗. Second, since the algorithm corrupts less than an
(ε/2)-fraction of any layer, g is (ε/2)-close to f∗.

We will argue that g is the disjunction of regular monotone DNFs satisfying the first three claims in the
lemma. The algorithm ensures that for every k ∈ [(n/2)− `, (n/2) + `], the fraction of inputs at layer k that
define a minterm in g is either 0 at least ε/2 — if this fraction is in the range [0, ε/2), the predicate in Line
2 of the algorithm is satisfied and the fraction is set to 0 by Line 3. Furthermore, since all the minterms of
f∗ have weight in the range [(n/2)− `, (n/2) + `], the same is true for g and so

Pr
‖x‖=k

[minterm(x, g)] =

{
0 if k /∈ [(n/2)− `, (n/2) + `]

0 or ≥ ε/2 if k ∈ [(n/2)− `, (n/2) + `].

Each layer ki ∈ [(n/2)− `, (n/2) + `] such that this probability is at least ε/2 naturally defines a ki-regular
monotone DNF gi satisfying the second and third claims of the lemma: gi is simply the DNF

gi(x) :=
∨
{Tx : ‖x‖ = ki and minterm(x, g)}.

Therefore g(x) = g1(x) ∨ · · · ∨ gt(x) where each gi is ki-regular and µki(gi) ≥ ε/2, and so it remains to
justify the first claim of the lemma, that t ≤ 2/ε. We assume without loss of generality that k1 < k2 <
. . . < kt, and claim that

µki(g1 ∨ · · · ∨ gi) ≥ i ·
ε

2
for all i ∈ [t]. (1)

Note that this implies the first claim of the lemma since µkt(g1∨ . . .∨gt) ≤ 1 holds trivially, and so t ≤ 2/ε.
We prove (1) by induction on i, noting that the base case holds since µki(gi) ≥ ε/2 for all i by construction,
and in particular when i = 1. Suppose µki(g1 ∨ . . . ∨ gi) ≥ i · ε/2 for some i < t. By Fact 1.3, we have

µki+1
(g1 ∨ · · · ∨ gi) ≥ µki(g1 ∨ · · · ∨ gi) ≥ i ·

ε

2
.

Since the terms of gi+1 are the width-(ki+1) minterms of g, the sets

A = {x ∈ {0, 1}n : ‖x‖ = ki+1 and g1(x) ∨ · · · ∨ gi(x) = 1}
B = {x ∈ {0, 1}n : ‖x‖ = ki+1 and gi+1(x) = 1}
≡ {x ∈ {0, 1}n : ‖x‖ = ki+1 and minterm(x, g)}

are disjoint, and so

µki+1
(g1 ∨ · · · ∨ gi+1) = µki+1

(g1 ∨ . . . ∨ gi) + µki+1
(gi+1) =

(
i · ε

2

)
+
ε

2
= (i+ 1) · ε

2
.

This completes the proof.
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3 Lower Approximators for Regular DNFs

With Lemma 1.2 in hand it suffices to construct lower approximators for regular DNFs:

Proposition 3.1. Let f be a regular monotone function. For every ε > 0 there exists a monotone DNF g of
size 2n−Ω(ε

√
n−log(n)) that is a lower ε-approximator for f .

Proof of Theorem 1 assuming Proposition 3.1. By Lemma 1.2 every monotone f has an upper (ε/2)-approximator
g(x) = g1(x) ∨ · · · ∨ gt(x) where t ≤ 4/ε and each gi(x) is a regular monotone function. Next, by Propo-
sition 3.1 each regular gi(x) has a lower (ε/2t)-approximator hi(x) of size 2n−Ω((ε

√
n/t)−log(n)). Finally,

by the union bound and the triangle inequality, we conclude that h(x) = h1(x) ∨ · · · ∨ ht(x) is a lower
ε-approximator for f of size at most t · 2n−Ω((ε

√
n/t)−log(n)) = 2n−Ωε(

√
n).

