

AN ABSTRACT OF THE DISSERTATION OF

Liping Liu for the degree of Doctor of Philosophy in Computer Science presented on

June 10, 2016.

Title: Machine Learning Methods for Computational Sustainability

Abstract approved:

Thomas G. Dietterich

Maintaining the sustainability of the earth’s ecosystems has attracted much attention as these

ecosystems are facing more and more pressure from human activities. Machine learning can

play an important role in promoting sustainability as a large amount of data is being collected

from ecosystems. There are at least three important and representative issues in the study of

sustainability: detecting the presence of species, modeling the distribution of species, and pro-

tecting endangered species. For these three issues, this thesis selects three typical problems as

the main focus and studies these problems with different machine learning techniques. Specif-

ically, this thesis investigates the problem of detecting bird species from bird song recordings,

the problem of modeling migrating birds at the population level, and the problem of designing a

conservation area for an endangered species. First, this thesis models the problem of bird song

classification as a weakly-supervised learning problem and develops a probabilistic classification

model for the learning problem. The thesis also analyzes the learnability of the superset label

learning problem to determine conditions under which one can learn a good classifier from the

training data. Second, the thesis models bird migration with a probabilistic graphical model at

the population level using a Collective Graphical Model (CGM). The thesis proposes a Gaussian

approximation to significantly improve the inference efficiency of the model. Theoretical re-

sults show that the proposed Gaussian approximation is correct and can be calculated efficiently.

Third, the thesis studies a typical reserve design problem with a novel formulation of transduc-

tive classification. Then the thesis solves the formulation with two optimization algorithms. The

learning techniques in this thesis are general and can also be applied to many other machine

learning problems.

c©Copyright by Liping Liu
June 10, 2016

All Rights Reserved

Machine Learning Methods for Computational Sustainability

by

Liping Liu

A DISSERTATION

submitted to

Oregon State University

in partial fulfillment of
the requirements for the

degree of

Doctor of Philosophy

Presented June 10, 2016
Commencement June 2016

Doctor of Philosophy dissertation of Liping Liu presented on June 10, 2016.

APPROVED:

Major Professor, representing Computer Science

Director of the School of Electrical Engineering and Computer Science

Dean of the Graduate School

I understand that my dissertation will become part of the permanent collection of Oregon State
University libraries. My signature below authorizes release of my dissertation to any reader
upon request.

Liping Liu, Author

ACKNOWLEDGEMENTS

I have benefited from so many people during the course of my Ph.D. study. Let me try to include

everyone in this acknowledgment.

Foremost, I would like to express my special gratitude to my advisor, Thomas G. Dietterich.

As an exemplary advisor, he provides me effective guidance as well as the freedom to explore.

He is supportive and cares about my career success. By working with him, I didn’t feel that the

six-year Ph.D. study is long.

I would like to thank all collaborators. These great researchers have contributed in various

ways to the thesis. From them, I have also learned all kinds of research skills, such as analytical

and writing skills. Especially, I would like to thank Xiaoli Fern and Raviv Raich, who have done

excellent work on processing the bird acoustic data, which is the basis of the first chapter. I

would also like to thank all other professors who have spent their precious time on my problems.

I feel grateful to have great colleagues in our research group and so many good friends in

the EECS department. I have enjoyed our discussions and paper reading. Some of them have

proofread the drafts of my papers.

I wish to acknowledge the support of the US National Science Foundation under grants No.

1125228, No. 1125228, and No. 1331932.

Last, I thank my family, especially my wife Yuanli Pei, for their love and understanding. My

thesis would not be possible without my family’s support.

CONTRIBUTION OF AUTHORS

Thanks to my collaborators, Daniel Sheldon, Nan Li, and Zhi-Hua Zhou. Daniel Sheldon has

contributed to Chapter 4. Nan Li and Zhi-Hua Zhou have contributed to Chapter 5.

TABLE OF CONTENTS
Page

1 Introduction 1

1.1 Introduction . 1

1.2 Contribution . 3

1.3 Organization . 5

2 A Conditional Multinomial Mixture Model for Superset Label Learning 7

2.1 Introduction . 7

2.2 The Logistic Stick Breaking Conditional Multinomial Model 9
2.2.1 The Model . 9
2.2.2 Variational EM . 12
2.2.3 Prediction . 13
2.2.4 Complexity Analysis and Practical Issues 14

2.3 Experiments . 15
2.3.1 A Toy Problems . 15
2.3.2 Controlled Experiments . 16
2.3.3 Real-World Problems . 18

2.4 Conclusions . 19

3 Learnability of the Superset Label Learning Problem 21

3.1 Introduction . 21

3.2 Related Work . 23

3.3 Superset Label Learning Problem with Independent Instances (SLL-I) 23
3.3.1 Small ambiguity degree condition . 25
3.3.2 A general condition for learnability of SLL-I 30

3.4 Superset Label Learning Problem with Bagged Training Data (SLL-B) 32
3.4.1 The general condition for learnability of SLL-B 33
3.4.2 The no co-occurring label condition 35

3.5 Conclusion and Future Work . 37

4 Gaussian Approximation of Collective Graphical Models 39

4.1 Introduction . 39

4.2 Problem Statement and Notation . 41

4.3 Approximating CGM by the Normal Distribution 43

TABLE OF CONTENTS (Continued)
Page

4.3.1 Conditional Distributions . 45
4.3.2 Explicit Factored Density for Trees 47

4.4 Inference with Noisy Observations . 48
4.4.1 Inferring Node Counts . 48
4.4.2 Complexity analysis . 50

4.5 Experimental Evaluation . 50

4.6 Concluding Remarks . 55

5 Transductive Optimization of Top k Precision 57

5.1 Introduction . 57

5.2 The TTK model . 59

5.3 Analysis . 65

5.4 Experimental Tests . 66
5.4.1 An illustrative synthetic dataset . 66
5.4.2 Effectiveness of Optimization . 67
5.4.3 Precision evaluation on real-world datasets 68

5.5 Summary . 70

6 Conclusion 71

6.1 Conclusion . 71

6.2 Future Work . 73

Bibliography 75

Appendices 83

A Appendix for manuscript 1 . 84

B Appendix for manuscript 3 . 87

LIST OF FIGURES
Figure Page

2.1 The LSB-CMM. Square nodes are discrete, circle nodes are continuous, and
double-circle nodes are deterministic. 11

2.2 Decision boundaries of LSB-CMM on a linearly-inseparable problem. Left: all
data points have true labels. Right: labels of gray data points are corrupted. . . 16

2.3 Three regions learned by the model on usps 17

2.4 Classification performance on synthetic data (red: LSB-CMM; blue: CLPL).
The dot-dash line is for different q values (number of distractor labels) as shown
on the top x-axis. The dashed line is for different ε (ambiguity degree) values as
shown on the bottom x-axis. 18

3.1 A situation of (xσ,yσ,x′σ,y′σ). Black dots represent instances misclassified by
h and circles represent instances correctly classified by h. 28

4.1 EM convergence curve different feature coefficient and population sizes 53

4.2 A comparison of inference run time with different numbers of cells L 54

5.1 TTK improves the SVM decision boundary (“d. b.”). Square/circle: posi-
tive/negative instance, colored/gray: training/testing instance. k = 4. 66

LIST OF TABLES
Table Page

2.1 Classification Accuracies for Superset Label Problems 19

4.1 Relative error in estimates of node counts (“N”) and edge counts (“E”) for dif-
ferent population sizes N . 52

4.2 Relative error in estimates of node counts (“N”) and edge counts (“E”) for dif-
ferent settings of the logistic regression parameter vector w 52

4.3 Relative inference error with different map size 53

5.1 Training and test loss attained by different methods. The symbol “+badj” indi-
cates that the bias term is adjusted to satisfy the k-constraint 67

5.2 AATP and TTK solution statistics: Number of instances on the decision bound-
ary (”# at d.b.”) and fraction of instances predicted as positive (”fraction +”) . . 67

5.3 Mean Precision (± 1 standard deviation) of classifiers when 5% of testing in-
stances are predicted as positives. 68

LIST OF ALGORITHMS
Algorithm Page

1 Find a descending feasible direction . 64

This work is dedicated to a sustainable earth.

Chapter 1: Introduction

1.1 Introduction

With increasing human population and the consumption of resources, the human society is ex-

erting more and more pressure on the natural environment, and ecosystems are becoming more

and more vulnerable. In 1987, the well-known report, “Our Common Future”, from the United

Nations World Commission on Environment and Development (WCED) proposed the concept

of sustainable development. The goal of sustainable development is to balance societal needs

and the development of natural systems. A major concern of sustainable development is the

protection and management of ecosystems [15].

Computational sustainability [28] is an emerging interdisciplinary research field that aims

to apply computational methods to the study of sustainable development. One important reason

for using computational methods is the large amount of data collected from ecosystems. In

recent years, we have made revolutionary progress in collecting data by various means [46] from

the ecosystem. One example is the National Ecological Observatory Network (NEON) funded

by NSF, which aims to collect data from 20 ecological domains in the US territory for about

30 years. Massive ecological data makes possible the study of ecosystems in a data-intensive

way. We can use computational methods to extract knowledge of the ecosystems from the data

and make data-intensive policies to manage the ecosystems. Fortunately, the development of

machine learning has already provided many techniques that can be adapted to problems in the

study of sustainability.

There are at least three important issues in computational sustainability: data collection and

interpretation, model fitting, and policy making. When the focus is on ecosystem management,

the thesis substantiates the three issues as detecting species, modeling species distribution and

behaviors, and policy making for ecosystem management. These three issues are logically con-

nected. We need first to collect and interpret data to detect species. Then we can fit models

to species data to understand mechanisms of ecosystems. With the data and knowledge of the

ecosystems, we can create data-intensive policies to protect the endangered species. The three

issues are introduced in detail as follows.

2

Detecting species in ecosystems is not an easy task, since species tend to hide themselves.

Researchers have placed different kinds of sensors, including cameras [52] and sound recorders

[12], into the natural environment to collect data. There are also data from the citizen science

projects [65, 37], where people act as “novel” sensors and report their observations of species.

One prominent project is the eBird project [65], which receives millions of checklists each year

in recent years. There are several problems to address to collect data with high quality and to

explain the data as activities of species. The first problem is the noise and bias in observations.

For example, bird watchers certainly can not give a precise number of birds in an area, and the

observed counts of birds are often affected by their observation process. We need to use some

techniques to filter out the noise and calibrate the bias. The second problem is to extract species

data from raw sensor data. We need data processing models to identify species from the raw

data. There are also other problems, for example, data sparsity due to the large area of some

ecosystems and data heterogeneity due to different data sources. All these problems call for

novel techniques of data analysis.

Machine learning techniques give ecologists new tools for studying and understanding ecosys-

tems. Ecological data can be analyzed to understand species behaviors and model species dis-

tribution. With a large amount of data, the study can be conducted at a very large scale. We

often need to consider the correlation between species distribution and environmental factors.

For example, the SpatioTemporal Exploratory Model (STEM) [26] fits the distribution of bird

species at the continental level to environmental data. The study of species behaviors needs to

overcome the difficulty of data incompleteness. Often we do not have full information about the

underlying dynamics of the ecosystem, so we need to best exploit the pieces of evidence from

the data and complete the story with our best guess.

Computational methods also play important roles in policy-making for the management of

ecosystems. The main concern of policy-making is how to allocate limited resources and maxi-

mize the positive outcome of protecting or managing ecosystems. For example, in the problem

of designing corridors for wildlife, Conrad et al. [19] study how to effectively use limited funds

to best satisfy species’ diverse needs of corridors in a geographical area. Fang et al. [24] and

Carthy et al. [17] optimize patrol strategies against poaching and illegal logging. Taleghan et

al. [67] studies the general problem of MDP planning, which can be applied to the protection

of endangered species and the control of invasive species. One important research direction is

planning the conservation area for endangered species. Like the problems mentioned above, the

resources for conservation are limited. Unlike those problems, the success of a plan depends

3

heavily on the uncertain species distribution. Full information about species distribution is often

unknown, since it is very costly to survey the presence/absence of the species at each site in the

planning area. Previous work often estimates species distribution first and then optimizes the

conservation area against the estimated distribution. The optimization problem can be solved

either by integer programming [30] or in a greedy manner [39].

In many cases, these three issues are often connected in the same application. For example,

we often need to consider the problem of data noise when modeling species distribution. When

we design a conservation area, we need to consider the distribution of species.

1.2 Contribution

This thesis focuses on the three important issues described and studies a representative problem

for each issue.

The thesis first studies the problem of detecting bird species from birdsong recordings. In

this problem, long recordings of birdsong are collected by unattended microphones in the H. J.

Andrews Experimental Forest. The learning task is to identify the bird species responsible for

syllables in these recordings [13]. Long recordings are first cut into short recordings, each of

which has a length about 10 seconds and contains syllables of one or more species. It is very

difficult for experts to give precise species identification for each syllable in the recording. In-

stead, experts label each 10-second recording with the set of bird species heard in that recording.

At the same time, each syllable is segmented out from the recording [50], and a feature vector is

extracted to describe the syllable [14]. Though the label/species of each syllable is unknown, it

is certainly in the label set of the recording. The label set of the recording is the label superset

of the true label of each syllable in the recording. One important step for identifying species is

to learn a multiclass classifier that maps feature vectors to bird species. Label supersets provide

a weak form of supervision for this learning task. Previous work by Briggs et al. [13] has mod-

eled this learning problem with the formulation of instance annotation. This thesis models the

problem as a superset label learning problem [20] and proposes a probabilistic learning model

for the problem. This thesis also analyzes the learnability of the superset label learning problem.

The second part of the thesis studies the problem of modeling the bird migration behavior of

single species from eBird checklists. To simplify the problem, the map of the Eastern US is first

gridded into map cells, and birds are assumed to follow a time-inhomogeneous Markov chain

model and transit among these map cells. The observations in this problem consists of noisy

4

counts of the number of birds in all map cells at all time steps obtained from the eBird data. To

study bird migration behaviors, the goal is to recover the model parameters of the Markov chain

model from these observed noisy counts. Previous work by Sheldon et al. [60] tries to solve this

problem by maximizing the likelihood of the data with the Expectation-Maximization (EM) al-

gorithm. However, the E-step inference problem, inferring the mean of the counts of transitions

among map cells, is very hard to solve. This inference problem is a typical inference problem

of the Collective Graphical Model (CGM) [60] and is intractable in general. Previous approxi-

mate inference methods are either slow or inaccurate. This thesis proposes to approximate the

CGM distribution by Gaussian distribution and then infer transition counts from this Gaussian

approximation.

For the third issue, this thesis investigates a typical reserve design problem, in which we need

to purchase land to construct a conservation area for an endangered species. It is assumed that

the planning area consists of land parcels of the same area. The task is to select k land parcels

and maximize the number of selected land parcels that contain the species of interest. Poten-

tially two subproblems need to be addressed: modeling species distribution within the planning

area and making the purchase decision. In many cases, the first subproblem is a learning prob-

lem. Ecologists can provide a training set of land parcels, each of which is labeled with the

presence/absence of the species. Each land parcel, either in our planning area or in the training

set, can be described by a set of features, such as elevation, precipitation, and vegetation cover-

age. The training set provides supervision information for estimating species distribution in the

planning area. Traditional methods solve the two subproblems in two separate steps: (step 1) es-

timating species distribution with a supervised learning model and (step 2) ranking land parcels

to obtain the top k. This thesis shows that it is unnecessary to train a ranking model as an inter-

mediate step in solving the problem and proposes a new formulation, transductive precision@k,

to combine the two subproblems into one learning problem. This thesis also develops a learning

method to optimize the selection of the k land parcels directly.

With applications in sustainability as the motivations, this thesis reports research on general

machine learning techniques. On one hand, such techniques can solve similar problems in other

applications. For example, superset label learning is a general learning formulation and can

model many other applicational problems, such as face tagging [20]. So the proposed learning

algorithm and the theoretical analysis in this thesis can be directly applied to such problems. On

the other hand, the machine learning research in this thesis also has theoretical significance. For

example, the analysis of Gaussian Collective Graphical Model provides an alternative way of

5

understanding the relationship between the precision matrix and the graph structure of a proba-

bilistic graphical model.

1.3 Organization

The thesis is composed by four manuscripts published in three conferences related to machine

learning. The first two chapters are two manuscripts on superset label learning (SLL). The first

manuscript proposes a new learning model, Logistic Stick-Breaking Conditional Mixture Model

(LSB-CMM), for the superset label learning problem and applies the new model to the bird

species identification problem. The second manuscript makes a theoretical analysis of the learn-

ability of the SLL problem. The third manuscript models bird migration at the population level

with the Collective Graphical Model (CGM). The fourth manuscript studies a reserve design

problem using the transductive top k formulation.

6

Manuscript 1: A Conditional Multinomial Mixture Model for Superset

Label Learning

Li-Ping Liu, Thomas G. Dietterich

Advances in Neural Information Processing Systems 25

Edited by F. Pereira and C. J. C. Burges and L. Bottou and K. Q. Weinberger

Published by Curran Associates, Inc., 2012

Pages 548–556.

7

Chapter 2: A Conditional Multinomial Mixture Model for Superset Label

Learning

Abstract

In the superset label learning problem (SLL), each training instance provides a set of
candidate labels of which one is the true label of the instance. As in ordinary regression, the
candidate label set is a noisy version of the true label. In this work, we solve the problem
by maximizing the likelihood of the candidate label sets of training instances. We propose
a probabilistic model, the Logistic Stick-Breaking Conditional Multinomial Model (LSB-
CMM), to do the job. The LSB-CMM is derived from the logistic stick-breaking process. It
first maps data points to mixture components and then assigns to each mixture component a
label drawn from a component-specific multinomial distribution. The mixture components
can capture underlying structure in the data, which is very useful when the model is weakly
supervised. This advantage comes at little cost, since the model introduces few additional
parameters. Experimental tests on several real-world problems with superset labels show
results that are competitive or superior to the state of the art. The discovered underlying
structures also provide improved explanations of the classification predictions.

2.1 Introduction

In supervised classification, the goal is to learn a classifier from a collection of training instances,

where each instance has a unique class label. However, in many settings, it is difficult to obtain

such precisely-labeled data. Fortunately, it is often possible to obtain a set of labels for each

instance, where the correct label is one of the elements of the set.