Proof of Proposition 3.1. We may assume that ε ≥ (C log n)/
√
n (for some constant C > 0 which we will

specify below), since otherwise the claimed bound on monotone DNF size is trivial. Let f be a k-regular
monotone function for some k ∈ [n]. The minterms of our monotone approximator g will be conjunctions
of the form Ty where y ∈ f−1(1), which guarantees that g will be a lower approximator for f . Furthermore,

since Prx∈{0,1}n
[
‖x‖ ≥ (n/2) +

√
n ln(3/ε)/2

]
≤ ε

3 , and Prx∈{0,1}n [‖x‖ ∈ [k, k + ε
√
n/6]] ≤ ε

3 , by
the Chernoff bound and Fact 1.5 respectively, it suffices to ensure that the monotone DNF g we construct
additionally satisfies:

Pr
x∈A

[g(x) 6= f(x)]] ≤ ε

3
, A :=

{
x ∈ {0, 1}n : ‖x‖ ∈

[
k + ε

√
n/6, (n/2) +

√
n ln(3/ε)/2

]}
. (2)

Note that if k+ ε
√
n/6 > (n/2) +

√
n ln(3/ε)/2 (i.e. the interval in the definition of A is empty) then f is

(2ε/3)-close to the constant 0 function and the proposition is trivially true.
For every ` ∈ {0, 1, . . . , n− k}, we write S` to denote the 1-inputs of f with Hamming weight exactly

k+ `; that is, S` := {x ∈ {0, 1}n : f(x) = 1 and ‖x‖ = k+ `}. The remainder of this proof will be devoted
to showing that for each ` ≥ ε

√
n/6, there exists a monotone DNF g` satisfying:

i. The minterms of g` are of the form Ty for some y ∈ S`/2 (and hence g` ≤ f ),

ii. DNF-size[g`] = O(2n−`/2) ≤ 2n−Ω(ε
√
n),

iii. Prx∈S`
[g`(x) = 0] ≤ ε/3.

Indeed, taking g to be the disjunction of all g` where k + ` ∈
[
k + ε

√
n/3, (n/2) +

√
n ln(3/ε)/2

]
, we

obtain a monotone DNF of size at most n · 2n−Ω(ε
√
n) ≤ 2n−Ω(ε

√
n−log(n)) satisfying (2), which completes

the proof.
Consider a random monotone DNF g` sampled according to the following distribution D: for each y ∈

S`/2, independently include Ty as a minterm of g` with probability p := 2−`/2. By definition, every DNF
in the support of this distribution satisfies (i), and so it remains to argue that with positive probability, both
(ii) and (iii) are satisfied as well. For (ii), we observe that ED [DNF-size[g`]] = p · |S`| < p · 2n = 2n−`/2,
and so by Markov’s inequality,

Pr
D

[
DNF-size[g`] ≤ 3 · 2n−`/2

]
≥ 2

3
. (3)
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For (iii), consider any fixed x ∈ S`. Since f is k-regular, there must exist some z ∈ S0 such that z ≺ x, and
therefore

(
`
`/2

)
= Θ(2`/

√
`) many y ∈ S`/2 such that z ≺ y ≺ x. By the definition of D, for each such y

the term Ty is independently included as a minterm of g` with probability p = 2−`/2, and so

Pr
D

[g`(x) = 0] ≤ (1− p)Θ(2`/
√
`) = exp

(
−Ω(2`/2/

√
`)
)
< exp

(
−Ω(2ε

√
n/12)/

√
n
)
<
ε

9
,

where we have used ε ≥ (C log n)/
√
n for the final inequality. Therfore

E
D

[
Pr
x∈S`

[g`(x) = 0]

]
≤ ε

9
, and Pr

D

[
Pr
x∈S`

[g`(x) = 0] ≤ ε

3

]
≥ 2

3
. (4)

Applying a union bound to the failure probabilities of (3) and (4), we conclude that there is indeed a positive
probability that g` ∼ D satisfies all three properties (i), (ii), and (iii), and this completes the proof.

3.1 Near-Matching Lower Bound

In this section we show that our upper bound in Theorem 1 is essentially tight.

Theorem 2. Let ε ≤ 1
10 and g be an s-term DNF that is a lower ε-approximator for the majority function

MAJn. Then s ≥ 2n−O(
√
n logn).

Proof. First we claim that we may assume without loss of generality that g is an dn/2e-regular monotone
function. To see this, fix a DNF representation of g and consider any term

T (x) =

( ∧
i∈S+

xi

)
∧
( ∧
j∈S−

xj

)
, S+, S− ⊆ [n]

in the DNF. Note that |S+| ≥ dn/2e, since otherwise g(y) = 1 and MAJn(y) = 0 on the input y where
yi = 1 iff i ∈ S+ (of Hamming weight ‖y‖ = |S+| < dn/2e), contradicting our assumption that g(x) ≤
MAJn(x) for all x ∈ {0, 1}n. Replacing T (x) in g by T ′(x) =

∧
i∈S xi, where S is an arbitrary subset

of S+ of cardinality exactly dn/2e, we get a function g∗ satisfying g−1(1) ⊆ (g∗)−1(1) ⊆ MAJ−1
n (1).

Performing this replacement for every term in g, we obtain an dn/2e-regular monotone DNF of size at most
s that lower ε-approximates MAJn.

Next we claim that if g is an dn/2e-regular monotone DNF that ε-approximates MAJn, then µ`(g) ≥
1− 4ε for ` := dn/2e+

√
n ln 2. If µ`(g) < 1− 4ε, then by Fact 1.3 by have µk(g) ≤ µ`(g) < 1− 4ε for

all k ≤ `, and since

Pr
x∈{0,1}n

[
‖x‖ ∈

[
dn/2e, `

]]
≥ 1

4
,

by the Chernoff bound, we get Pr[f(x) 6= g(x)] > ε, a contradiction.
Having established that µ`(g) ≥ 1 − 4ε, we complete the proof with a simple counting argument. For

every x of weight dn/2e, we have |{y ∈ {0, 1}n : ‖y‖ = ` and y � x}| =
( dn/2e√

n ln 2

)
. Since µ`(g) ≥ 1−4ε =

Ω(1) and there are
(
n
`

)
strings of Hamming weight `, we conclude that the number of terms in the canonical

DNF for g is at least

µ`(g)

(
n

`

)
·
(
dn/2e√
n ln 2

)−1

= Ω(1) ·
(

n

dn/2e+
√
n ln 2

)
·
(
dn/2e√
n ln 2

)−1

= 2n−O(
√
n logn)

as claimed.
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4 Power of Negations in Approximating Monotone Functions

In this section we present our constructions showing that non-monotone DNFs can asympototically outper-
form monotone ones in the approximation of monotone functions. We present our separation for DNF size
in Section 4.1, followed by our separation for DNF width in Section 4.2.

4.1 Separation for DNF size

Theorem 3. Let f : {0, 1}n × {0, 1}5n → {0, 1} be the monotone function:

f(x, y) = (x1 ∨ . . . ∨ xn) ∧ (y1 ∨ . . . ∨ y5n) =
∨
i∈[n]

j∈[5n]

(xi ∧ yj),

and ε = (2n−1 − 1) · 2−6n. There exists a DNF of size 6n − 1 that ε-approximates f , but any monotone
function that ε-approximates f has DNF size at least n2.

Proof. Consider the function g = g(x, y) defined as

g = (x1 ∧ (y1 ∨ . . . ∨ y5n)) ∨ (x1 ∧ (x2 ∨ . . . ∨ xn)) =

 ∨
j∈[5n]

(x1 ∧ yj)

 ∨
 ∨

2≤i≤n
(x1 ∧ xi)

 . (5)

This is a non-monotone DNF with 6n − 1 terms that ε-approximates f , since g(x, y) differs from f(x, y)
exactly on the 2n−1 − 1 inputs satisfying x1 = 0, y = 0, and x2 ∨ . . . ∨ xn = 1.

The rest of the proof will be devoted to showing that any monotone function that ε-approximates f has
to have more than n2 terms, asymptotically as many as the canonical DNF for f which has 5n2 terms. We
will prove the contrapositive: any monotone DNF h with at most n2 terms differs from f on strictly more
than an ε-fraction of inputs.