For example, captions on pictures (in newspapers, facebook, etc.) typically identify all of

the people in the picture but do not necessarily indicate which face belongs to each person.

Imprecisely-labeled training examples can be created by detecting each face in the image and

defining a label set containing all of the names mentioned in the caption. A similar case arises

in bird song classification [13]. In this task, a field recording of multiple birds singing is divided

into 10-second segments, and experts identify the species of all of the birds singing in each seg-

ment without localizing each species to a specific part of the spectrogram. These examples show

8

that superset-labeled data are typically much cheaper to acquire than standard single-labeled

data. If effective learning algorithms can be devised for superset-labeled data, then they would

have wide application.

The superset label learning problem has been studied under two main formulations. In the

multi-instance multi-label (MIML) formulation [78], the training data consist of pairs (Bi, Yi),

where Bi = {xi,1, . . . ,xi,ni} is a set of instances and Yi is a set of labels. The assumption is

that for every instance xi,j ∈ Bi, its true label yi,j ∈ Yi. The work of Jie et al. [32] and Briggs

et al. [13] learn classifiers from such set-labeled bags.

In the superset label formulation (which has sometimes been confusingly called the “partial

label” problem) [29, 33, 31, 51, 21, 20], each instance xn has a candidate label set Yn that

contains the unknown true label yn. This formulation ignores any bag structure and views each

instance independently. It is more general than the MIML formulation, since any MIML problem

can be converted to a superset label problem (with loss of the bag information). Furthermore, the

superset label formulation is natural in many applications that do not involve bags of instances.

For example, in some applications, annotators may be unsure of the correct label, so permitting

them to provide a superset of the correct label avoids the risk of mislabeling. In this paper, we

employ the superset label formulation. Other relevant work includes Nguyen et al. [51] and Cour

et al. [20] who extend SVMs to handle superset labeled data.

In the superset label problem, the label set Yn can be viewed as a corruption of the true label.

The standard approach to learning with corrupted labels is to assume a generic noise process

and incorporate it into the likelihood function. In standard supervised learning, it is common to

assume that the observed label is sampled from a Bernoulli random variable whose most likely

outcome is equal to the true label. In ordinary least-squares regression, the assumption is that the

observed value is drawn from a Gaussian distribution whose mean is equal to the true value and

whose variance is a constant σ2. In the superset label problem, we will assume that the observed

label set Yn is drawn from a set-valued distribution p(Yn|yn) that depends only on the true label.

When computing the likelihood, this will allow us to treat the true label as a latent variable that

can be marginalized away.

When the label information is imprecise, the learning algorithm has to depend more on

underlying structure in the data. Indeed, many semi-supervised learning methods [80] model

cluster structure of the training data explicitly or implicitly. This suggests that the underlying

structure of the data should also play an important role in the superset label problem.

In this paper, we propose the Logistic Stick-Breaking Conditional Multinomial Model (LSB-

9

CMM) for the superset label learning problem. The model has two components: the mapping

component and the coding component. Given an input xn, the mapping component maps xn to a

region k. Then the coding component generates the label according to a multinomial distribution

associated with k. The mapping component is implemented by the Logistic Stick Breaking Pro-

cess (LSBP) [56] whose Bernoulli probabilities are from discriminative functions. The mapping

and coding components are optimized simultaneously with the variational EM algorithm.

LSB-CMM addresses the superset label problem in several aspects. First, the mapping com-

ponent models the cluster structure with a set of regions. The fact that instances in the same

region often have the same label is important for inferring the true label from noisy candidate

label sets. Second, the regions do not directly correspond to classes. Instead, the number of re-

gions is automatically determined by data, and it can be much larger than the number of classes.

Third, the results of the LSB-CMM model can be more easily interpreted than the approaches

based on SVMs [20, 13]. The regions provide information about how data are organized in the

classification problem.

2.2 The Logistic Stick Breaking Conditional Multinomial Model

The superset label learning problem seeks to train a classifier f : Rd 7→ {1, · · · , L} on a given

dataset (x, Y) = {(xn, Yn)}Nn=1, where each instance xn ∈ Rd has a candidate label set Yn ⊂
{1, · · · , L}. The true labels y = {yn}Nn=1 are not directly observed. The only information is that

the true label yn of instance xn is in the candidate set Yn. The extra labels {l|l 6= yn, l ∈ Yn}
causing ambiguity will be called the distractor labels. For any test instance (xt, yt) drawn from

the same distribution as {(xn, yn)}Nn=1, the trained classifier f should be able to map xt to

yt with high probability. When |Yn| = 1 for all n, the problem is a supervised classification

problem. We require |Yn| < L for all n; that is, every candidate label set must provide at least

some information about the true label of the instance.

2.2.1 The Model

As stated in the introduction, the candidate label set is a noisy version of the true label. To train

a classifier, we first need a likelihood function p(Yn|xn). The key to our approach is to write

the function as p(Yn|xn) =
∑L

yn=1 p(Yn|yn)p(yn|xn), where each term is the product of the

underlying true classifier, p(yn|xn), and the noise model p(Yn|yn). We then make the following

10

assumption about the noise distribution:

Assumption: All labels in the candidate label set Yn have the same probability of generat-

ing Yn, but no label outside of Yn can generate Yn

p(Yn|yn = l) =

{
λ(Yn) if l ∈ Yn
0 if l /∈ Yn

. (2.1)

This assumption enforces three constraints. First, the set of labels Yn is conditionally inde-

pendent of the input xn given yn. Second, labels that do not appear in Yn have probability 0 of

generating Yn. Third, all of the labels in Yn have equal probability of generating Yn (symme-

try). Note that these constraints do not imply that the training data are correctly labeled. That

is, suppose that the most likely label for a particular input xn is yn = l. Because p(yn|xn) is

a multinomial distribution, a different label yn = l′ might be assigned to xn by the labeling

process. Then this label is further corrupted by adding distractor labels to produce Yn. Hence, it

could be that l 6∈ Yn. In short, in this model, we have the usual “multinomial noise” in the labels

which is then further compounded by “superset noise”. The third constraint can be criticized for

being simplistic; we believe it can be replaced with a learned noise model in future work.

Given (2.1), we can marginalize away yn in the following optimization problem maximizing

the likelihood of observed candidate labels.

f∗ = arg max
f

N∑
n=1

log
L∑

yn=1

p(yn|xn; f)p(Yn|yn)

= arg max
f

N∑
n=1

log
∑
yn∈Yn

p(yn|xn; f) +
N∑
n=1

log(λ(Yn)). (2.2)

Under the conditional independence and symmetry assumptions, the last term does not depend

on f and so can be ignored in the optimization. This result is consistent with the formulation in

[33].

We propose the Logistic Stick-Breaking Conditional Multinomial Model to instantiate f (see

Figure 2.1). In LSB-CMM, we introduce a set of K regions (mixture components) {1, . . . ,K}.
LSB-CMM has two components. The mapping component maps each instance xn to a region

zn, zn ∈ {1, . . . ,K}. Then the coding component draws a label yn from the multinomial distri-

bution indexed by zn with parameter θzn . We denote the region indices of the training instances

11

Figure 2.1: The LSB-CMM. Square nodes are discrete, circle nodes are continuous, and double-
circle nodes are deterministic.

by z = (zn)Nn=1.

In the mapping component, we employ the Logistic Stick Breaking Process (LSBP) [56]

to model the instance-region relationship. LSBP is a modification of the Dirichlet Process

(DP) [68]. In LSBP, the sequence of Bernoulli probabilities are the outputs of a sequence of

logistic functions instead of being random draws from a Beta distribution as in the Dirichlet pro-

cess. The input to the k-th logistic function is the dot product of xn and a learned weight vector

wk ∈ Rd+1. (The added dimension corresponds to a zeroth feature fixed to be 1 to provide an in-

tercept term.) To regularize these logistic functions, we posit that each wk is drawn from a Gaus-

sian distribution Normal(0,Σ), where Σ = diag(∞, σ2, · · · , σ2). This prior distribution regu-

larizes all terms in wk except the intercept. For each xn, a sequence of probabilities {vnk}Kk=1 is

generated from logistic functions, where vnk = expit(wT
k xn) and expit(u) = 1/(1 + exp(−u))

is the logistic function. We truncate k at K by setting wK = (+∞, 0, · · · , 0) and thus vnK = 1.

Let w denote the collection of all K wk. Given the probabilities vn1, . . . , vnK computed from

xn, we choose the region zn according to a stick-breaking procedure:

p(zn = k) = φnk = vnk

k−1∏
i=1

(1− vni). (2.3)

Here we stipulate that the product is 1 when k = 1. Let φn = (φn1, · · · , φnK) constitute the

parameter of a multinomial distribution. Then zn is drawn from this distribution.

In the coding component of LSB-CMM, we first draw K L-dimensional multinomial prob-

abilities θ = {θk}Kk=1 from the prior Dirichlet distribution with parameter α. Then, for each

instance xn with mixture zn, its label yn is drawn from the multinomial distribution with θzn .

In the traditional multi-class problem, yn is observed. However, in the SLL problem yn is not

12

observed and Yn is generated from yn.

The whole generative process of the model is summarized below:

wk ∼ Normal(0,Σ), 1 ≤ k ≤ K − 1, wK = (+∞, 0, · · · , 0) (2.4)

zn ∼ Mult(φn), φnk = expit(wT
k xn)

k−1∏
i=1

(1− expit(wT
i xn)) (2.5)

θk ∼ Dirichlet(α) (2.6)

yn ∼ Mult(θzn) (2.7)

Yn ∼ Dist1(yn) (Dist1 is some distribution satisfying (2.1)) (2.8)

As shown in (2.2), the model needs to maximize the likelihood that each yn is in Yn. After

incorporating the priors, we can write the penalized maximum likelihood objective as

maxLL =
N∑
n=1

log

 ∑
yn∈Yn

p(yn|xn,w, α)

+ log(p(w|0,Σ)). (2.9)

This cannot be solved directly, so we apply variational EM [9].

2.2.2 Variational EM

The hidden variables in the model are y, z, and θ. For these hidden variables, we introduce the

variational distribution q(y, z, θ|φ̂, α̂), where φ̂ = {φ̂n}Nn=1 and α̂ = {α̂k}Kk=1 are the parame-

ters. Then we factorize q as

q(z, y, θ|φ̂, α̂) =
N∏
n=1

q(zn, yn|φ̂n)
K∏
k=1

q(θk|α̂k), (2.10)

where φ̂n is a K × L matrix and q(zn, yn|φ̂n) is a multinomial distribution in which p(zn =
k, yn = l) = φ̂nkl. This distribution is constrained by the candidate label set: if a label l /∈ Yn,

then φ̂nkl = 0 for any value of k. The distribution q(θk|α̂k) is a Dirichlet distribution with

parameter α̂k.

After we set the distribution q(z, y, θ), our variational EM follows standard methods. The

detailed derivation can be found in Appendix A. Here we only show the final updating step with

13

some analysis.

In the E step, the parameters of variational distribution are updated as (2.11) and (2.12).

φ̂nkl ∝

{
φnk exp

(
Eq(θk|α̂k) [log(θkl)]

)
, if l ∈ Yn

0, if l /∈ Yn
, (2.11)

α̂k = α+
N∑
n=1

φ̂nkl . (2.12)

The update of φ̂n in (2.11) indicates the key difference between the LSB-CMM model and

traditional clustering models. The formation of regions is directed by both instance similarities

and class labels. If the instance xn wants to join region k (i.e.,
∑

l φ̂nkl is large), then it must be

similar to wk as well as to instances in that region in order to make φnk large. Simultaneously,

its candidate labels must fit the “label flavor” of region k, where the “label flavor” means region

k prefers labels having large values in α̂k. The update of α̂ in (2.12) can be interpreted as having

each instance xn vote for the label l for region k with weight φ̂nkl.

In the M step, we need to solve the mximization problem in (2.13) for each wk, 1 ≤ k ≤
K−1. Note that wK is fixed. Each wk can be optimized separately. The optimization problem is

similar to the problem of logistic regression and is also a concave maximization problem, which

can be solved by any gradient-based method, such as BFGS.

max
wk

− 1
2
wT
k Σ−1wk +

N∑
n=1

[
φ̂nk log(expit(wT

k xn)) + ψ̂nk log(1− expit(wT
k xn))

]
, (2.13)

where φ̂nk =
∑L

l=1 φ̂nkl and ψ̂nk =
∑K

j=k+1 φ̂nj . Intuitively, the variable φ̂nk is the probability

that instance xn belongs to region k, and ψ̂nk is the probability that xn belongs to region {k +
1, · · · ,K}. Therefore, the optimal wk discriminates instances in region k against instances in

regions ≥ k.

2.2.3 Prediction

For a test instance xt, we predict the label with maximum posterior probability. The test instance

can be mapped to a region with w, but the coding matrix θ is marginalized out in the EM. We

use the variational distribution p(θk|α̂k) as the prior of each θk and integrate out all θk-s. Given

14

a test point xt, the prediction is the label l that maximizes the probability p(yt = l|xt,w, α̂)
calculated as (2.14). The detailed derivation is also in Appendix A.

p(yt = l|xt,w, α̂) =
K∑
k=1

φtk
α̂kl∑
l α̂kl

, (2.14)

where φtk =
(

expit(wT
k xt)

∏k−1
i=1 (1− expit(wT

i xt))
)

. The test instance goes to region k with

probability φtk, and its label is decided by the votes (α̂k) in that region.

2.2.4 Complexity Analysis and Practical Issues

In the E step, for each region k, the algorithm iterates over all candidate labels of all instances,

so the complexity is O(NKL). In the M step, the algorithm solves K−1 separate optimization

problems. Suppose each optimization problem takes O(V Nd) time, where V is the number of

BFGS iterations. Then the complexity is O(KVNd). Since V is usually larger than L, the

overall complexity of one EM iteration is O(KVNd). Suppose the EM steps converge within

m iterations, where m is usually less than 50, then the overall complexity is O(mKVNd). The

space complexity is O(NK), since we only store the matrix
∑L

l=1 φ̂nkl and the matrix α̂.

In prediction, the mapping phase requires O(Kd) time to multiply w and the test instance.

After the stick breaking process, which takes O(K) calculations, the coding phase requires

O(KL) calculation. Thus the overall time complexity is O(K max{d, L}). Hence, the predic-

tion time is comparable to that of logistic regression.

There are several practical issues that affect the performance of the model. Initialization:
From the model design, we can expect that instances in the same region have the same label.

Therefore, it is reasonable to initialize α̂ to have each region prefer only one label, that is, each

α̂k has one element with large value and all others with small values. We initialize φ to φnk = 1
K ,

so that all regions have equal probability to be chosen at the start. Initialization of these two

variables is enough to begin the EM iterations. We find that such initialization works well for our

model and generally is better than random initialization. Calculation of Eq(θk|α̂k)[log(θkl)] in
(2.11): Although it has a closed-form solution, we encountered numerical issues, so we calculate

it via Monte Carlo sampling. This does not change complexity analysis above, since the training

is dominated by M step. Priors: We found that using a non-informative prior for Dirichlet(α)
worked best. From (2.12) and (2.14), we can see that when θ is marginalized, the distribution is

15

non-informative when α is set to small values. We use α = 0.05 in our experiments.

2.3 Experiments

In this section, we describe the results of several experiments we conducted to study the behavior

of our proposed model. First, we experiment with a toy problem to show that our algorithm can

solve problems with linearly-inseparable classes. Second, we perform controlled experiments

on three synthetic datasets to study the robustness of LSB-CMM with respect to the degree of

ambiguity of the label sets. Third, we experiment with three real-world datasets.

LSB-CMM Model: The LSB-CMM model has three parameters K,σ2, α. We find that the

model is insensitive to K if it is sufficiently large. We set K = 10 for the toy problems and

K = 5L for other problems. α is set to 0.05 for all experiments. When the data is standardized,

the regularization parameter σ2 = 1 generally gives good results, so σ2 is set to 1 in all superset

label tasks.

Baselines: We compared the LSB-CMM model with three state-of-the-art methods. Super-
vised SVM: the SVM is always trained with the true labels. Its performance can be viewed as

an upper bound on the performance of any SSL algorithm. LIBSVM [18] with RBF kernel was

run to construct a multi-class classifier in one-vs-one mode. One third of the training data was

used to tune the C parameter and the RBF kernel parameter γ. CLPL: CLPL [20] is a linear

model that encourages large average scores of candidate labels. The model is insensitive to the

C parameter, so we set the C value to 1000 (the default value in their code). SIM: SIM [13]

minimizes the ranking loss of instances in a bag. In controlled experiments and in one of the

real-world problems, we could not make the comparison to LSB-CMM because of the lack of

bag information. The λ parameter is set to 10−8 based on authors’ recommendation.

2.3.1 A Toy Problems

In this experiment, we generate a linearly-inseparable SLL problem. The data has two di-

mensions and six clusters drawn from six normal distributions with means at the corners of a

hexagon. We assign a label to each cluster so that the problem is linearly-inseparable (see (2.2)).

In the first task, we give the model the true labels. In the second task, we add a distractor label for

two thirds of all instances (gray data points in the figure). The distractor label is randomly cho-

sen from the two labels other than the true label. The decision boundaries found by LSB-CMM

16

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●
● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●

●●

●

●

●

●●●●

●

●
●●

●

●

●

●
●

●

●

●

●
●

−
1.

6
−

0.
8

0
0.

8
1.

6

−1.6 −0.8 0 0.8 1.6

● class 1
class 2
class 3

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●

●

●●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●
● ●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●●

●

●

● ●

●●

●

●

●

●●●●

●

●
●●

●

●

●

●
●

●

●

●

●
●

−
1.

6
−

0.
8

0
0.

8
1.

6

−1.6 −0.8 0 0.8 1.6

● class 1
class 2
class 3

Figure 2.2: Decision boundaries of LSB-CMM on a linearly-inseparable problem. Left: all data
points have true labels. Right: labels of gray data points are corrupted.

in both tasks are shown in (2.2)). We can see that LSB-CMM can successfully give nonlinear

decision boundaries for this problem. After injecting distractor labels, LSB-CMM still recovers

the boundaries between classes. There is minor change of the boundary at the edge of the cluster,

while the main part of each cluster is classified correctly.