We group the terms of h into three types: terms with only x-variables, which we call “pure-x”; terms
with only y-variables, which we call “pure-y”; and terms with both x- and y-variables, which we call
“mixed”. We first observe that we may assume that all mixed terms have width exactly two, comprising one

x-variable and one y-variable. Indeed, replacing a mixed term
(∧

i∈S1
xi

)
∧
(∧

j∈S2
yj

)
, S1 ⊆ [n] and

S2 ⊆ [5n], in h with (xi ∧ yj) for any i ∈ S1 and j ∈ S2 yields a DNF h′ such that h′(x, y) 6= h(x, y) only
on inputs (x, y) such that h(x, y) = 0 and f(x, y) = 1).

Furthermore, we claim that we may assume all pure-y terms have width greater than 2n. Indeed, if h
contains a term T (y) =

∧
i∈S yi for some S ⊆ [5n] where |S| ≤ 2n, then f(x, y) = 0 and h(x, y) = 1 on

at least 23n > ε · 26n inputs (x, y) satisfying x = 0 and T (y) = 1.
We proceed by considering two cases, depending on the number of xi’s that occur as a singleton term

in h. First suppose at least half of the xi’s occur as a singleton term in h, so there is some S ⊆ [n] where
|S| ≥ n/2 such that if ORS(x) =

∨
i∈S xi = 1 then h(x, y) = 1. In this case f(x, y) = 0 and h(x, y) = 1

on at least 2n − 2n/2 > ε · 26n inputs satisfying y = 0 and ORS(x) = 1. Finally, suppose less than half
of the xi’s occur as singleton terms in h. By our first assumption that all mixed terms have width two (in
particular, no mixed term contains more than one x-variable), there must be an xi that does not occur as
a singleton term and participates in at most 2n mixed terms (since otherwise h would have more than n2
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terms); without loss of generality suppose x1 is one such variable. Let S ⊆ [5n] be the set of all j ∈ [5n]
such that (x1 ∧ yj) is a mixed term in h, and consider the set of inputs

E = {(x, y) : x1 = 1, xi = 0 for all i ≥ 2, and yj = 0 for all j ∈ S, and ‖y‖ = (3n)/2}.

Note that f(x, y) = 1 for all (x, y) ∈ E, and we claim that h(x, y) = 0 on these inputs. To see this,
consider the restriction h∗ of h obtained by setting x1 ← 1, xi ← 0 for all i ≥ 2, and yj ← 0 for all
j ∈ S. Since x1 does not occur as a singleton term in h, this partial assignment does not satisfy any
terms and the canonical DNF for h∗ comprises only of pure-y terms. Since the pure-y terms of h have
width greater than 2n (by our second assumption), the same is true for h∗ and so h∗ cannot be satisfied by
any assignment of weight (3n)/2; hence h(x, y) = h∗(y) = 0 for all (x, y) ∈ E. Lastly, we check that
|E| ≥

(
3n

(3n)/2

)
= Θ

(
23n/
√

3n
)
> ε · 26n and this completes the proof.

Remark 9. We note that the non-monotone approximator g in (5) is actually computed by a O(n)-size
decision tree. Recall that every size-s decision tree is a size-s DNF, but not vice versa: there are polynomial-
size DNFs that require exponential-size decision trees. Therefore the proof of Theorem 3 in fact establishes
a stronger statement: f is a monotone function that can be ε-approximated by aO(n)-size decision tree, and
yet any monotone function that ε-approximates f has DNF size Ω(n2).

4.2 Separation for DNF width

We will need a simple combinatorial lemma concerning shadows in the hypercube.

Lemma 4.1. Let k ∈ [n] and δ ∈ (0, 1), and f be a monotone DNF of width δk. Then µk−1(f) ≥
(1− δ) · µk(f).