2.3.2 Controlled Experiments

We conducted controlled experiments on three UCI [42] datasets: {segment (2310 instances,

7 classes), pendigits (10992 instances, 10 classes), and usps (9298 instances, 10 classes)}.
Ten-fold cross validation is performed on all three datasets. For each training instance, we

add distractor labels with controlled probability. As in [20], we use p, q, and ε to control the

ambiguity level of candidate label sets. The roles and values of these three variables are as

follows: p is the probability that an instance has distractor labels (p = 1 for all controlled

experiments); q ∈ {1, 2, 3, 4} is the number of distractor labels; and ε ∈ {0.3, 0.7, 0.9, 0.95} is

the maximum probability that a distractor label co-occurs with the true label [20], also called the

ambiguity degree.

We have two settings for these three variables. In the first setting, we hold q = 1 and vary

ε, that is, for each label l, we choose a specific label l′ 6= l as the (unique) distractor label with

probability ε or choose any other label with probability 1−ε. In the extreme case when ε = 1, l′

and l always co-occur, and they cannot be distinguished by any classifier. In the second setting,

we vary q and pick distractor labels randomly for each candidate label set.

17

Figure 2.3: Three regions learned by the model on usps

The results are shown in Figure (2.4). Our LSB-CMM model significantly outperforms the

CLPL approach. As the number of distractor labels increases, performance of both methods goes

down, but not too much. When the true label is combined with different distractor labels, the

disambiguation is easy. The co-occurring distractor labels provide much less disambiguation.

This explains why large ambiguity degree hurts the performance of both methods. The small

dataset (segment) suffers even more from large ambiguity degree, because there are fewer data

points that can “break” the strong correlation between the true label and the distractors.

To explore why the LSB-CMM model has good performance, we investigated the regions

learned by the model. Recall that φnk is the probability that xn is sent to region k. In each

region k, the representative instances have large values of φnk. We examined all φnk from the

model trained on the usps dataset with 3 random distractor labels. For each region k, we selected

the 9 most representative instances. Figure (2.3) shows representative instances for three regions.

These are all from class “2” but are written in different styles. This shows that the LSB-CMM

model can discover the sub-classes in the data. In some applications, the whole class is not easy

to discriminate from other classes, but sometimes each sub-class can be easily identified. In such

cases, LSB-CMM will be very useful and can improve performance.

Explanation of the results via regions can also give better understanding of the learned clas-

sifier. In order to analyze the performance of the classifier learned from data with either superset

labels or fully observed labels, one traditional method is to compute the confusion matrix. While

the confusion matrix can only tell the relationships between classes, the mixture analysis can in-

dicate precisely which subclass of a class are confused with which subclasses of other classes.

The regions can also help the user identify and define new classes as refinements of existing

ones.

18

ac
cu

ra
cy

●
●

●

●

0.3 0.7 0.9 0.95

0.
7

0.
8

0.
9

1.
0

1 2 3 4

●

SVM
LSB−CMM, vary q
LSB−CMM, vary ε
CLPL, vary q
CLPL, vary ε

number of ambiguous labels

ambiguity degree

(a) segment

●
●

● ●

0.3 0.7 0.9 0.95

0.
7

0.
8

0.
9

1.
0

1 2 3 4

●

SVM
LSB−CMM, vary q
LSB−CMM, vary ε
CLPL, vary q
CLPL, vary ε

number of ambiguous labels

ambiguity degree

(b) pendigits

● ●

●

●

0.3 0.7 0.9 0.95

0.
7

0.
8

0.
9

1.
0

1 2 3 4

●

SVM
LSB−CMM, vary q
LSB−CMM, vary ε
CLPL, vary q
CLPL, vary ε

number of ambiguous labels

ambiguity degree

(c) usps

Figure 2.4: Classification performance on synthetic data (red: LSB-CMM; blue: CLPL). The
dot-dash line is for different q values (number of distractor labels) as shown on the top x-axis.
The dashed line is for different ε (ambiguity degree) values as shown on the bottom x-axis.

2.3.3 Real-World Problems

We apply our model on three real-world problems. 1) BirdSong dataset [13]: This contains

548 10-second bird song recordings. Each recording contains 1-40 syllables. In total there are

4998 syllables. Each syllable is described by 38 features. The labels of each recording are the

bird species that were singing during that 10-second period, and these species become candidate

labels set of each syllable in the recording. 2) MSRCv2 dataset: This dataset contains 591 im-

ages with 23 classes. The ground truth segmentations (regions with labels) are given. The labels

of all segmentations in an image are treated as candidate labels for each segmentation. Each seg-

mentation is described by 48-dimensional gradient and color histograms. 3) Lost dataset [20]:

This dataset contains 1122 faces, and each face has the true label and a set of candidate labels.

Each face is described by 108 PCA components. Since the bag information (i.e., which faces

are in the same scene) is missing, SIM is not compared to our model on this dataset. We run

10-fold cross validation on these three datasets. The BirdSong and MSRCv2 datasets are split

by recordings/images, and the Lost dataset is split by faces.

The classification accuracies are shown in Table (2.1). Accuracies of the three superset label

learning algorithms are compared using the paired t-test at the 95% confidence level. Values

statistically indistinguishable from the best performance are shown in bold. Our LSB-CMM

model out-performs the other two methods on the BirdSong database, and its performance is

comparable to SIM on the MSRCv2 dataset and to CLPL on the Lost dataset. It should be noted

19

Table 2.1: Classification Accuracies for Superset Label Problems
LSB-CMM SIM CLPL SVM

BirdSong 0.715(0.042) 0.589(0.035) 0.637(0.034) 0.790(0.027)
MSRCv2 0.459(0.032) 0.454(0.043) 0.411(0.044) 0.673(0.043)

Lost 0.703(0.058) - 0.710(0.045) 0.817(0.038)

that the input features are very coarse, which means that the cluster structure of the data is not

well maintained. The relatively low performance of the SVM confirms this. If the instances

were more precisely described by finer features, one would expect our model to perform better

in those cases as well.

2.4 Conclusions

This paper introduced the Logistic Stick-Breaking Conditional Multinomial Model to address

the superset label learning problem. The mixture representation allows LSB-CMM to discover

cluster structure that has predictive power for the superset labels in the training data. Hence, if

two labels co-occur, LSB-CMM is not forced to choose one of them to assign to the training

example but instead can create a region that maps to both of them. Nonetheless, each region

does predict from a multinomial, so the model still ultimately seeks to predict a single label.

Our experiments show that the performance of the model is either better than or comparable to

state-of-the-art methods.

20

Manuscript 2: Learnability of the Superset Label Learning Problem

Li-Ping Liu, Thomas G. Dietterich

Proceedings of the 31st International Conference on Machine Learning (ICML-14)

Edited by T. Jebara and E. P. Xing

Published by JMLR Workshop and Conference Proceedings, 2014

Pages 1629-1637

21

Chapter 3: Learnability of the Superset Label Learning Problem

Abstract

In the Superset Label Learning (SLL) problem, weak supervision is provided in the form
of a superset of labels that contains the true label. If the classifier predicts a label outside of
the superset, it commits a superset error. Most existing SLL algorithms learn a multiclass
classifier by minimizing the superset error. However, only limited theoretical analysis has
been dedicated to this approach. In this paper, we analyze Empirical Risk Minimizing
learners that use the superset error as the empirical risk measure. SLL data can arise either
in the form of independent instances or as multiple-instance bags. For both scenarios, we
give the conditions for ERM learnability and sample complexity for the realizable case.

3.1 Introduction

In multiclass supervised learning, the task is to learn a classifier that maps an object to one of

several candidate classes. When each training example is labeled with one label, many successful

multiclass learning methods can solve this problem [3, 48]. In some applications, however, we

cannot obtain training examples of this kind. Instead, for each instance we are given a set of

possible labels. The set is guaranteed to contain the true label, and it also possibly contains one

or more distractor labels.

Despite these distractor labels, we still wish learn a multiclass classifier that has low error

when measured according to the traditional 0/1 misclassification loss. This learning problem has

been given several names, including the “multiple label problem”, the “partial label problem”

and the “superset label learning problem” [33, 51, 20, 43]. In this paper, we adopt the last of

these.

Several learning algorithms for the superset label learning problem have shown good exper-

imental results. Most of these algorithms seek an hypothesis that explicitly minimizes superset

errors on the training instances (possibly including a regularization penalty). An exception is the

ECOC-based algorithm proposed by Zhang et al. [77]. Though it does not minimize superset

errors explicitly, this algorithm generally predicts a class label of an training instance from its

superset and thus are also minimizing superset errors. In this paper, we define the superset error

22

as the empirical risk in the SLL problem, and we analyze the performance of learners that min-

imize the empirical risk (ERM learners). We only investigate the realizable case where the true

multiclass classifier is in the hypothesis space.

The key to SLL learnability is that any hypothesis with non-zero classification error must

have a significant chance of making superset errors. This in turn depends on the size and dis-

tribution of the label supersets. Small supersets, for example, are more informative than large

ones. Precisely speaking, a sufficient condition for learnability is that the classification error can

be bounded by the superset error.

The SLL problem arises in two settings. In the first setting, which we call SSL-I, instances

are independent of each other, and the superset is selected independently for each instance.

The second setting, which we call SLL-B, arises from the multi-instance multi-label learning

(MIML) problem [78, 79], where the training data are given in the form of MIML bags.

For SLL-I, Cour et al. [20] proposed the concept of ambiguity degree. This bounds the

probability that a specific distractor label appears in the superset of a given instance. When the

ambiguity degree is less than 1, they give a relationship between the classification error and the

superset error. With the same condition, we show that the sample complexity of SLL-I with

ambiguity degree zero matches the complexity of multiclass classification.

For SLL-B, the training data is given in the form of independent MIML bags. Each MIML

bag consists of a set of instances and a set of labels (the “bag label”). Each instance has exactly

one (unknown) label, and the bag label is exactly the union of the labels of all of the instances.

(See [79] for discussion of other ways in which MIML bags can be generated.) The learner

observes the bag label but not the labels of the individual instances.

It is interesting to note that several previous papers test their algorithms on synthetic data

corresponding to the SSL-I scenario, but then apply them to a real application corresponding to

the SSL-B setting.

To show learnability, we convert the SLL-B problem to a binary classification problem with

the general condition that the classification error can be bounded by the superset error times

a multiplicative constant. We then provide a concrete condition for learnability: for any pair

of class labels, they must not always co-occur on a bag label. That is, there must be non-zero

probability of observing a bag that contains instances of only one of the two labels. Given

enough training data, we can verify with high confidence whether this condition holds.

The success of weakly supervised learning depends on the degree of correlation between the

supervision information and the classification error. We show that superset learning exhibits a

23

strong correlation between these two because a superset error is always caused by a classification

error. Our study of the SLL problem can be seen as a first step toward the analysis of more

general weakly-supervised learning problems.

3.2 Related Work

Different superset label learning algorithms have been proposed by previous work [33, 51, 20,

43, 77]. All these algorithms employ some loss to minimize superset errors on the training set.

Cour et al. [20] conducted some theoretical analysis of the problem. They proposed the concept

of “ambiguity degree” and established a relationship between superset error and classification

errors. They also gave a generalization bound for their algorithm. In their analysis, they assume

instances are independent of each other.

Sample complexity analysis of multiclass learning provides the basis of our analysis of SLL

problem with independent instances. The Natarajan dimension [49] is an important instrument

for characterizing the capacity of multiclass hypothesis spaces. Ben-David et al. [8] and Daniely

et al. [22] give sample complexity bounds in terms of this dimension.

The MIML framework was proposed by Zhou et al. [78], and the instance annotation prob-

lem is raised by Briggs et al. [13]. Though the algorithm for instance annotation explicitly uses

bag information, it is still covered by our analysis of the SLL-B problem. There is some theoret-

ical analysis of multi-instance learning [10, 45, 58], but we only know of one paper [74] on the

learnability of the MIML problem. In that work, no assumption is made for the distribution of

instances within a bag, but the labels on a bag must satisfy some correlation conditions. In our

setting, the distribution of bag labels can be arbitrary, but we assume that the instances in the bag

are independent of each other given their labels.

3.3 Superset Label Learning Problem with Independent Instances (SLL-I)

Let X be the instance space and Y = {1, 2, . . . , L} be the finite label space. The superset

space S is the powerset of Y without the empty set: S = 2Y − {∅}. A “complete” instance

(x, y, s) ∈ X ×Y ×S is composed of its features x, its true label y, and the label superset s. We

decompose D into the standard multiclass distribution Dxy defined on X × Y and the label set

conditional distribution Ds(x, y) defined over S given (x, y). We assume that Prs∼Ds(x,y)(y ∈
s) = 1, that is, the true label is always in the label superset. Other labels in the superset will be

24

called distractor labels. Let µ(·) denote the probability measure of a set; its subscript indicates

the distribution. Denote a sample of instances by z =
{

(xi, yi, si)
}n
i=1

, where each instance is

sampled from D independently. The size of the sample is always n. Although the true label is

included in the training set in our notation, it is not visible to the learner. Let I(·) denote the

indicator function, which has the value 1 when its argument is true and 0 otherwise.

The hypothesis space is denoted by H, and each h ∈ H : X → Y is a multiclass classifier.

The expected classification error of h is defined as

ErrD(h) = E(x,y,s)∼DI(h(x) 6= y). (3.1)

We use Hε to denote the set of hypotheses with error at least ε, Hε = {h ∈ H : ErrD(h) ≥ ε}.
The superset error is defined as the event that the predicted label is not in the superset: h(x) /∈ s.
The expected superset error and the average superset error on set z are defined as

ErrsD(h) = E(x,y,s)∼DI(h(x) /∈ s) (3.2)

Errsz(h) =
1
n

n∑
i=1

I(h(xi) /∈ si) (3.3)

It is easy to see that the expected superset error is always no greater than the expected classifica-

tion error.

For conciseness we often omit the word “expected” or “average” when referring these errors

defined above. The meaning should be clear from how the error is calculated.

An Empirical Risk Minimizing (ERM) learnerA forH is a function,A : ∪∞n=0(X ×S)n 7→
H. We define the empirical risk as the average superset error on the training set. The ERM

learner for hypothesis space H always returns an hypothesis h ∈ H with minimum superset

error for training set z.

A(z) = arg min
h∈H

Errsz(h)

Since the learning algorithm A can only observe the superset label, this definition of ERM is

different from that of multiclass classification. In the realizable case, there exists h0 ∈ H such

that ErrD(h0) = 0.

25

3.3.1 Small ambiguity degree condition

On a training set with label supersets, an hypothesis will not be rejected by an ERM learner

as long as its predictions are contained in the superset labels of the training instances. If a

distractor label always co-occurs with one of the true labels under distribution Ds, there will

be no information to discriminate the true label from the distractor. On the contrary, if for any

instance all labels except the true label have non-zero probability of being missing from the

superset, then the learner always has some probability of rejecting an hypothesis if it predicts

this instance incorrectly. The ambiguity degree, proposed by Cour et al. [20], is defined as

γ = sup
(x,y)∈X×Y, `∈Y :
p(x,y)>0, ` 6=y

Prs∼Ds(x,y)(` ∈ s). (3.4)

This is the maximum probability that some particular distractor label ` co-occurs with the true

label y. If γ = 0, then with probability one there are no distractors. If γ = 1, then there exists

at least one pair y and ` that always co-occur. If a problem exhibits ambiguity degree γ, then a

classification error made on any instance will be detected (i.e., the prediction lies outside of the

label superset) with probability at least 1− γ:

Pr(h(x) /∈ s|h(x) 6= y, x, y) ≥ 1− γ.

If an SSL-I problem exhibits γ < 1, then we say that it satisfies the small ambiguity degree

condition. We prove that this is sufficient for ERM learnability of the SSL-I problem.

Theorem 3.3.1 Suppose an SLL-I problem has ambiguity degree γ, 0 ≤ γ < 1. Let θ =
log 2

1+γ , and suppose the Natarajan dimension of the hypothesis spaceH is dH. Define

n0(H, ε, δ) =
4
θε

(
dH

(
log(4dH) + 2 logL+ log

1
θε

)
+ log

1
δ

+ 1
)
, (3.5)

then when n > n0(H, ε, δ), ErrD(A(z)) < ε with probability 1− δ.

We follow the method of proving learnability of binary classification [5] to prove this theo-

rem. Let Rn,ε be the set of all n-samples for which there exists an ε-bad hypothesis h with zero

26

empirical risk:

Rn,ε = {z ∈ (X × Y × S)n : ∃h ∈ Hε, Err
s
z(h) = 0}. (3.6)

Essentially we need to show that Pr(Rn,ε) ≤ δ.

The proof is composed of the following two lemmas.

Lemma 3.3.2 We introduce a test set z′ of size n with each instance drawn independently from

distribution D, and define the set Sn,ε to be the event that there exists a hypothesis in Hε that

makes no superset errors on training set z but makes at least ε
2 classification errors on test set

z′.

Sn,ε =
{

(z, z′) ∈ (X × Y × S)2n : ∃h ∈ Hε, Err
s
z(h) = 0, Errz′(h) ≥ ε

2

}
. (3.7)

Then Pr
(
(z, z′) ∈ Sn,ε

)
≥ 1

2Pr(z ∈ Rn,ε) when n > 8
ε .

Proof 3.3.3 This lemma is used in many learnability proofs. Here we only give a proof sketch.

Sn,ε is a subevent of Rn,ε. We can apply the chain rule of probability to write Pr
(
(z, z′) ∈

Sn,ε
)

= Pr
(
(z, z′) ∈ Sn,ε|z ∈ Rn,ε

)
Pr
(
z ∈ Rn,ε

)
. Let H(z) = {h ∈ H : Errsz(h) = 0} be

the set of hypotheses with zero empirical risk on the training sample. Then we have

Pr
(
(z, z′) ∈ Sn,ε

∣∣z ∈ Rn,ε) = Pr
({
∃h ∈ Hε ∩H(z), Errz′(h) ≥ ε

2

}∣∣∣z ∈ Rn,ε)
≥ Pr

(
{h ∈ Hε ∩H(z), Errz′(h) ≥ ε

2
}
∣∣∣z ∈ Rn,ε)

In the last line, h is a particular hypothesis in the intersection. Since h has error at least ε, we

can bound the probability via the Chernoff bound. When n > 8
ε , we obtain Pr

(
(z, z′) ∈ Sn,ε |

z ∈ Rn,ε
)
> 1

2 which completes the proof. �

With Lemma 3.3.2, we can bound the probability of Rn,ε by bounding the probability of

Sn,ε. We will do this using the technique of swapping training/test instance pairs, which is used

in various proofs of learnability.

In the following proof, the sets z and z′ are expanded to (x,y, s) and (x′,y′, s′) respectively

when necessary. Let the training and test instances form n training/test pairs by arbitrary pairing.

The two instances in each pair are respectively from the training set and the test set, and these

two instances are both indexed by the pair index, which is indicated by a subscript. Define a

27

group G of swaps with size |G| = 2n. A swap σ ∈ G has an index set Jσ ⊆ {1, . . . , n}, and it

swaps the training and test instances in the pairs indexed by Jσ. We write σ as a superscript to

indicate the result of applying σ to the training and test sets, that is, σ(z, z′) = (zσ, z′σ).

Lemma 3.3.4 If the hypothesis spaceH has Natarajan dimension dH and γ < 1, then

Pr(Sn,ε) ≤ (2n)dHL2dH exp
(
−nθε

2

)
Proof 3.3.5 Since the swap does not change the measure of (z, z′),

2nPr
(
(z, z′) ∈ Sn,ε

)
=

∑
σ∈G

E
[
Pr
(
(z, z′) ∈ Sn,ε

∣∣x,y,x′,y′)]
=

∑
σ∈G

E
[
Pr
(
σ(z, z′) ∈ Sn,ε

∣∣x,y,x′,y′)]
= E

[∑
σ∈G

Pr
(
σ(z, z′) ∈ Sn,ε

∣∣x,y,x′,y′)] (3.8)

The expectations are taken with respect to (x,y,x′,y′). The probability in the expectation comes

from the randomness of (s, s′) given (x,y,x′,y′).

Let H|(x,x′) be the set of hypothesis making different classifications for (x,x′). Define set

Shn,ε for each hypothesis h ∈ H as

Shn,ε =
{

(z, z′) : Errsz(h) = 0, Errz′(h) ≥ ε

2

}
By the union bound, we have∑
σ∈G

Pr
(
σ(z, z′) ∈ Sn,ε

∣∣x,y,x′,y′) ≤ ∑
h∈H|(x,x′)

∑
σ∈G

Pr
(
σ(z, z′) ∈ Shn,ε

∣∣∣x,y,x′,y′) (3.9)

By the work of Natarajan [49],
∣∣H|(z, z′)∣∣ ≤ (2n)dHL2dH . The only work left is to bound∑

σ∈G Pr
(
σ(z, z′) ∈ Shn,ε|x,y,x′,y′

)
, and this part is our contribution.

Here is our strategy. We first fix (x,y,x′,y′) and σ and boundPr
(
σ(z, z′) ∈ Shn,ε | x,y,x′,y′

)
with the ambiguity degree assumption. Then we find an upper bound of the summation over σ.

28

(xσ,yσ)
(x′σ,y′σ)

u u u e u e e e e eu u u u e u u e e e︸ ︷︷ ︸
u1

︸ ︷︷ ︸
u2

︸ ︷︷ ︸
u3

vσ = 1
���

Figure 3.1: A situation of (xσ,yσ,x′σ,y′σ). Black dots represent instances misclassified by h
and circles represent instances correctly classified by h.

Start by expanding the condition in Shn,ε,

Pr
(
σ(z, z′) ∈ Shn,ε | x,y,x′,y′

)
= I

(
Errz′σ(h) ≥ ε

2
)
· Pr

(
h(xσi) ∈ sσi , 1 ≤ i ≤ n|xσ,yσ

)
= I

(
Errz′σ(h) ≥ ε

2
) n∏
i=1

Pr
(
h(xσi) ∈ sσi |xσi ,yσi

)
.

For a pair of training/test sets (x,y,x′,y′), let u1, u2 and u3 represent the number of pairs

for which h classifies both incorrectly, one incorrectly, and both correctly. Let vσ, 0 ≤ vσ ≤ u2,

be the number of wrongly-predicted instances swapped into the training set (xσ,yσ). One such

situation is shown in Figure 3.1. There are u1 + u2 − vσ wrongly-predicted instances in the test

set. The error condition Errz′σ(h) ≥ ε
2 is equivalent to u1 + u2 − vσ ≥ ε

2n, which always

indicates u1 + u2 ≥ ε
2n. So we have I

(
Errz′σ(h) ≥ ε

2

)
≤ I
(
u1 + u2 ≥ ε

2n
)
.

There are u1 + vσ wrongly-predicted instances in the training set. Since the true label is in

the superset with probability one, while the wrong label appears in the superset with probability

no greater than γ by (3.4), we have
∏n
i=1 Pr

(
h(xσi) ∈ sσi |xσi

)
≤ γu1+vσ .

Now for a single swap σ, we have the bound

Pr
(
σ(z, z′) ∈ Shn,ε | x,y,x′,y′

)
≤ I
(
u1 + u2 ≥

ε

2
n
)
γu1+vσ (3.10)

Let us sum up (3.10) over σ. Any swap σ can freely switch instances in u1 + u3 without

changing the bound in (3.10) and choose from the u2 pairs vσ to switch. For each value 0 ≤ j ≤

29

u2, there are 2u1+u3
(
u2

j

)
swaps that have vσ = j. Therefore,

∑
σ∈G

I
(
u1 + u2 ≥

ε

2
n
)
γu1+vσ ≤ I

(
u1 + u2 ≥

ε

2
n
)

2u1+u3

u2∑
j=0

(
u2

j

)
γu1+j

= I
(
u1 + u2 ≥

ε

2
n
)

2n−u2γu1(1 + γ)u2

= I
(
u1 + u2 ≥

ε

2
n
)

2nγu1

(
1 + γ

2

)u2

When (x,y,x′,y′) and h make u1 = 0 and u2 = ε
2n, the right side reaches its maximum

2n
(

1+γ
2

)nε/2
, which is 2ne−nθε/2 with the definition of θ in Theorem 3.3.1. Applying this to

(3.9) and (3.8), completes the proof. �

Proof 3.3.6 (Proof of Theorem 3.3.1.) By combining the results of the two lemmas, we have

P (Rn,ε) ≤ 2(dH+1)ndHL2dH exp(−nθε
2). Bound this with δ on a log scale to obtain

(dH + 1) log 2 + dH log n+ 2dH logL− θεn

2
≤ log δ

By bounding log n with (log(4dH
θε) − 1) + θε

4dH
n, we get a linear form for n. Then we solve for

n to obtain the result. �

Remark Theorem 3.3.1 includes the multiclass problem as a special case. When γ = 0 and

θ = log 2, we get the same sample complexity as the multiclass classification problem (See

Daniely et al. [22], Theorem 6.).

The distribution of label supersets actually interacts with the hypothesis space in the analysis

of learnability. With the small ambiguity degree condition, we only require that H has finite

Natarajan dimension to ensure the ERM learnability. However, if the condition does not hold,

we may need a more restricted hypothesis space to get a learnable problem. Suppose a label

`2 is always a distractor of another label `1. Whenever the true label is `1, the label superset

always contains `2; otherwise the superset contains only the true label. Such a distribution of

superset labels certainly does not satisfy the small ambiguity degree condition. Meanwhile, if

no hypothesis in H classifies `1 as `2, then the problem is still learnable by an ERM learner.

This example suggests that the small ambiguity degree condition is not a necessary condition for

ERM learnability.

30

3.3.2 A general condition for learnability of SLL-I

We can obtain a more general condition for ERM learnability by constructing a binary classifi-

cation task from the superset label learning task. Two key issues need special attention in the

construction: how to relate the classification errors of the two tasks, and how to specify the

hypothesis space of the binary classification task and obtain its VC-dimension.

We first construct a binary classification problem from the SLL-I problem. Given an instance

(x, s), the binary classifier needs to predict whether the label of x is outside of s, that is, to

predict the value of I(yx /∈ s). If (x, s) is from the distribution D, then “0” is always the correct

prediction. Let FH be the space of these binary classifiers. FH is induced fromH as follows:

FH = {fh : fh(x, s) = I(h(x) /∈ s), h ∈ H}.

Though the inducing relation is a surjection from H to FH, we assume the subscript h in the

notation fh can be any h ∈ H inducing fh. The binary classification error of fh is the superset

error of h in the SLL-I problem.

Denote the ERM learner of the binary classification problem byAs. The learnerAs actually

calls A, which returns an hypothesis h? and then As returns the induced hypothesis fh? . In the

realizable case, both h? and fh? have zero training error on their respective classification tasks.

A sufficient condition for learnability of an SLL-I problem is that any hypothesis with non-

zero expected classification error will cause superset errors with large probability. Let η be

defined by

η = inf
h∈H:ErrD(h)>0

ErrsD(h)
ErrD(h)

. (3.11)

Define the tied error condition as η > 0. Then we can bound the multiclass classification error

by bounding the superset error when this condition holds.

We need to find the VC-dimension ofFH first. It can be bounded by the Natarajan dimension

ofH.

Lemma 3.3.7 Denote the VC-dimension of FH as dF and the Natarajan dimension ofH is dH,

then

dF < 4 dH(log dH + 2 logL)

31

Proof 3.3.8 There is a set of dF instances that can be shattered by FH—that is, there are func-

tions in FH that implement each of the 2dF different ways of classifying these dF instances. Any

two different binary classifications must be the result of two different multiclass predictions for

these dF instances. According to Natarajan’s original result [49] on Natarajan dimension, there

are at most ddHF L2dH different multiclass classifications on these instances. Therefore,

2dF ≤ ddHF L2dH .

Taking the logarithm of both sides gives us

dF log 2 ≤ dH log dF + 2dH logL.

By bounding log dF above by log dH + dF
edH

, we get

dF log 2 ≤ dH log dH +
dF
e

+ 2dH logL.

By observing that (log 2− e−1)−1 < 4, we reach the result. �

Now we can bound the multiclass classification error by bounding the superset error.

Theorem 3.3.9 Assume η > 0 and H has a finite Natarajan dimension dH, then A returns an

hypothesis with error less than ε with probability at least 1 − δ when the training set has size

n > n1(H, δ, ε), which is defined as

n1(H, δ, ε) =
4
ηε

(
4dH(log dH + 2 logL) log

(
12
ηε

)
+ log

(
2
δ

))
. (3.12)

Proof 3.3.10 Learner A returns hypothesis h? ∈ H with ErrsD(h?) = 0. The corresponding

binary hypothesis fh? ∈ FH makes no superset error on the training data.

By Lemma (3.3.7), n1(H, δ, ε) ≥ ns1(FH, δ, ηε), where

ns1(H, δ, ηε) =
4
ηε

(
dF log

(
12
ηε

)
+ log

(
2
δ

))
.

When n > n1(H, δ, ε) ≥ ns1(FH, δ, ηε), ErrsD(fh?) < ηε with probability at least 1 − δ by

Theorem 8.4.1 in Anthony et al. [5]. Therefore, we have ErrD(h?) < ε with probability at least

1− δ. �

32

The necessary condition for the learnability of the SLL problem is that no hypothesis have

non-zero multiclass classification error but zero superset error. Otherwise, no training data can

reject such an incorrect hypothesis.

Theorem 3.3.11 If there exists an hypothesis h ∈ H such thatErrD(h) > 0 andErrsD(h) = 0,

then the SLL-I problem is not learnable by an ERM learner.

The gap between the general sufficient condition and the necessary condition is small.

Let’s go back and check the small ambiguity degree condition against the tied error condition.

The condition γ < 1 indicates Pr(h(x) /∈ s|x, y) ≥ (1 − γ)Pr(h(x) 6= y|x, y). By taking the

expectation of both sides, we obtain the tied error condition η ≥ 1 − γ > 0. This also shows

that the tied error condition is more general. Though the tied error condition is less practical, it

can be used as a guideline to find more sufficient conditions.

3.4 Superset Label Learning Problem with Bagged Training Data (SLL-

B)

The second type of superset label learning problem arises in multi-instance multilabel learning

(MIML) [78]. The data are given in the form of i.i.d. bags. Each bag contains multiple instances,

which are generally not independent of each other. The bag label set consists of the labels of

these instances. In this form of superset label learning problem, the bag label set provides the

label superset for each instance in the bag. An ERM learning algorithm for SSL-I can naturally

be applied here regardless of the dependency between instances. In this section, we will show

learnability of this SSI-B problem.

We assume that each bag contains r instances, where r is fixed as a constant. The space of

labeled instances is still X × Y . The space of bag label sets is also S. The space of bags is

B = (X ×Y)r×S . Denote a bag of instances asB = (X,Y, S), where (X,Y) ∈ (X ×Y)r and

S ∈ S. Note that although (X,Y) is written as a vector of instances for notational convenience,

the order of these instances is not essential to any conclusion in this work. We assume that each

bag B = (X,Y, S) is sampled from the distribution DB . The label set S consists of labels in

Y in the MIML setting, but the following analysis still applies when S contains extra labels.

The learner can only observe (X,S) during training, whereas the learned hypothesis is tested

on (X,Y) during testing. The boldface B always denotes a set with m independent bags drawn

from the distribution DB .

33

The hypothesis space is still denoted by H. The expected classification error of hypothesis

h ∈ H on bagged data is defined as

ErrDB (h) = EB∼DB
[1
r

r∑
i=1

I(h(Xi) 6= Yi)
]

(3.13)

The expected superset error and the average superset error on the set B are defined as

ErrsDB (h) = EB∼DB
[1
r

r∑
i=1

I(h(Xi) /∈ Si)
]

(3.14)

ErrsB(h) =
1
mr

∑
B∈B

r∑
i=1

I(h(Xi) /∈ Si). (3.15)

The ERM learner A for hypothesis space H returns the hypothesis with minimum average su-

perset error.

3.4.1 The general condition for learnability of SLL-B

Using a technique similar to that employed in the last section, we convert the SLL-B problem

into a binary classification problem over bags. By bounding the error on the binary classification

task, we can bound the multiclass classification error of the hypothesis returned by A. Let GH
be the hypothesis space for binary classification of bags. GH is induced fromH as follows:

GH = {gh : gh(X,S) = max
1≤i≤r

I(h(Xi) /∈ Si), h ∈ H}.

Every hypothesis gh ∈ GH is a binary classifier for bags that predicts whether any instance

in the bag has its label outside of the bag label set. Since 0 is the correct classification for every

bag from the distribution DB , we define the expected and empirical bag error of gh as

ErrBDB (gh) = EB∼DB max
1≤i≤r

I(h(Xi) /∈ Si) (3.16)

ErrBB(gh) =
1
m

∑
B∈B

max
1≤i≤r

I(h(Xi) /∈ Si). (3.17)

34

It is easy to check the following relation between ErrBDB (gh) and ErrsDB (h).

ErrsDB (h) ≤ ErrBDB (gh) ≤ rErrsDB (h). (3.18)

Denote byAB the ERM learner for this binary classification problem. In the realizable case,

if the hypothesis gh? is returned byAB , then gh? has no binary classification error on the training

bags, and h? makes no superset error on any instance in training data.

To bound the error for the binary classification problem, we need to bound the VC-dimension

of GH.

Lemma 3.4.1 Denote the VC-dimension of GH by dG and the Natarajan dimension ofH by dH,

then

dG < 4 dH(log dH + log r + 2 logL). (3.19)

The proof of this lemma is almost the same as Lemma 3.3.7. The only difference is that different

classifications of dG bags are caused by different classifications of rdG instances.

The tied error condition for the SLL-B problem is λ > 0,

λ = inf
h∈H:ErrD(h)>0

ErrsDB (h)
ErrDB (h)

. (3.20)

With the tied error condition, we can give the sample complexity of learning a multiclass

classifier with MIML bags.

Theorem 3.4.2 Suppose the tied error condition holds, λ > 0, and assumeH has finite Natara-

jan dimension dH, then A(B) returns an hypothesis with error less than ε with probability at

least 1− δ when the training set B has size m, m > m0(H, δ, ε),

m0(H, δ, ε) =
4
λε

(
4dH log(dHrL2) log

(
12
λε

)
+ log

(
2
δ

))
(3.21)

Proof 3.4.3 With the tied error condition and the relation in (3.18), we have ErrDB (h) ≤
1
λErr

B
DB (gh). The hypothesis h? returned by A has zero superset error on the training bags,

thus gh? has zero bag error. When m > m0, we have ErrBDB (gh) < λε with probability at least

1 − δ by Theorem 8.4.1 in Anthony et al. [5]. Hence, we have ErrDB (h) < ε with probability

at least 1− δ. �

35

3.4.2 The no co-occurring label condition

We now provide a more concrete sufficient condition for learnability with a principle similar to

the ambiguity degree. It generally states that any two labels do not always co-occur in bag label

sets.

First we make an assumption about the data distribution DB .

Assumption 3.4.4 (Conditional independence assumption)

Pr(X|Y) =
r∏
i=1

Pr(Xi|Yi)

This assumption states that the covariates of an instance are determined by its label only. With

this assumption, a bag is sampled in the following way. Instance labels Y of the bag are first

drawn from the marginal distributionDY ofDB , then for each Yi, 1 ≤ i ≤ r,Xi is independently

sampled from the conditional distribution Dx(Yi) derived from DB .

Remark We can compare our assumption of bag distribution with assumptions in previous

work. Blum et al. [10] assume that all instances in a bag are independently sampled from the

instance distribution. As stated by Sabato et al. [58], this assumption is too strict for many ap-

plications. In their work as well as Wang et al. [74], the instances in a bag are assumed to be

dependent, and they point out that a further assumption is needed to get a low error classifier.

In our assumption above, we also assume dependency among instances in the same bag. The

dependency only comes from the instance labels. This assumption is roughly consistent with

human descriptions of the world. For example, in the description “a tall person stands by a

red vehicle”, the two labels “person” and “vehicle” capture most of the correlation, while the

detailed descriptions of the person and the vehicle are typically much less correlated.

The distribution DB of bags can be decomposed into DY and Dx(`), ` ∈ Y . Here DY is a

distribution over Yr. For each class ` ∈ Y , Dx(`) is a distribution over the instance space X .

The distribution of X is collectively denoted as DX(Y).

With Assumption 3.4.4, we propose the no co-occurring label condition in the following

theorem.