Proof. Let C be the collection of all pairs (y, x) satisfying ‖y‖ = k − 1, ‖x‖ = k, y ≺ x, and T (y) =
T (x) = 1 for some term T in f . We first note that every x such that f(x) = 1 and ‖x‖ = k must satisfy
some term T of width at most δk < k, and hence some term of length at most k − 1, so

|{x ∈ {0, 1}n : there exists some y ∈ {0, 1}n such that (y, x) ∈ C}| = µk(f) ·
(
n

k

)
.

Consider any x∗ ∈ f−1(1) where ‖x∗‖ = k, and let T be a term in f such that T (x) = 1. Since |T | ≤ δk,
there are at least (1−δ) ·k many y such that (y, x∗) ∈ C. On the other hand, for any y∗ where ‖y∗‖ = k−1,
there are exactly n− k + 1 many x such that ‖x‖ = k and x � y∗. By double counting, we conclude that

µk−1(f) ·
(

n

k − 1

)
= |{y ∈ {0, 1}n : there exists some x ∈ {0, 1}n such that (y, x) ∈ C}|

≥
µk(f) ·

(
n
k

)
· (1− δ) · k

n− k + 1
= µk(f) · (1− δ) ·

(
n

k − 1

)
.

Equivalently, µk−1(f) ≥ (1− δ) · µk(f).

Theorem 4. Let f : {0, 1}n × {0, 1}k × {0, 1}` → {0, 1} be the monotone function:

f(x, y, z) =

{
‖x‖ ≥ k and y = 1k if ‖z‖ = 0

‖x‖ ≥ k otherwise,

and ε = Vol(n, k − 1) · 2−(n+k+`). There exists a DNF of width k + ` that ε-approximates f , but for all
k = o(n) any monotone function that ε-approximates f has width at least (2 − 2−`(1 + on(1))) · k. In
particular, taking ` = log k yields a gap of k + log k versus 2k − 1− on(1).
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Proof. Consider the function

g(x, y, z) =

{
y = 1k if ‖z‖ = 0
‖x‖ ≥ k otherwise.

This is a non-monotone function that is computed by a DNF of width k + `:

g(x, y, z) =

( ∧
i∈[`]

z̄i ∧
∧
j∈[k]

yj

)
∨

∨
i∈[`]

S⊆[n] : |S|=k

(
zi ∧

∧
j∈S

xj

)
,

and we observe that g is indeed an ε-approximator for f since f and g differ on the Vol(n, k − 1) inputs
(x, y, z) where z = 0, y = 1, and ‖x‖ ≤ k − 1.

The rest of this proof will be devoted to showing that for all k = o(n), any monotone DNF h that
ε-approximates f has width at least (2 − 2−`(1 + on(1))) · k. Consider the monotone DNF h∗ obtained
by restricting zi ← 0 for all i ∈ [`] in h. We claim that every term in h∗ has to contain all of y1, . . . , yk.
Suppose not, and suppose without loss of generality that there exists a term T in h∗ that does not contain y1.
If |T | ≥ 2k the overall claimed lower bound on width(h) is true; otherwise h errs on at least

2n+(k−1)−|T | ≥ 2n+(k−1)−2k = 2Ω(n) � Vol(n, k − 1)

many inputs (x, y, z) where z = 0, y1 = 0 and T (x, y, z) = 1, since h(x, y, z) = h∗(x, y, z) = 1 and
f(x, y, z) = 0 on these inputs.

Let h† be h∗ with yi ← 1 for all i ∈ [k]. Since every term in h∗ contains all of y1, . . . , yk, it follows that

width(h) ≥ width(h∗) ≥ k + width(h†), (6)

and so it suffices to prove that width(h†) ≥ (1− 2−`(1 + on(1))) · k. First, since f(x, y, z) = 1 on the
(
n
k

)
inputs satisfying z = 0, y = 1, and ‖x‖ = k, we have that

(1− µk(h†))
(
n

k

)
≤ Vol(n, k − 1). (7)

Next, since h(x,1,0) ≤ h(x,1, z) for all z ∈ {0, 1}` by monotonicity, every error h incurs on an input
(x,1,0) where ‖x‖ = k − 1 implies an error on (x,1, z) for every z ∈ {0, 1}`, and so

2` · µk−1(h†)

(
n

k − 1

)
≤ Vol(n, k − 1). (8)

Using our assumption that k = o(n), the bound of (7) implies that µk(h†) ≥ 1 − on(1), and (8) that
µk−1(h†) ≤ 2−`(1 + on(1)). Applying Lemma 4.1 to h† we conclude that width(h†) ≥ (1 − 2−`(1 +
on(1))) · k, which along with (6) completes the proof.