36

Theorem 3.4.5 Define

α = inf
(`,`′)∈I

E(X,Y,S)∼DB [I(` ∈ S)I(`′ /∈ S)]

where I is the index set {(`, `′) : `, `′ ∈ Y, ` 6= `′}. Suppose Assumption 3.4.4 holds and α > 0,

then

inf
h∈H: ErrDB (h)>0

ErrsDB (h)
ErrDB (h)

≥ α

r
.

Proof 3.4.6 Denote the row-normalized confusion matrix of each hypothesis h ∈ H as Uh ∈
[0, 1]L×L.

Uh(`, `′) = Prx∼Dx(`)(h(x) = `′), 1 ≤ `, `′ ≤ L

The entry (`, `′) of Uh means a random instance from class ` is classified as class `′ by h with

probability Uh(`, `′). Each row of Uh sums to 1. Denote k(Y, `) as the number of occurrences

of label ` in Y .

Then the error of h can be expressed as

ErrDB (h) =
1
r
EY

[r∑
i=1

∑
`′ 6=Yi

Uh(Yi, `′) | Y
]

=
1
r
EY

[∑
(`,`′)∈I

k(Y, `)Uh(`, `′) | Y
]

≤ 1
r

∑
(`,`′)∈I

rUh(`, `′) =
∑

(`,`′)∈I

Uh(`, `′).

The expected superset error of h can be computed as

ErrsDB (h) =
1
r
EY

[r∑
i=1

∑
`′ 6=Yi

I(`′ /∈ Si)Uh(Yi, `′) | Y
]

=
1
r
EY

[∑
(`,`′)∈I

k(Y, `)I(`′ /∈ Si)Uh(`, `′) | Y
]

≥ 1
r

∑
(`,`′)∈I

αUh(`, `′).

These two inequalities hold for any h ∈ H, so the theorem is proved. �

37

With the no co-occurring label condition that α > 0, the remaining learnability requirement

is that the hypothesis space H have finite Natarajan dimension. A merit of the condition of

Theorem 3.4.5 is that it can be checked on the training data with high confidence. Suppose we

have a training data B. Then the empirical estimate of α is

αB =
1
m

min
(`,`′)∈I

∑
(X,Y,S)∈B

I(` ∈ S)I(`′ /∈ S),

If αB > 0, then by the Chernoff bound, we can obtain a lower bound on α > 0 with high

confidence. Conversely, if αB = 0 for a large training set, then it is quite possible that α is very

small or even zero.

3.5 Conclusion and Future Work

In this paper, we analyzed the learnability of an ERM learner on two superset label learning

problems: SLL-I (for independent instances) and SLL-B (for bagged instances). Both problems

can be learned by the same learner regardless the (in)dependency among the instances.

For both problems, the key to ERM learnability is that the expected classification error of

any hypothesis in the space can be bounded by the superset error. If the tied error condition

holds, then we can construct a binary classification problem from the SLL problem and bound

the expected error in the binary classification problem. By constructing a relationship between

the VC-dimension and the Natarajan dimension of the original problem, the sample complexities

can be given in terms of the Natarajan dimension.

For the SLL-I problem, the condition of small ambiguity degree guarantees learnability for

problems with hypothesis spaces having finite Natarajan dimension. This condition leads to

lower sample complexity bounds than those obtained from the general tied error condition. The

sample complexity analysis with this condition generalizes the analysis of multiclass classifica-

tion. For the SLL-B problem, we propose a reasonable assumption for the distribution of bags.

With this assumption, we identify a practical condition stating that no two labels always co-occur

in bag label sets.

There is more to explore in theoretical analysis of the superset label learning problem. Anal-

ysis is needed for the agnostic case. Another important issue is to allow noise in the training data

by removing the assumption that the true label is always in the label superset.

38

Manuscript 3: Gaussian Approximation of Collective Graphical Models

Li-Ping Liu, Daniel Sheldon, Thomas G. Dietterich

Proceedings of the 31st International Conference on Machine Learning (ICML-14)

Edited by T. Jebara and E. P. Xing

Published by JMLR Workshop and Conference Proceedings, 2014

Pages 1602-1610

39

Chapter 4: Gaussian Approximation of Collective Graphical Models

Abstract

The Collective Graphical Model (CGM) models a population of independent and iden-
tically distributed individuals when only collective statistics (i.e., counts of individuals) are
observed. Exact inference in CGMs is intractable, and previous work has explored Markov
Chain Monte Carlo (MCMC) and MAP approximations for learning and inference. This
paper studies Gaussian approximations to the CGM. As the population grows large, we
show that the CGM distribution converges to a multivariate Gaussian distribution (GCGM)
that maintains the conditional independence properties of the original CGM. If the obser-
vations are exact marginals of the CGM or marginals that are corrupted by Gaussian noise,
inference in the GCGM approximation can be computed efficiently in closed form. If the
observations follow a different noise model (e.g., Poisson), then expectation propagation
provides efficient and accurate approximate inference. The accuracy and speed of GCGM
inference is compared to the MCMC and MAP methods on a simulated bird migration
problem. The GCGM matches or exceeds the accuracy of the MAP method while being
significantly faster.

4.1 Introduction

Consider a setting in which we wish to model the behavior of a population of independent and

identically distributed (i.i.d.) individuals but where we can only observe collective count data.

For example, we might wish to model the relationship between education, sex, housing, and

income from census data. For privacy reasons, the Census Bureau only releases count data such

as the number of people having a given level of education or the number of men living in a

particular region. Another example concerns modeling the behavior of animals from counts of

(anonymous) individuals observed at various locations and times. This arises in modeling the

migration of fish and birds.

The CGM is constructed by first defining the individual model—a graphical model describ-

ing a single individual. Let C and S be the clique set and the separator set of a junction tree

constructed from the individual model. Then, we define N copies of this individual model to

create a population of N i.i.d. individuals. This permits us to define count variables nA, where

40

nA(iA) is the number of individuals for which clique A ∈ C ∪ S is in configuration iA. The

counts n = (nA : A ∈ C ∪ S) are the sufficient statistics of the individual model. After

marginalizing away the individuals, the CGM provides a model for the joint distribution of n.

In typical applications of CGMs, we make noisy observations y that depends on some of

the n variables, and we seek to answer queries about the distribution of some or all of the n

conditioned on these observations. Let y = (yD : D ∈ D), where D is a set of cliques from

the individual graphical model and yD contains counts of settings of clique D. We require each

D ⊆ A for some clique A ∈ C ∪ S the individual model. In addition to the usual role in

graphical models, the inference of the distribution of n also serves to estimate the parameters

of the individual model (e.g. E step in EM learning), because n are sufficient statistics of the

individual model. Inference for CGMs is much more difficult than for the individual model.

Unlike the individual model, many conditional distributions in the CGM do not have a closed

form. The space of possible configurations of the CGM is very large, because each count variable

ni can take values in {0, . . . , N}.
The original CGM paper, Sheldon et al. [60] introduced a Gibbs sampling algorithm for

sampling from P (n|y). Subsequent experiments showed that this exhibits slow mixing times,

which motivated Sheldon et al. [61] to introduce an efficient algorithm for computing a MAP

approximation based on minimizing a tractable convex approximation of the CGM distribu-

tion. Although the MAP approximation still scales exponentially in the domain size L of the

individual-model variables, it was fast enough to permit fitting CGMs via EM on modest-sized

instances (L = 49). However, given that we wish to apply this to problems where L = 1000, we

need a method that is even more efficient.

This paper introduces a Gaussian approximation to the CGM. Because the count variables

nC have a multinomial distribution, it is reasonable to apply the Gaussian approximation. How-

ever, this approach raises three questions. First, is the Gaussian approximation asymptotically

correct? Second, can it maintain the sparse dependency structure of the CGM distribution, which

is critical to efficient inference? Third, how well does it work with natural (non-Gaussian) ob-

servation distributions for counts, such as the Poisson distribution? This paper answers these

questions by proving an asymptotically correct Gaussian approximation for CGMs. It shows

that this approximation, when done correctly, is able to preserve the dependency structure of the

CGM. And it demonstrates that by applying expectation propagation (EP), non-Gaussian obser-

vation distributions can be handled. The result is a CGM inference procedure that gives good

accuracy and achieves significant speedups over previous methods.

41

Beyond CGMs, our main result highlights a remarkable property of discrete graphical mod-

els: the asymptotic distribution of the vector of sufficient statistics is a Gaussian graphical model

with the same conditional independence properties as the original model.

4.2 Problem Statement and Notation

Consider a graphical model defined on the graph G = (V,E) with n nodes and clique set C.

Denote the random variables by X1, . . . , Xn. Assume for simplicity all variables take values in

the same domain X of size L. Let x ∈ X n be a particular configuration of the variables, and

let xC be the subvector of variables belonging to C. For each clique C ∈ C, let φC(xC) be a

non-negative potential function. Then the probability model is:

p(x) =
1
Z

∏
C∈C

φC(xC) = exp
(∑
C∈C

∑
iC∈X |C|

θC(iC)·I(xC = iC)−Q(θ)
)
. (4.1)

The second line shows the model in exponential-family form [72], where I(π) is an indicator

variable for the event or expression π, and θC(iC) = log φC(iC) is an entry of the vector of

natural parameters. The function Q(θ) = logZ is the log-partition function. Given a fixed set

of parameters θ and any subset A ⊆ V , the marginal distribution µA is the vector with entries

µA(iA) = Pr(XA = iA) for all possible iA ∈ X |A|. In particular, we will be interested in the

clique marginals µC and the node marginals µi := µ{i}.

Junction Trees. Our development relies on the existence of a junction tree [38] on the

cliques of C to write the relevant CGM and GCGM distributions in closed form. Henceforth,

we assume that such a junction tree exists. In practice, this means that one may need to add

fill-in edges to the original model to obtain the triangulated graph G, of which C is the set of

maximal cliques. This is a clear limitation for graphs with high tree-width. Our methods apply

directly to trees and are most practical for low tree-width graphs. Since we use few properties

of the junction tree directly, we review only the essential details here and review the reader to

Lauritzen [38] for further details. Let C and C ′ be two cliques that are adjacent in T ; their

intersection S = C ∩ C ′ is called a separator. Let S be the set of all separators of T , and let

ν(S) be the number of times S appears as a separator, i.e., the number of different edges (C,C ′)
in T for which S = C ∩ C ′.

42

The CGM Distribution. Fix a sample size N and let x1, . . . ,xN be N i.i.d. random vectors

distributed according to the graphical model G. For any set A ⊆ V and particular setting

iA ∈ X |A|, define the count

nA(iA) =
N∑
m=1

I(xmA = iA). (4.2)

Let nA = (nA(iA) : iA ∈ X |A|) be the complete vector of counts for all possible settings

of the variables in A. In particular, let nu := n{u} be the vector of node counts. Also, let

n = (nA : A ∈ C ∪ S) be the combined vector of all clique and separator counts—these are

sufficient statistics of the sample of size N from the graphical model. The distribution over this

vector is the CGM distribution.

Proposition 4.2.1 Let n be the vector of (clique and separator) sufficient statistics of a sample

of size N from the discrete graphical model (4.1). The probability mass function of n is given by

p(n; θ) = h(n)f(n; θ) where

f(n; θ) = exp
(∑

C∈C,iC∈X |C|
θC(iC) · nC(iC)−NQ(θ)

)
(4.3)

h(n) = N ! ·

∏
S∈S

∏
iS∈X |S|

(
nS(iS)!

)ν(S)∏
C∈C

∏
iC∈X |C| nC(iC)!

∏
S∼C∈T ,iS∈X |S|

I
(
nS(iS) =

∑
iC\S

nC(iS , iC\S)
)
·

∏
C∈C

I
(∑
iC∈X |C|

nC(iC) = N
)
. (4.4)

Denote this distribution by CGM(N,θ).

Here, the notation S ∼ C ∈ T means that S is adjacent to C in T . This proposition was

first proved in nearly this form by Sundberg [66] (see also Lauritzen [38]). Proposition 4.2.1

differs from those presentations by writing f(n; θ) in terms of the original parameters θ instead

of the clique and separator marginals {µC ,µS}, and by including hard constraints in the base

measure h(n). The hard constraints enforce consistency of the sufficient statistics of all cliques

on their adjacent separators, and were treated implicitly prior to Sheldon et al. [60]. A proof

of the equivalence between our expression for f(n; θ) and the expressions from prior work

is given in the supplementary material. David et al. [23] refer to the same distribution as the

43

hyper-multinomial distribution due to the fact that it follows conditional independence properties

analogous to those in the original graphical model.

Proposition 4.2.2 Let A,B ∈ S ∪ C be two sets that are separated by the separator S in T .

Then nA ⊥⊥ nB | nS .

Proof 4.2.3 The probability model p(n; θ) factors over the clique and separator count vectors

nC and nS . The only factors where two different count vectors appear together are the consis-

tency constraints where nS and nC appear together if S is adjacent to C in T . Thus, the CGM

is a graphical model with the same structure as T , from which the claim follows. �

4.3 Approximating CGM by the Normal Distribution

In this section, we will develop a Gaussian approximation, GCGM, of the CGM and show that

it is the asymptotically correct distribution as M goes to infinity. We then show that the GCGM

has the same conditional independence structure as the CGM, and we explicitly derive the condi-

tional distributions. These allow us to use Gaussian message passing in the GCGM as a practical

approximate inference method for CGMs.

We will follow the most natural approach of approximating the CGM distribution by a mul-

tivariate Gaussian with the same mean and covariance matrix. The moments of the CGM dis-

tribution follow directly from those of the indicator variables of the individual model: Fix an

outcome x = (x1, . . . , xn) from the individual model and for any set A ⊆ V let IA =
(
I(xA =

iA) : iA ∈ X |A|
)

be the vector of all indicator variables for that set. The mean and covariance

of any such vectors are given by

E[IA] = µA (4.5)

cov(IA, IB) = 〈µA,B〉 − µAµTB. (4.6)

Here, the notation 〈µA,B〉 refers to the matrix whose (iA, iB) entry is the marginal probabil-

ity Pr(XA = iA, XB = iB). Note that Eq. (4.6) follows immediately from the definition

of covariance for indicator variables, which is easily seen in the scalar form: cov(I(XA =
iA), I(XB = iB)) = Pr(XA = iA, XB = iB) − Pr(XA = iA) Pr(XB = iB). Eq. (4.6) also

covers the case when A ∩ B is nonempty. In particular if A = B = {u}, then we recover

cov(Iu, Iu) = diag(µu) − µuµ
T
u , which is the covariance matrix for the marginal multinomial

44

distribution of Iu.

From the preceding arguments, it becomes clear that the covariance matrix for the full vector

of indicator variables has a simple block structure. Define I = (IA : A ∈ C ∪S) to be the vector

concatention of all the clique and separator indicator variables, and let µ = (µA : A ∈ C ∪S) =
E[I] be the corresponding vector concatenation of marginals. Then it follows from (4.6) that the

covariance matrix is

Σ := cov(I, I) = Σ̂− µµT , (4.7)

where Σ̂ is the matrix whose (A,B) block is the marginal distribution 〈µA,B〉. In the CGM

model, the count vector n can be written as n =
∑N

m=1 Im, where I1, . . . , IN are i.i.d. copies

of I. As a result, the moments of the CGM are obtained by scaling the moments of I by N . We

thus arrive at the natural moment-matching Gaussian approximation of the CGM.

Definition The Gaussian CGM, denoted GCGM(N,θ) is the multivariate normal distribution

N (Nµ, NΣ), where µ is the vector of all clique and separator marginals of the graphical model

with parameters θ, and Σ is defined in Equation (4.7).

In the following theorem, we show the GCGM is asymptotically correct and it is a Gaussian

graphical model, which will lead to efficient inference algorithms.

Theorem 4.3.1 Let nN ∼ CGM(N,θ) for N = 1, 2, Then following are true:

(i) The GCGM is asymptotically correct. That is, as N →∞ we have

1√
N

(nN −Nµ) D−→ N (0,Σ). (4.8)

(ii) The GCGM is a Gaussian graphical model with the same conditional independence struc-

ture as the CGM. Let z ∼ GCGM(N,θ) and let A,B ∈ C ∪ S be two sets that are

separated by separator S in T . Then zA ⊥⊥ zB | zS .

Proof 4.3.2 Part (i) is a direct application of the multivariate central limit theorem to the ran-

dom vector nN , which, as noted above, is a sum of i.i.d. random vectors I1, . . . , IN with mean

µ and covariance Σ [25].

Part (ii) is a consequence of the fact that these conditional independence properties hold for

each nN (Proposition 4.2.2), so they also hold in the limit as N → ∞. While this is intuitively

clear, it seems to require further justification, which is provided in the supplementary material.

�

45

4.3.1 Conditional Distributions

The goal is to use inference in the GCGM as a tractable approximate alternative inference method

for CGMs. However, it is very difficult to compute the covariance matrix Σ over all cliques. In

particular, note that the (C,C ′) block requires the joint marginal 〈µC,C′〉, and if C and C ′ are

not adjacent in T this is hard to compute. Fortunately, we can sidestep the problem completely

by leveraging the graph structure from Part (ii) of Theorem 4.3.1 to write the distribution as

a product of conditional distributions whose parameters are easy to compute (this effectively

means working with the inverse covariance matrix instead of Σ). We then perform inference by

Gaussian message passing on the resulting model.

A challenge is that Σ is not full rank, so the GCGM distribution as written is degenerate

and does not have a density. This can be seen by noting that any vector n ∼ CGM(N ; θ) with

nonzero probability satisfies the affine consistency constraints from Eq. (4.4)—for example, each

vector nC and nS sums to the population sizeN—and that these affine constraints also hold with

probability one in the limiting distribution. To fix this, we instead use a linear transformation T
to map z to a reduced vector z̃ = T z such that the reduced covariance matrix Σ̃ = T Σ TT is

invertible. The work by Loh et al. [44] proposed a minimal representation of the graphical model

in (4.1), and the corresponding random variable has a full rank covariance matrix. We will find

a transformation T to project our indicator variable I into that form. Then T I (as well as T n

and T z) will have a full rank covariance matrix.

Denote by C+ the maximal and non-maximal cliques in the triangulated graph. Note that

each D ∈ C+ must be a subset of some A ∈ C ∪ S and each subset of A is also a clique in

C+. For every D ∈ C+, let XD0 = (X\{L})|D| denote the space of possible configurations of D

after excluding the largest value, L, from the domain of each variable in D. The corresponding

random variable I in the minimal representation is defined as Loh et al. [44]:

Ĩ = (I(xD = iD) : iD ∈ XD0 , D ∈ C+) . (4.9)

ĨD can be calculated linearly from IA when D ⊆ A via the matrix TD,A whose (iD, iA) entry is

defined as

TD,A(iD, iA) = I(iD ∼D iA), (4.10)

where ∼D means that iD and iA agree on the setting of the variables in D. It follows that

46

ĨD = TD,A IA. The whole transformation T can be built in blocks as follows: For every

D ∈ C+, choose A ∈ C ∪S and construct the TD,A block via (4.10). Set all other blocks to zero.

Due to the redundancy of I, there might be many ways of choosing A for D and any one will

work as long as D ⊆ A.

Proposition 4.3.3 Define T as above, and define z̃ = T z, z̃A+ = (z̃D : D ⊆ A), A ∈ C ∪ S.

Then

(i) If A,B ∈ C ∪ S are separated by S in T , it holds that z̃A+ ⊥⊥ z̃B+ | z̃S+ .

(ii) The covariance matrix of z̃ has full rank.

Proof 4.3.4 In the appendix, we show that for anyA ∈ C∪S, IA can be linearly recovered from

ĨA+ = (ĨD : D ⊆ A). So there is a linear bijection between IA and ĨA+ (The mapping from

IA to ĨA+ has been shown in the definition of T). The same linear bijection relation also exists

between nA and ñA+ =
∑N

m=1 ĨmA+ and between zA and z̃A+ .

Proof of (i): Since zA ⊥⊥ zB | zS , it follows that z̃A+ ⊥⊥ z̃B+ | zS because z̃A+ and z̃B+

are deterministic functions of zA and zB respectively. Since zS is a deterministic function of

z̃S+ , the same property holds when we condition on z̃S+ instead of zS .

Proof of (ii): The bijection between I and Ĩ indicates that the model representation of Loh

et al. [44] defines the same model as (4.1). By Loh et al. [44], Ĩ has full rank covariance matrix

and so do ñ and z̃. �

With this result, the GCGM can be decomposed into conditional distributions, and each

distribution is a non-degenerate Gaussian distribution.

Now let us consider the observations y = {yD, D ∈ D}, where D is the set of cliques

for which we have observations. We require each D ∈ D be subset of some clique C ∈
C. When choosing a distribution p(yD|zC), a modeler has substantial flexibility. For ex-

ample, p(yD|zC) can be noiseless, yD(iD) =
∑

iC\D
zC(iD, iC\D), which permits closed-

form inference. Or p(yD|zC) can consist of independent noisy observations: p(yD|zC) =∏
iD
p(yD(iD)|

∑
iC\D

zC(iD, iC\D)). With a little work, p(yD|zC) can be represented by

p(yD|z̃C+).

47

4.3.2 Explicit Factored Density for Trees

We describe how to decompose GCGM for the special case when the original graphical model

G is a tree. We assume that only counts of single nodes are observed. In this case, we can

marginalize out edge (clique) counts z{u,v} and retain only node (separator) counts zu. Because

the GCGM has a normal distribution, marginalization is easy. The conditional distribution is then

defined only on node counts. With the definition of z̃ in Proposition (4.3.3) and the property of

conditional independence, we can write

p(z̃1, . . . , z̃n) = p(z̃r)
∏

(u,v)∈E

p(z̃v | z̃u). (4.11)

Here r ∈ V is an arbitrarily-chosen root node, and E is the set of directed edges of G oriented

away from r. The marginalization of the edges greatly reduces the size of the inference problem,

and a similar technique is also applicable to general GCGMs.

Now specify the parameters of the Gaussian conditional densities p(z̃v | z̃u) in Eq. (4.11).

Assume the blocks Tu,u and Tv,v are defined as (4.10). Let µ̃u = Tu,u µu be the marginal

vector of node u without its last entry, and let 〈µ̃u,v〉 = Tu,u 〈µu,v〉 TTv,v be the marginal matrix

over edge (u, v), minus the final row and column. Then the mean and covariance martix of the

joint distribution are

η := N

[
µ̃u

µ̃v

]
, N2

[
diag(µ̃u) 〈µ̃u,v〉
〈µ̃v,u〉 diag(µ̃v)

]
− ηηT . (4.12)

The conditional density p(z̃v | z̃u) is obtained by standard Gaussian conditioning formulas.

If we need to infer z{u,v} from some distribution q(z̃u, z̃v), we first calculate the distribution

p(z̃{u,v}|z̃u, z̃v). This time we assume blocks T{u,v}+,{u,v} = (Tu,{u,v} : D ∈ {u, v}) are

defined as (4.10). We can find the mean and variance of p(z̃u, z̃v, z̃{u,v}) by applying linear

transformation T{u,v}+,{u,v} on the mean and variance of z{u,v}. Standard Gaussian conditioning

formulas then give the conditional distribution p(z̃{u,v} | z̃u, z̃v). Then we can recover the

distribution of z{u,v} from distribution p(z̃{u,v}|z̃u, z̃v)q(z̃u, z̃v).

Remark: Our reasoning gives a completely different way of deriving some of the results of

Loh et al. [44] concerning the sparsity pattern of the inverse covariance matrix of the sufficient

statistics of a discrete graphical model. The conditional independence in Proposition 4.2.2 for

the factored GCGM density translates directly to the sparsity pattern in the precision matrix

48

Γ = Σ̃−1. Unlike the reasoning of Loh et al. [44], we derive the sparsity directly from the

conditional independence properties of the asymptotic distribution (which are inherited from the

CGM distribution) and the fact that the CGM and GCGM share the same covariance matrix.

4.4 Inference with Noisy Observations

We now consider the problem of inference in the GCGM when the observations are noisy.

Throughout the remainder of the paper, we assume that the individual model—and, hence, the

CGM—is a tree. In this case, the cliques correspond to edges and the separators correspond to

nodes. We will also assume that only the nodes are observed. For notational simplicity, we will

assume that every node is observed (with noise). (It is easy to marginalize out unobserved nodes

if any.) From now on, we use uv instead of {u, v} to represent edge clique. Finally, we assume

that the entries have been dropped from the vector z as described in the previous section so that

it has the factored density described in Eq. 4.11.

Denote the observation variable for node u by yu, and assume that it has a Poisson distribu-

tion. In the (exact) CGM, this would be written as yu ∼ Poisson(nu). However, in our GCGM,

this instead has the form

yu ∼ Poisson(λzu), (4.13)

where zu is the corresponding continuous variable and λ determines the amount of noise in the

distribution. Denote the vector of all observations by y. Note that the missing entry of zu must

be reconstructed from the remaining entries when computing the likelihood.

With Poisson observations, there is no longer a closed-form solution to message passing

in the GCGM. We address this by applying Expectation Propagation (EP) with the Laplace

approximation. This method has been previously applied to nonlinear dynamical systems by

Ypma et al. [75].

4.4.1 Inferring Node Counts

In the GCGM with observations, the potential on each edge (u, v) ∈ E is defined as

ψ(zu, zv) =

{
p(zv, zu)p(yv|zv)p(yu|zu) if u is root

p(zv|zu)p(yv|zv) otherwise.
(4.14)

49

We omit the subscripts on ψ for notational simplicity. The joint distribution of (zv, zu) has mean

and covariance shown in (4.12).

With EP, the model approximates potential on edge (u, v) ∈ E with normal distribution in

context q\uv(zu) and q\uv(zv). The context for edge (u, v) is defined as

q\uv(zu) =
∏

(u,v′)∈E,v′ 6=v

quv′(zu) (4.15)

q\uv(zv) =
∏

(u′,v)∈E,u′ 6=u

qu′v(zv), (4.16)

where each quv′(zu) and qu′v(zv) have the form of normal densities.

Let ξ(zu, zv) = q\uv(zu)q\uv(zv)ψ(zu, zv). The EP update of quv(zu) and quv(zv) is com-

puted as

quv(zu) =
projzu [ξ(zu, zv)]

q\uv(zu)
(4.17)

quv(zv) =
projzv [ξ(zu, zv)]

q\uv(zv)
. (4.18)

The projection operator, proj, is computed in two steps. First, we find a joint approximating

normal distribution via the Laplace approximation and then we project this onto each of the

random variables zu and zv. In the Laplace approximation step, we need to find the mode

of log ξ(zu, zv) and calculate its Hessian at the mode to obtain the mean and variance of the

approximating normal distribution:

µξuv = arg max
(zu,zv)

log ξ(zu, zv) (4.19)

Σξ
uv =

(
∇2

(zu,zv)=µ
ξ
uv

log ξ(zu, zv)

)−1

. (4.20)

The optimization problem in (4.19) is solved by optimizing first over zu then over zv. The

optimal value of zu can be computed in closed form in terms of zv, since only normal densities

are involved. Then the optimal value of zv is found via gradient methods (e.g., BFGS). The

function log ξ(zu, zv) is concave, so we can always find the global optimum. Note that this

decomposition approach only depends on the tree structure of the model and hence will work for

50

any observation distribution.

At the mode, we find the mean and variance of the normal distribution approximating p(zu, zv|y)
via (4.19) and (4.20). With this distribution, the edge counts can be inferred with the method of

Section 4.3.2. In the projection step in (4.17) and (4.18), this distribution is projected to one of

zu or zv by marginalizing out the other.

4.4.2 Complexity analysis

What is the computational complexity of inference with the GCGM? When inferring node

counts, we must solve the optimization problem and compute a fixed number of matrix inverses.

Each matrix inverse takes time L3 (by Gauss-Jordan elimination). In the Laplace approxima-

tion step, each gradient calculation takes O(L2) time. Suppose m iterations are needed. In the

outer loop, suppose we must perform r passes of EP message passing and each iteration sweeps

through the whole tree. Then the overall time is O(r|E|max(mL2, L3)). The maximization

problem in the Laplace approximation is smooth and concave, so it is relatively easy. In our

experiments, EP usually converges within 10 iterations.

In the task of inferring edge counts, we only consider the complexity of calculating the mean,

as this is all that is needed in our applications. This part is solved in closed form, with the most

time-consuming operation being the matrix inversion. By exploiting the simple structure of the

covariance matrix of zuv , we can obtain an inference method with time complexity of O(L3).

4.5 Experimental Evaluation

In this section, we evaluate the performance of our method and compare it to the MAP approxi-

mation of Sheldon et al. [61]. The evaluation data are generated from the bird migration model

introduced in Sheldon et al. [61]. This model simulates the migration of a population of M birds

on an L = ` × ` map. The entire population is initially located in the bottom left corner of

the map. Each bird then makes independent migration decisions for T = 20 time steps. The

transition probability from cell i to cell j at each time step is determined by a logistic regression

equation that employs four features. These features encode the distance from cell i to cell j, the

degree to which cell j falls near the path from cell i to the destination cell in the upper right

corner, the degree to which cell j lies in the direction toward which the wind is blowing, and

a factor that encourages the bird to stay in cell i. Let w denote the parameter vector for this

51

logistic regression formula. In this simulation, the individual model for each bird is a T -step

Markov chain X = (X1, . . . , X20) where the domain of each Xt consists of the L cells in the

map. The CGM variables n = (n1,n1,2,n2, . . . ,nT) are vectors of length L containing counts

of the number of birds in each cell at time t and the number of birds moving from cell i to cell j

from time t to time t+ 1. We will refer to these as the “node counts” (N) and the “edge counts”

(E). At each time step t, the data generation model generates an observation vector yt of length

L which contains noisy counts of birds at all map cells at time t, nt. The observed counts are

generated by a Poisson distribution with unit intensity.

We consider two inference tasks. In the first task, the parameters of the model are given,

and the task is to infer the expected value of the posterior distribution over nt for each time step

t given the observations y1, . . . ,yT (aka “smoothing”). We measure the accuracy of the node

counts and edge counts separately.

An important experimental issue is that we cannot compute the true MAP estimates for the

node and edge counts. Of course we have the values generated during the simulation, but because

of the noise introduced into the observations, these are not necessarily the expected values of the

posterior. Instead, we estimate the expected values by running the MCMC method [60] for a

burn-in period of 1 million Gibbs iterations and then collecting samples from 10 million Gibbs

iterations and averaging the results. We evaluate the accuracy of the approximate methods as

the relative error ||napp − nmcmc||1/||nmcmc||1, where napp is the approximate estimate and

nmcmc is the value obtained from the Gibbs sampler. In each experiment, we report the mean

and standard deviation of the relative error computed from 10 runs. Each run generates a new

set of values for the node counts, edge counts, and observation counts and requires a separate

MCMC baseline run.

We compare our method to the approximate MAP method introduced by Sheldon et al. [61].

By treating counts as continuous and approximating the log factorial function, their MAP method

finds the approximate mode of the posterior distribution by solving a convex optimization prob-

lem. Their work shows that the MAP method is much more efficient than the Gibbs sampler

and produces inference results and parameter estimates very similar to those obtained from long

MCMC runs.

The second inference task is to estimate the parameters w of the transition model from the

observations. This is performed via Expectation Maximization, where our GCGM method is

applied to compute the E step. We compute the relative error with respect to the true model

parameters.

52

Table 4.1 compares the inference accuracy of the approximate MAP and GCGM methods.

In this table, we fixed L = 36, set the logistic regression coefficient vector w = (1, 2, 2, 2),

and varied the population size N ∈ {36, 360, 1080, 3600}. At the smallest population size, the

MAP approximation is slightly better, although the result is not statistically significant. This

makes sense, since the Gaussian approximation is weakest when the population size is small.

At all larger population sizes, the GCGM gives much more accurate results. Note that the MAP

approximation exhibits much higher variance as well.

Table 4.1: Relative error in estimates of node counts (“N”) and edge counts (“E”) for different
population sizes N .

N = 36 360 1080 3600
MAP(N) .173±.020 .066±.015 .064±.012 .069±.013
MAP(E) .350±.030 .164±.030 .166±.027 .178±.025

GCGM(N) .184±.018 .039±.007 .017±.003 .009±.002
GCGM(E) .401±.026 .076±.008 .034±.003 .017±.002

Our second inference experiment is to vary the magnitude of the logistic regression coef-

ficients. With large coefficients, the transition probabilities become more extreme (closer to 0

and 1), and the Gaussian approximation should not work as well. We fixed N = 1080 and

L = 36 and evaluated three different parameter vectors: w0.5 = (0.5, 1, 1, 1), w1 = (1, 2, 2, 2)
and w2 = (2, 4, 4, 4). Table 4.2 shows that for w0.5 and w1, the GCGM is much more accurate,

but for w2, the MAP approximation gives a slightly better result, although it is not statistically

significant based on 10 trials.

Table 4.2: Relative error in estimates of node counts (“N”) and edge counts (“E”) for different
settings of the logistic regression parameter vector w

w0.5 w1 w2

MAP(N) .107±.014 .064±.012 .018±.004
MAP(E) .293±.038 .166±.027 .031±.004

GCGM(N) .013±.002 .017±.003 .024±.004
GCGM(E) .032±.004 .034±.003 .037±.005

Our third inference experiment explores the effect of varying the size of the map. This

increases the size of the domain for each of the random variables and also increases the number

of values that must be estimated (as well as the amount of evidence that is observed). We vary

L ∈ {16, 25, 36, 49}. We scale the population size accordingly, by settingN = 30L. We use the

53

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

w = (0.5, 1, 1, 1)

EM iteration

re
la

tiv
e

er
ro

r

●

●

●
●

●
● ● ● ● ● ●

●

● ● ●
●

● ● ● ● ● ●

1 10 20 30 40 50

●

population size

16
160
480
1600

methods

MAP
GCGM

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

w = (1, 2, 2, 2)

EM iteration

re
la

tiv
e

er
ro

r

●

●

●
●

●
●

●
● ● ● ●

●

●

● ●
●

●
●

●
● ● ●

1 10 20 30 40 50

●

population size

16
160
480
1600

methods

MAP
GCGM

0.
0

0.
2

0.
4

0.
6

0.
8

w = (2, 4, 4, 4)

EM iteration

re
la

tiv
e

er
ro

r

●

●

●

●

●
● ● ● ● ● ●

●

●

●

●

●

● ● ● ● ● ●

1 10 20 30 40 50

●

population size

16
160
480
1600

methods

MAP
GCGM

Figure 4.1: EM convergence curve different feature coefficient and population sizes

coefficient vector w1. The results in Table 4.3 show that for the smallest map, both methods give

similar results. But as the number of cells grows, the relative error of the MAP approximation

grows rapidly as does the variance of the result. In comparison, the relative error of the GCGM

method barely changes.

Table 4.3: Relative inference error with different map size
L = 16 25 36 49

MAP(N) .011±.005 .025±.007 .064±.012 .113±.015
MAP(E) .013±.004 .056±.012 .166±.027 .297±.035

GCGM(N) .017±.003 .017±.003 .017±.003 .020±.003
GCGM(E) .024±.002 .027±.003 .034±.003 .048±.005

We now turn to measuring the relative accuracy of the methods during learning. In this

experiment, we set L = 16 and vary the population size for N ∈ {16, 160, 480, 1600}. Af-

ter each EM iteration, we compute the relative error as ||wlearn − wtrue||1/||wtrue||1, where

wlearn is the parameter vector estimated by the learning methods and wtrue is the parameter

vector that was used to generate the data. Figure 4.1 shows the training curves for the three

parameter vectors w0.5,w1, and w2. The results are consistent with our previous experiments.

For small population sizes (N = 16 and N = 160), the GCGM does not do as well as the MAP

approximation. In some cases, it overfits the data. For N = 16, the MAP approximation also

exhibits overfitting. For w2, which creates extreme transition probabilities, we also observe that

the MAP approximation learns faster, although the GCGM eventually matches its performance

with enough EM iterations.

54

●

●

●

●

●

0
20

40
60

80

Inference time v.s. domain size

domain size

ru
nn

in
g

tim
e

(s
ec

on
ds

)

16 36 64 100 144

● MAP
GCGM
GCGM infer node counts only

Figure 4.2: A comparison of inference run time with different numbers of cells L

Our final experiment measures the CPU time required to perform inference. In this experi-

ment, we varied L ∈ {16, 36, 64, 100, 144} and set N = 100L. We used parameter vector w1.