4.3 Upper bounds

Given the separations between monotone and non-monotone DNFs established in the previous subsections,
it is natural to explore bounds in the other direction which show that the existence of (non-monotone) DNF
approximators implies the existence of monotone DNF approximators of related size, width, and accuracy.
We first recall a few standard definitions and useful facts from the analysis of Boolean functions:
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Definition 10 (influence). The total influence of a Boolean function f , denoted Inf [f ], is defined to be

Inf [f ] =

n∑
i=1

Inf i[f ] where Inf i[f ] = Pr
x∈{0,1}n

[f(x) 6= f(x⊕i)],

and x⊕i denotes x with its i-th coordinate flipped.

Definition 11. A coordinate i ∈ [n] is relevant in a Boolean function f if Inf i[f ] > 0. For k ∈
{0, 1, . . . , n}, we say that f is a k-junta if it has at most k relevant coordinates.

Friedgut’s Junta Theorem [Fri98]. For every δ > 0, every Boolean function f is δ-close to a 2O(Inf [f ]/δ)-
junta.

Amano’s Influence Bound [Ama11]. Let f be computed by a width-w DNF. Then Inf [f ] ≤ w.

Gopalan–Meka–Reingold Junta Bound [GMR13]. Let f be computed by a width-w DNF. Then f is
δ-close to a (w log(1/δ))O(w)-junta.

Folklore Junta Bound. Let f be computed by a size-s DNF. Then f is δ-close to a (s log(s/δ))-junta.

Perhaps the most common way to obtain a monotone function from a non-monotone one is via the
combinatorial shifting operators introduced by Kleitman:

Definition 12 (combinatorial shifting). For every i ∈ [n], the i-th shifting operator κi acts on Boolean
functions as follows:

(κif)(x) =

{
f(x) if f(x) = f(x⊕i)
xi otherwise.

It is straightforward to verify that shift(f) := κ1κ2 · · ·κnf is a monotone function. We will use addi-
tional basic facts concerning the shifting operators. The first is that they can only improve approximation
with respect to a monotone function, and the second is that they do not increase the number of relevant
coordinates.

Fact 4.2. Let f be a monotone function and suppose f is ε-close to g. Then for all coordinates i ∈ [n]

Pr
x∈{0,1}n

[f(x) 6= shift(g)(x)] ≤ Pr
x∈{0,1}n

[f(x) 6= (κig)(x)] ≤ ε.

Fact 4.3. For every Boolean function f and coordinate i ∈ [n], the number of relevant coordinates in κif
is at most that in f . Consequently, the number of relevant coordinates in shift(f) is at most that in f .

With these facts in hand we are now ready to prove our upper bounds showing that the existence of
(non-monotone) DNF approximators implies the existence of monotone DNF approximators of related size,
width, and accuracy.

Theorem 13. Let f be a monotone function and suppose f is ε-approximated by a width-w DNF. For every
δ > 0 there is a monotone DNF of width min{2O(w/δ), (w log(1/δ))O(w)} that (ε+ δ)-approximates f .

Proof. Let f∗ be the width-w DNF that ε-approximates f . Combining Amano’s influence bound and
Friedgut’s junta theorem, we know that f∗ is δ-close to a 2O(w/δ)-junta g. Next, by Facts 4.2 and 4.3, along
with the triangle inequality, we get that shift(g) is a monotone 2O(w/δ)-junta that (ε + δ)-approximates
f . This yields the first bound of 2O(w/δ) since every monotone k-junta is trivially computed by a mono-
tone DNF of width at most k. A similar argument, using the Gopalan–Meka–Reingold junta bound in
place of Amano’s influence bound and Friedgut’s junta theorem, yields the incomparable second bound of
(w log(1/δ))O(w).
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A similar argument using the folklore junta bound in place of Amano’s influence bound and Friedgut’s
junta theorem establishes an analogous result for DNF size:

Theorem 14. Let f be a monotone function and suppose f is ε-approximated by a size-s DNF. For every
δ > 0 there is a monotone DNF of size 2s log(s/δ) that (ε+ δ)-approximates f .