We measured the CPU time consumed to infer the node counts and the edge counts. The MAP

method infers the node and edge counts jointly, whereas the GCGM first infers the node counts

and then computes the edge counts from them. We report the time required for computing just

the node counts and also the total time required to compute the node and edge counts. Figure 4.2

shows that the running time of the MAP approximation is much larger than the running time of

the GCGM approximation. For all values of L except 16, the average running time of GCGM is

more than 6 times faster than for the MAP approximation. The plot also reveals that the com-

putation time of GCGM is dominated by estimating the node counts. A detailed analysis of the

implementation indicates that the Laplace optimization step is the most time-consuming.

In summary, the GCGM method achieves relative error that matches or is smaller than that

achieved by the MAP approximation. This is true both when measured in terms of estimating the

values of the latent node and edge counts and when estimating the parameters of the underlying

graphical model. The GCGM method does this while running more than a factor of 6 faster.

The GCGM approximation is particularly good when the population size is large and when the

transition probabilities are not near 0 or 1. Conversely, when the population size is small or the

probabilities are extreme, the MAP approximation gives better answers although the differences

were not statistically significant based on only 10 trials. A surprising finding is that the MAP

approximation has much larger variance in its answers than the GCGM method.

55

4.6 Concluding Remarks

This paper has introduced the Gaussian approximation (GCGM) to the Collective Graphical

Model (CGM). We have shown that for the case where the observations only depend on the

separators, the GCGM is the limiting distribution of the CGM as the population size N → ∞.

We showed that the GCGM covariance matrix maintains the conditional independence structure

of the CGM, and we presented a method for efficiently inverting this covariance matrix. By

applying expectation propagation, we developed an efficient algorithm for message passing in

the GCGM with non-Gaussian observations. Experiments on a bird migration simulation showed

that the GCGM method is at least as accurate as the MAP approximation of Sheldon et al. [61],

that it exhibits much lower variance, and that it is 6 times faster to compute.

56

Manuscript 4: Transductive Optimization of Top k Precision

Li-Ping Liu, Thomas G. Dietterich, Nan Li, Zhi-Hua Zhou

Accepted by 25th International Joint Conference on Artificial Intelligence

57

Chapter 5: Transductive Optimization of Top k Precision

Abstract

Consider a binary classification problem in which the learner is given a labeled training
set, an unlabeled test set, and is restricted to choosing exactly k test points to output as
positive predictions. Problems of this kind—transductive precision@k—arise in many ap-
plications. Previous methods solve these problems in two separate steps, learning the model
and selecting k test instances by thresholding their scores. In this way, model training is not
aware of the constraint of choosing k test instances as positive in the test phase. This paper
shows the importance of incorporating the knowledge of k into the learning process and in-
troduces a new approach, Transductive Top K (TTK), that seeks to minimize the hinge loss
over all training instances under the constraint that exactly k test instances are predicted as
positive. The paper presents two optimization methods for this challenging problem. Ex-
periments and analysis confirm the benefit of incoporating k in the learning process. In our
experimental evaluations, the performance of TTK matches or exceeds existing state-of-the-
art methods on 7 benchmark datasets for binary classification and 3 reserve design problem
instances.

5.1 Introduction

In the Transductive Precision@k problem, the training set and the unlabeled test set are given,

and the task is to predict exactly k test instances as positives. The precision of these selected

instances—the fraction of correct positive predictions—is the only measure of importance. Our

work is motivated by the problem of designing conservation reserves for an endangered species.

Suppose a geographical region is divided into equal-sized cells of land. The species is present

in positive cells and absent in negative cells. To protect the species, we seek to purchase some

cells (“a conservation reserve”), and we want as many of those as possible to be positive cells.

Suppose we have conducted a field survey of publicly-owned land to collect a training set of

cells. With a fixed budget sufficient to purchase k cells, we want to decide which k privately-

owned (and un-surveyed) cells to buy. In this paper, we assume that all cells have the same

price. This is an instance of the Transductive Precision@k problem. Other instances arise in

information retrieval and digital advertising.

58

The standard approach to this problem is to first train a classifier or ranker on the training

data and then threshold the predicted test scores to obtain the k top-ranked test instances. Any

model that outputs continuous scores (e.g., an SVM) can be employed in this two-step process.

Better results can often be obtained by bipartite ranking algorithms [16, 57, 70, 1, 55, 40, 36],

which seek to minimize a ranking loss. Recent work focuses even more tightly on the top-ranked

instances. The MPG algorithm [73] formulates the ranking problem as an adversarial game and

can optimize several ranking measures. The Accuracy At The Top (AATP) algorithm [11] seeks

to optimize the ranking quality for a specified top quantile of the training data. Maximizing

accuracy on the top quantile is intractable, so AATP optimizes a relaxation of the original ob-

jective. However, none of the algorithms above explicitly considers the constraint of choosing k

test instances in model training.

Unlike the ranking problems discussed so far, our problem is transductive, because we have

the unlabeled test examples available. There is a substantial body of research on transductive

classification [34, 62, 54, 41]. Most transductive classification algorithms are inspired by either

the large margin principle or the clustering principle. The goal of these algorithms is to develop

classifiers that will perform well on the entire test set. Some transductive classifiers [34, 41]

have a parameter to specify the desired ratio of positive predictions. However, such parameter is

mainly used for training a stable classifier, and the ratio not strongly enforced on the test set.

In this paper, we claim that the knowledge of k helps to learn a better model in terms of

the measure of top-k precision and that the trained model should be constrained to output a

selection of k test instances as positive. We call this constraint the k-constraint. The benefit of

incorporating k into the learning process can be understood in three ways. First, the k-constraint

greatly reduces the hypothesis space and thus reduces the structural risk of the trained model.

Second, the algorithm can take advantage of the knowledge of k to jointly optimize the scoring

model and the score threshold with respect to the k-constraint. As a comparison, a two-step

method trains a ranker that is optimal by some standard, but the ranker together with the threshold

may not be optimal for the selection task. Third, the selection of k test points is directly obtained

through model training, instead of learning a general classifier or ranker as an intermediate step.

Vapnik’s principle [71] dictates that we should not solve a more difficult problem on the way to

solving the problem of interest.

In this paper, we jointly train the model and determine the threshold to obtain exactly k test

instances as positive. We seek a decision boundary that predicts exactly k positives and has

high precision on the training data. The paper proceeds as follows. We start by identifying a

59

deterministic relation between the precision@k measure and the accuracy of any classifier that

satisfies the k-constraint. This suggests that the learning objective should maximize classifier

accuracy subject to the k-constraint. We adopt the space of linear decision boundaries and in-

troduce an algorithm we call Transductive optimization of Top k precision (TTK). In the TTK

optimization problem, the objective is to minimize the hinge loss on the training set subject to

the k-constraint. This optimization problem is very challenging since it is highly non-convex.

We first formulate this problem into an equivalent Mixed Integer Programming (MIP) problem

and solve it with an off-the-shelf MIP solver. This method works for small problems. To solve

larger problems, we also design a feasible direction algorithm, which we find experimentally to

converge very rapidly. Finally, our theoretical analysis of the transductive precision@k problem

shows that one should train different scoring functions for different values of k. As a byproduct

of the work, We also find a problem in the optimization algorithm used in AATP, which solves a

problem similar to ours.

In the experiment section, we first present a small synthetic dataset to show how the TTK

algorithm improves the SVM decision boundary. Then, we show that our feasible direction

method can find solutions nearly optimal as global optimal solutions. In the third part, we

compare the TTK algorithm with five other algorithms on ten datasets. The results show that

the TTK algorithm matches or exceeds the performance of these state-of-the-art algorithms on

almost all of these datasets.

5.2 The TTK model

Let the distribution of the data be D with support in X × Y . In this work, we assume X = Rd

and only consider the binary classification problem with Y = {−1, 1}. By sampling from D
independently, a training set (x,y) = (xi, yi)ni=1 and a test set (x̂, ŷ) = (x̂j , ŷj)mj=1 are obtained,

but the labeling ŷ of the test set is unknown. The problem is to train a classifier and maximize

the precision at k on the test set. The hypothesis space is H ⊂ YX (functions mapping from X
to Y). The hypothesis h ∈ H is evaluated by the measure precision@k.

When we seek the best classifier fromH for selecting k instances from the test set x̂, we only

consider classifiers satisfying the k-constraint, that is, these classifiers must be in the hypothesis

space Hk(x̂) = {h ∈ H|
∑m

j=1 I[h(x̂j) = 1] = k}, where I[·] is 1 if its argument is true and 0

otherwise. All classifiers not predicting k positives on the test set are excluded from Hk. Note

that any two-step method essentially reaches a classifier in Hk(x̂) by setting a threshold in the

60

second step to select k test instances. With these methods, the model optimized at the first step

may be optimal in the original task, however, the classifier obtained by thresholding is often not

optimal withinHk.

To maximize the precision of h ∈ Hk(x̂) on the test set, we essentially need to maximize

the classification accuracy of h. This can be seen by the following relation. Let m− be the

number of negative test instances, and let mtp, mfp and mtn denote the number of true positives,

false positives, and true negatives (respectively) on the test set as determined by h. Then the

precision@k of h can be expressed as

ρ(h) =
1
k
mtp =

1
k

(mtn + k −m−) =
1
2k

(mtp +mtn + k −m−). (5.1)

Since the number of negative test instances m− is unknown but fixed, there is a deterministic

relationship between the accuracy (mtp +mtn)/m and the precision@k on the test set. Hence,

increasing classification accuracy directly increases the precision. This motivates us to maximize

the accuracy of the classifier on the test set while respecting the k-constraint.

In this section, we develop a learning algorithm for linear classifiers and thus H = {h :
X 7→ Y, h(x;w, b) = sign(w>x + b)}. Our learning objective is to minimize the (regularized)

hinge loss on the training set, which is a convex upper bound of the zero-one loss. Together with

the k-constraint, the optimization problem is

min
w,b

1
2
‖w‖22 + C

n∑
i=1

[1− yi (w>xi + b)]+, (5.2)

s.t.

m∑
j=1

I[w>x̂j + b > 0] = k ,

where [·]+ = max(·, 0) calculates the hinge loss on each instance. Due to the piece-wise constant

function in the constraint, the problem is very hard to solve.

We relax the equality constraint to an inequality constraint and get the following optimization

61

problem.

min
w,b

1
2
‖w‖22 + C

n∑
i=1

[1− yi (w>xi + b)]+, (5.3)

s.t.
m∑
j=1

I[w>x̂j + b > 0] ≤ k .

This relaxation generally does not change the solution to the optimization problem. If we neglect

the constraint, then the solution that minimizes the objective will be an SVM. In our applications,

there are typically significantly more than k positive test points, so the SVM will usually predict

more than k positives. In that case, the inequality constraint will be active, and the relaxed

optimization problem will give the same solution as the original problem 1.

Even with the relaxed constraint, the problem is still hard, because the feasible region is

non-convex. We first express the problem as a Mixed Integer Program (MIP). Let G be a large

constant and η be a binary vector of length m. Then we can write the optimization problem as

min
w,b,η

1
2
‖w‖22 + C

n∑
i=1

[1− yi (w>xi + b)]+, (5.4)

s.t. w>x̂j + b ≤ ηjG, j = 1, . . . ,m
m∑
j=1

ηj = k

ηj ∈ {0, 1}, j = 1, . . . ,m

Theorem 5.2.1 Optimization problems (5.3) and (5.4) are equivalent.

Proof 5.2.2 Since the two problems have the same objective that involves (w, b) only, we just

need to show that the two constraint sets of the two problems are equivalent in terms of (w, b).

Suppose (w1, b1) is a solution of (5.3), then at most k instances have positive scores. Let η1 be

a binary vector with length m. Set η1
j = 1 if instance j has positive score, and set other entries

1In the extreme case that many data points are nearly identical, the original problem may not have a solution while
the relaxed problem always has one.

62

of η1 to get
∑

j η
1
j = k. Then (w1, b1, η1) is a solution of (5.4). If (w2, b2, η2) is a solution of

(5.4), then at most k test instances get positive scores, and then (w2, b2) is a solution of (5.3). �

For this MIP, a globally optimal solution can be found for small problem instances via the

branch-and-bound method with an off-the-shelf package. We used Gurobi[53].

For large problem instances, finding the global optimum of the MIP is impractical. We

propose to employ a feasible direction algorithm [7], which is an iterative algorithm designed

for constrained optimization. In each iteration, it first finds a descending direction in the feasible

direction cone and then calculates a step size to make a descending step that leads to an improved

feasible solution. The feasible direction algorithm fits this problem well. Because the constraint

is a polyhedron, a step in any direction within the feasible direction cone will generate a feasible

solution provided that the step length is sufficiently small. Since our objective is convex but the

constraint is highly non-convex, we want to avoid making descending steps along the constraint

boundary in order to avoid local minima.

In each iteration, we first need to find a descending direction. The subgradient (∇w,∇b) of

the objective with respect to (w, b) is calculated as follows. Let ξi = 1 − yi (w>xi + b) be the

hinge loss on instance i. Then

∇w = w − C
∑
i:ξi>0

yixi , ∇b = −C
∑
i:ξi>0

yi. (5.5)

We need to project the negative subgradient (−∇w,−∇b) to a feasible direction to get a feasible

descending direction. Let L, E, and R be the sets of test instances predicted to be positive,

predicted to be exactly on the decision boundary, and predicted to be negative:

L = {j : w>x̂j + b > 0},

E = {j : w>x̂j + b = 0},

R = {j : w>x̂j + b < 0}.

With the constraint in (5.3), there can be at most k instances in L.

When (w, b) changes in a descending direction, no instance can move directly from L to R

or fromR to L without going though setE due to the continuity of its score. A feasible direction

only allows (w, b) to moves no more than k− |L| from E to L. Therefore, the feasible direction

63

cone is

F =

(dw, db) :
∑
j∈E
I[x̂>j dw + db > 0] + |L| ≤ k

 . (5.6)

To avoid that the descending direction moves exessive instances from E to L, we project the

direction into the null space of a set B ⊆ E of test instances, then the instances in B will stay in

E. We also need to guarantee that no more than k − |L| instances in E \B moves from E to L.

Now the problem is how to find the set B.

We first sort the instances in E in descending order according to the value of−x̂>j ∇w−∇b.
Let j′ : 1 ≤ j′ ≤ |E| re-index the instances in this order. To construct the set B, we start with

B = ∅ and the initial direction (dw, db) = −(∇w,∇b). The starting index is j0 = 1 if |L| = k,

and j0 = 2 if |L| < k. Then with index j′ starting from j0 and increasing, we consecutively put

instance j′ into B and project (dw, db) into the null space of {(x̂j◦ , 1) : j◦ ∈ B}. We stop at

j′ = j1 when the direction (dw, db) decreases the scores of all the remaining instances in E. The

final projected direction is denoted by (d?w, d
?
b). The direction (d?w, d

?
b) has non-positive inner

product with all instances with indices from j′ = j0 to j′ = |E|, so these instances will not

move into the set L when (w, b) moves in that direction. Only when |L| < k, is the first instance

allowed to move from E to L. It is easy to check that the final projected direction (d?w, d
?
b) is in

the feasible cone F and that it is a descending direction. This subgradient projection algorithm

is summarized in Algorithm 1.

In this design, we have the following considerations. When |L| < k, the instance in E that

has the largest inner product with the negative subgradient is allowed to enter set L. We allow at

most one instance to move from E to L to reduce the chance that (w, b) hits the boundary. In the

projecting iterations, instances with large inner products are selected first to reduce the number

of projections.

Once a descending direction is chosen, we perform a line search to determine the step size.

We first find the maximum step size α that guarantees the feasibility of the descending step. That

is, no points in R will cross the decision boundary and enter L with the step length α.

α = min
j∈R : x̂>j d

?
w+db>0

−(x̂>j w + b)

x̂>j d
?
w + db

. (5.7)

Then we do a line search in [0, 0.5α] to find the best step length α?. Note that the objective

64

Algorithm 1 Find a descending feasible direction
Input: subgradient (∇w,∇b), instance set {x̂j : j ∈ E}, size |L|, k
Output: descending feasible direction (d?w, d

?
b)

Sort instances in E in descending order according to −x̂>j ∇w −∇b
Initialize (dw, db) = −(∇w,∇b), B = ∅
j0 = min(k − |L|, 1) + 1
for j′ = j0 to |E| do

if ∃j′′ : j′ ≤ j′′ ≤ |E|, x̂>j′′dw + db > 0 then
B = B ∪ {j′}
project (dw, db) into the null space of (x̂B,1)

else
break

end if
end for
d?w = dw, d?b = db

function is a convex piece-wise quadratic function, so we only need to check these elbow points

plus a minimum between two elbow points to find the best step length. We omit the details. The

shrinkage 0.5 of α reduces the chance of (w, b) hitting the boundary.

We initialize w by training a standard linear SVM (although any linear model can be used)

and then initialize b to satisfy the k-positive constraint. This gives us a pair (w, b) that is a

feasible solution to (5.3). Then (w, b) is updated in each iteration according to (w, b) := (w, b)+
α?(d?w, d

?
b) until convergence.

We set the maximum number of iterations, T , to 500; the algorithm typically requires only

200-300 iterations to converge. In each iteration, the two most expensive calculations are com-

puting the subgradient and projecting the negative subgradient. The first calculation requires

O(nd) operations, and the second one takes at most O(ud2) operations, where u is the largest

size of E. The overall running time is the time of training an initial model plusO(T (nd+ud2)).

Though the problem is highly non-convex, the proposed projected subgradient method is

very effective in practice, which is indicated by the comparison between solutions obtained by

this method and optimal solutions obtained by Gurobi in the experiment section.

The AATP algorithm [11] faces an optimization problem similar to (5.3) and uses a different

relaxation to find an appoximate solution. Here we show that their relaxation is very loose. The

AATP objective is equivalent to ours, and the difference is that the constraint is posed on the

training set. Their constraint is that the top q quantile of training instances must receive positive

65

scores and all others, negative scores. The AATP authors assume that the optimal decision

boundary must go though a single training instance, so their relaxation of the optimization

problem is constrained to require one instance to be on the decision boundary. However, their

assumption is incorrect, since the optimal solution would put multiple instances on the boundary.