5 Conclusion

Having obtained near-matching upper and lower bounds on the size of universal lower approximators in this
paper, the natural next step is to consider upper approximators and approximators incurring error on both
sides. The task of constructing universal upper approximators appears to be qualitatively different from that
of lower approximators, and we are not aware of any construction achieving size better than the trivial one
of O(2n/

√
n) sufficient for exact computation. For approximators incurring two-sided error, our universal

lower approximators of size 2n−Ωε(
√
n) represent the current best upper bound. The strongest known lower

bound for two-sided approximators is the 2Ω(n/ logn) lower bound of [OW07]; it would be interesting to find
out whether this or the current 2n−Ωε(

√
n) upper bound is closer to the truth.

As for the power of negations in the approximation of monotone functions, we believe that our results
in Section 4 suggest a number of interesting avenues for further exploration. We suspect that the separations
we presented in Sections 4.1 and 4.2 can be improved, perhaps even to super-polynomial for DNF size and
super-constant for DNF width, and likewise our upper bounds in Section 4.3. We remark that in addition
to the complexity measures of DNF size and width, the quantitative difference between the accuracy of
monotone versus general DNFs is also an aspect in which our separations can be strengthened. In other
words, we may view our separations as instantiations of the following general template:

There exists a monotone function f and a value ε = ε(n) > 0 such that f can be ε-approximated
by a DNF of size s (resp. width w), but any monotone function that ϕ(ε)-approximates f re-
quires DNF size Ψ(s) (resp. width Ψ(w)).

In Theorems 3 and 4, ϕ is simply the identity function, but one can consider the possibility of stronger
statements where ϕ(ε)� ε.

Beyond DNFs, one may ask quantitatively just how powerful negations can be in the approximation of
monotone functions for many other classes of circuits. We conclude by restating an open problem, due to
Kalai, on the possibility of strengthening the Okol’nishnikova–Ajtai–Gurevich theorem:

Open Problem 1 ([Kal10]). Is there a monotone function in AC0 that cannot be approximated by monotone
AC0?

References

[AB87] N. Alon and R. Boppana. The monotone circuit complexity of Boolean functions. Combinator-
ica, 7:1–22, 1987. 1

[AG87] Miklós Ajtai and Yuri Grevich. Monotone versus positive. Journal of the ACM, 34(4):1004–
1015, 1987. (document), 1, 1

[Ama11] Kazuyuki Amano. Tight bounds on the average sensitivity of k-CNF. Theory of Computing,
7(1):45–48, 2011. 4.3

13



[BT96] Nader Bshouty and Christino Tamon. On the Fourier spectrum of monotone functions. Journal
of the ACM, 43(4):747–770, 1996. 1.2

[BT13] Eric Blais and Li-Yang Tan. Approximating Boolean functions with depth-2 circuits. In Proceed-
ings of the 28th Annual IEEE Conference on Computational Complexity, pages 74–85, 2013. 1,
1, 1, 1.1, 1.2

[CP12] Siu Man Chan and Aaron Potechin. Tight bounds for monotone switching networks via fourier
analysis. In Symposium on Theory of Computing (STOC), pages 495–504, 2012. 1

[FPRC13] Yuval Filmus, Toniann Pitassi, Robert Robere, and Stephen A. Cook. Average case lower bounds
for monotone switching networks. In Symposium on Foundations of Computer Science (FOCS),
2013. 1

[Fri98] Ehud Friedgut. Boolean functions with low average sensitivity depend on few coordinates. Com-
binatorica, 18(1):27–36, 1998. 4.3
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