So their relaxation is very loose, and their solutions classify much more than quantile q of the

instances as positive. Our analysis is verified by the experiment results, which will be shown in

the experiment section.

5.3 Analysis

Before presenting experiments, we first argue that different values of k require us, in general, to

train different models. We work with the population distribution D instead of with samples, and

we assume linear models. Suppose the distributions of positive instances and negative instances

have probability measures µ+ and µ− defined on Rd. The total distribution is a mixture of the

two distributions, and it has measure µ = λµ+ +(1−λ)µ− with λ ∈ (0, 1). The classifier (w, b)
defines a positive region Rw,b = {x ∈ Rd, w>x+ b > 0}. Assume µ+(Rw,b) and µ−(Rw,b) are

both differentiable with respect to (w, b). If we consider classifiers that classify fraction q of the

instances as positive, then µ(Rw,b) = q. The precision of the classifier will be λµ+(Rw,b) / q.

The optimal classifier is therefore

(w?, b?) = arg max
(w,b)

λµ+(Rw,b) (5.8)

s.t. λµ+(Rw,b) + (1− λ)µ−(Rw,b) = q.

If we change q, we might hope that we do not need to modify w? but instead can just change

b?. However, this is unlikely to work.

Theorem 5.3.1 If (w?, b1) and (w?, b2) are two optimal solutions for (5.8) with two different

quantile values q1 and q2, then ∃s1, t1, s2, t2,∈ R,

s1
∂µ+(Rw?,b1)
∂(w?, b1)

= t1
∂µ−(Rw?,b1)
∂(w?, b1)

, (5.9)

s2
∂µ+(Rw?,b2)
∂(w?, b2)

= t2
∂µ−(Rw?,b2)
∂(w?, b2)

. (5.10)

The proof follows directly from the KKT conditions. Note that (5.9) and (5.10) are two vector

66

l

l

l

l

l

l

ll

ll

l

l

l

l

l

l

l

l l

l

l

l

l

l

l

l

l
l

l

l

l

l

l

l

l

l

SVM d. b.

translated d. b.

SVM margin

TTK d. b.

Figure 5.1: TTK improves the SVM decision boundary (“d. b.”). Square/circle: positive/negative
instance, colored/gray: training/testing instance. k = 4.

equations. When b1 is changed into be b2, the vectors of partial derivatives, ∂µ+(Rw?,b1)/∂(w?, b1)
and ∂µ−(Rw?,b1)/∂(w?, b1) must change their directions in the same way to maintain optimal-

ity. This will only be possible for very special choices of µ+ and µ−. This suggests that (w?, b?)
should be optimized jointly to achieve each target quantile value q.

5.4 Experimental Tests

5.4.1 An illustrative synthetic dataset

We begin with a simple synthetic example to provide some intuition for how the TTK algorithm

improves the SVM decision boundary, see Figure 5.1. The dataset consists of 40 training and 40

test instances. The training and testing sets each contain 22 positive and 18 negative instances.

Our goal is to select k = 4 positive test instances. The bold line is the decision boundary of

the SVM. It is an optimal linear classifier both for overall accuracy and for precision@k for

k = 24. However, when we threshold the SVM score to select 4 test instances, this translates

the decision boundary to the dashed line, which gives very poor precision of 0.5. This dashed

line is the starting point of the TTK algorithm. After making feasible direction descent steps,

TTK finds the solution shown by the dot-dash-dot line. The k test instances selected by this

boundary are all positive. Notice that if k = 24, then the SVM decision boundary gives the

optimal solution. This provides additional intuition for why the TTK algorithm should be rerun

whenever we change the desired value of k.

67

Table 5.1: Training and test loss attained by different methods. The symbol “+badj” indicates
that the bias term is adjusted to satisfy the k-constraint

dataset value SVM +badj AATP +badj TTKMIP TTKFD

diabetes
train obj. 311 ± 25 265 ± 23 224 ± 7 226 ± 7
test loss 323 ± 20 273 ± 24 235 ± 6 235 ± 5

ionosphere
train obj. 325 ± 46 474 ± 88 127 ± 4 136 ± 4
test loss 338 ± 44 488 ± 85 146 ± 5 150 ± 7

sonar
train obj. 167 ± 52 166 ± 41 20 ± 8 30 ± 10
test loss 216 ± 22 213 ± 30 103 ± 19 105 ± 24

Table 5.2: AATP and TTK solution statistics: Number of instances on the decision boundary (”#
at d.b.”) and fraction of instances predicted as positive (”fraction +”)

dataset, dimension, ratio of positives
AATP TTKMIP

at d.b. fraction + # at d.b. fraction +
diabetes, d = 8, n+/n = 0.35 1 0.12 5 0.05

ionosphere, d = 33, n+/n = 0.64 1 0.53 21 0.05
sonar, d = 60, n+/n = 0.47 1 0.46 40 0.05

5.4.2 Effectiveness of Optimization

One way to compare different algorithms is to see how well they optimize the training and test

surrogate loss functions. We trained standard SVM, AATP, and TTK on three UCI [42] datasets:

diabetes, ionosphere and sonar. The proposed TTK objective is solved by the MIP solver and

the feasible direction method (denoted by TTKMIP and TTKFD). We set k to select 5% of

the test instances. For the SVM and AATP methods, we fit them to the training data and then

obtain a top-k prediction by adjusting the intercept term b. We compare the regularized hinge

loss on the training set and the hinge loss on the test set of each model after adjusting b, since

the model with b adjusted is the true classifier used in the task. The hyper-parameter C is set

to 1 for all methods. The results in Table 5.1 show that TTK with either solver obtains much

lower losses than the competing methods. The small difference between the third (MIP) and the

fourth (feasible direction) columns indicates that the feasible direction method finds near-optimal

solutions.

The results also show that the AATP method does not minimize the objective very well.

Due to its loose relaxation of the objective, the original AATP solution often predicts many more

positives than the target quantile of 5% of the test instances. This requires to change the intercept

68

Table 5.3: Mean Precision (± 1 standard deviation) of classifiers when 5% of testing instances
are predicted as positives.

dataset SVM TSVM SVMperf TopPush AATP TTKMIP TTKFD

diabetes .86±.08 .86±.09 .69±.20 .80±.10 .68±.28 .85±.10 .86±.08
ionosphere .76±.13 .80±.17 .82±.22 .71±.16 1.00±.00 .97±.05 .84±.15

sonar .96±.08 .98±.06 .85±.16 .88±.13 .90±.11 .96±.08 1.00±.00
german-numer .70±.08 .72±.08 .56±.17 .63±.12 NA. NA. .71±.06

splice 1.00±.00 1.00±.00 1.00±.01 1.00±.00 NA. NA. 1.00±.00
spambase .97±.02 .97±.02 .98±.01 .96±.02 NA. NA. .98±.01

svmguide3 .86±.07 .85±.07 .91±.04 .83±.07 NA. NA. .87±.06
NY16 .64±.08 .64±.09 .65±.12 .62±.10 .62±.08 .68±.07 .70±.09
NY18 .44±.11 .45±.10 .36±.07 .43±.13 .46±.12 .46±.08 .47±.12
NY88 .40±.08 .33±.12 .37±.15 .34±.08 .31±.09 .40±.09 .42±.07

TTKMIP w/t/l 1/5/0 2/4/0 2/4/0 1/5/0 2/4/0
TTKFD w/t/l 3/7/0 4/6/0 3/6/1 7/3/0 4/1/1

term b to satisfy the k-constraint.

To further understand and compare the behavior of AATP and TTK, we performed a non-

transductive experiment (by making the training and test sets identical). We measured the num-

ber of training instances that fall on the decision boundary and the fraction of training instances

classified as positive (see Table 5.2). The optimal solution given by the MIP solver always puts

multiple instances on the decision boundary, whereas the AATP method always puts a single in-

stance on the boundary. The MIP always exactly achieves the desired k, whereas AATP always

classifies many more than k instances as positive. This shows that the AATP assumption that the

decision boundary should pass through exactly one training instance is wrong.

5.4.3 Precision evaluation on real-world datasets

In this subsection, we evaluate our TTK method on ten datasets. Seven datasets, {diabetes,

ionosphere, sonar, spambase, splice} from UCI repository and {german-numer, svmguide3}
from the LIBSVM web site, are widely studied binary classification datasets. The other three

datasets, NY16, NY18 and NY88, are three species distribution datasets extracted from a large

eBird dataset [65]; each of them has 634 instances and 38 features. The eBird dataset contains a

large number of checklists of bird counts reported from birders around the world. Each checklist

is associated with the position of the observation and a set of 38 features describing the habitat.

We chose a subset of the data consisting of checklists of three species from New York state

69

in June of 2012. To correct for spatial sampling bias, we formed spatial cells by imposing a

grid over New York and combining all checklists reported within each grid cell. This gives 634

cells (instances). Each instance is labeled with whether a species was present or absent in the

corresponding cell.

We compare the proposed TTK algorithm with 5 other algorithms. The SVM algorithm [59]

is the baseline. The Transductive SVM (TSVM) [34] compared here uses the UniverSVM [63]

implementation, which optimizes its objective with the convex-concave procedure. SVMperf

[35] can optimize multiple ranking measures and is parameterized here to optimize precision@k.

Two algorithms, Accuracy At The Top (AATP) [11] and TopPush [40], are specially designed

for top precision optimization. Each algorithm is run 10 times on 10 random splits of each

dataset. Each of these algorithms requires setting the regularization parameter C. This was done

by performing five 2-fold internal cross-validation runs within each training set and selecting the

value of C from the set {0.01, 0.1, 1, 10, 100} that maximized precision on the top 5% of the

(cross-validation) test points. With the chosen value of C, the algorithm was then run on the full

training set (and unlabeled test set) and the precision on the top 5% was measured. The achieved

precision values were then averaged across the 10 independent runs.

Table 5.3 shows the performance of the algorithms. For datasets with more than 1000 in-

stances, the AATP and TTKMIP algorithms do not finish within a practical amount of time, so

results are not reported for these algorithms on those datasets. This is indicated in the table by

“NA”. The results for each pair of algorithms are compared by a paired-differences t-test at the

p < 0.05 significance level. If one algorithm is not significantly worse than any of the other

algorithms, then it is regarded as one the best and its performance is shown in bold face. Wins,

ties and losses of of TTKMIP and TTKFD with respect to all other algorithms are reported in the

last two rows of Table 5.3.

On each of the six small datasets, the performance of TTKMIP matches or exceeds that of the

other algorithms. The TTKFD method does almost as well—it is among the best algorithms on 8

of the 10 datasets. It loses once to SVMperf (on svmguide3) and once to AATP (on ionosphere).

None of the other methods performs as well. By comparing TTKFD with SVM, we see that

the performance is improved on almost all datasets, so the TTKFD method can be viewed as a

safe treatment of the SVM solution. As expected, the transductive SVM does not gain much

advantage from the availability of the testing instances, because it seeks to optimize accuracy

rather than precision@k. The TopPush algorithm is good at optimizing the precision of the very

top instance. But when more positive instances are needed, the TopPush algorithm does not

70

perform as well as TTK.

5.5 Summary

This paper introduced and studied the transductive precision@k problem, which is to train a

model on a labeled training set and an unlabeled test set and then select a fixed number k of

positive instances from the testing set. Most existing methods first train a scoring function and

then adjust a threshold to select the top k test instances. We show that by learning the scoring

function and the threshold together, we are able to achieve better results.

We presented the TTK method. The TTK objective is the same as the SVM objective, but

TTK imposes the constraint that the learned model must select exactly k positive instances from

the testing set. This constraint guarantees that the final classifier is optimized for its target task.

The optimization problem is very challenging. We formulated it as a mixed integer program

and solved it exactly via an MIP solver. We also designed a feasible direction algorithm for

large problems. We compared both TTK algorithms to several state-of-the-art methods on ten

datasets. The results indicate that the performance of the TTK methods matches or exceeds all

of the other algorithms on most of these datasets.

Our analysis and experimental results show that the TTK objective is a step in the right

direction. We believe that the performance can be further improved if we can minimize a tighter

(possibly non-convex) bound on the zero-one loss.

71

Chapter 6: Conclusion

6.1 Conclusion

This thesis has studied various machine learning techniques to solve three representative prob-

lems in computational sustainability.

The first and second manuscripts have studied the superset label learning problem for detect-

ing bird species from birdsong recordings. The first manuscript has proposed the new learning

model, LSB-CMM, for the superset learning problem. Experiment results show that the pro-

posed model performs well in the task of detecting bird species. The learnability analysis in

the second manuscript can be applied directly to the problem of detecting bird species. We can

check the bird song classification problem against the Conditional Independence Assumption

(CIA) 3.4.4 and the No Co-occurring Label Condition (NCLC) 3.4.5. The CIA assumes that

bird syllables are independent of each other given their species. This assumption is debatable:

bird calls of different species tend to be independent of each other while bird calls of the same

species may be correlated. The NCLC is satisfied in general, because any two species do not

always co-occur in all possible short recordings. We can say that the problem is nearly learn-

able, and then the number of samples needed to train a good classifier would not be much more

than the sample complexity given by 3.21. This analysis also points to a research direction of

exploiting possible dependence among bird syllables to improve the classification performance.

The third manuscript has studied the inference problem of the Collective Graphical Model,

which is used to model bird migration at the population level. This work approximates the

CGM distribution of bird counts by a multivariate Gaussian distribution and then approximates

CGM inference by inference with the Gaussian distribution. This work has also shown that

the Gaussian approximation is the correct approximate distribution and that the approximate

inference is computationally efficient. The proposed method of approximate inference solves

the key inference problem in CGM modeling of bird migration. In this modeling problem, a

Markov chain is assumed to be the migration model of individual birds, and the goal is to recover

the parameters of the Markov chain by maximizing the likelihood of observed counts. With the

counts of transitions among states introduced as hidden variables, the EM algorithm is employed

72

to solve the MLE problem. While the M step is easy to solve, the E step requires inferring the

mean of the transition counts. The proposed method approximately and efficiently solves this

inference problem, though it needs slight adaption to handle Poisson noise in the observations.

Synthetic experiments show that the EM algorithm can successfully recover the parameters of

the individual migration model, which indirectly indicates that the mean of the transition counts

inferred by the proposed method is accurate. The proposed method has also been applied to real

bird migration data.

The fourth manuscript has proposed the formulation of transductive top k precision to model

a reserve design problem. In this formulation, the input consists of a training set, a test set, and a

number k, and the goal is to select k test instances and maximize the precision of the selection.

Unlike traditional two-step methods, which first predict scores of the test instances with a trained

model and then select the top k instances with a threshold, this new formulation aims to directly

optimize the selection of k instances. This work then proposes the learning method, Transductive

Top K (TTK), to optimize the selection of k test instances. By minimizing the hinge loss over

the training set, TTK trains a classifier over a hypothesis space in which every classifier predicts

exactly k instances as positive. The k positives predicted by the trained classifier form the final

selection. In a typical reserve design problem, the training set consists of land parcels labeled

with the presence/absence of the species, the test set consists of land parcels in the planning area,

and the constraint is that at most k land parcels in the planning area can be purchased. All land

parcels are described by feature vectors in the same way. The formulation of transductive top

k precision fits this reserve design problem well, and the proposed learning method naturally

applies. Experiment results show that the proposed learning method matches or improves the

selection precision of traditional two-step learning methods on several tasks.

The learning techniques studied for the three problems can be generalized to other settings.

Besides the superset label learning problem studied in this thesis, there are other forms of weak

supervision in ecological data and the corresponding weakly supervised learning problems. The

learning model and the learnability analysis in this thesis can be generalized to such problems.

With the same principle of distribution approximation in this thesis, Gaussian distribution can

be used to approximate the distribution of species counts in other modeling problems. The

formulation of direct optimization of the selection of land parcels can be extended to problems

with more complex selection constraints and multiple species. Therefore, the thesis will have

contribution beyond the solutions of these three specific problems if the conducted research

provides heuristics for solving similar problems in computational sustainability.

73

6.2 Future Work

Expert knowledge of ecologists has played important roles in the study of the three problems in

this thesis. As end users of learning systems, ecologists generally provide their expert knowledge

in three ways: providing data, giving advice for model definition, and verifying the outputs of

learned models. In the bird song classification problem, the supervision information is the bird

species labels given by experts. In the bird migration modeling, bird observations are from

experts in the abstract meaning, and the model structure is defined with experts’ insight. In the

reserve design problem, the training labels are labeled by experts.

Ecologists need to interactively incorporate their expert knowledge into the learning system

and improve its performance. With the traditional learning systems, the interactions between

end users and learning systems are mediated by machine learning practitioners [4]. The high

communication cost between end users and practitioners prevents efficient updates of learning

models. Interactive machine learning [4] studies how to reduce the dependency on practitioners

in the interactive learning process. Usually, end users are not familiar with machine learning

techniques, so the objective is how to construct an interactive learning system that can actively

learn from the expert knowledge as well as the data.

An efficient representation of expert knowledge is critical for the success of interactive learn-

ing systems applied in computational sustainability. Supervision information represented by data

is a very inefficient representation of expert knowledge, because it is very costly for end users,

especially busy scientists, to manually check and label data. Yu [76] and Stumpf et al. [64] pro-

pose to incorporate rich feedback, which is more expressive than labels, to the learning system.

Stumpf et al. [64] study three forms, rule-based, keyword-based, and similarity-based, of rich

feedback. There are other forms of rich feedback, such as qualitative monotonicities [2] and

polyhedral knowledge sets [27]. With some representations, the end user still needs to inten-

sively check the data to provide the knowledge.

Inspired by Morik et al. [47], this section proposes to represent expert knowledge with a

knowledge base, and then use an Interactive Learning System Equipped with the Knowledge

Base (ILSEKB) to learn from the expert knowledge and the data. Through the interactive learn-

ing process, the system needs to elicit knowledge from experts and put it into the knowledge

base with appropriate representation. Then the ILSEKB needs to learn from both the data and

the knowledge. From the perspective of learning from data, the system needs to use statistical

random variables to model the distribution of the data and use the expert knowledge to restrict

74

the relations among random variables. From the perspective of knowledge inference, the system

needs to extract knowledge from the data and then do inference with the knowledge from both

sources. After learning, the learning system needs to visualize its outputs in testing.

There are three advantages of ILSEKB compared to other interactive learning systems in

applications of computational sustainability. First, it is relatively easy for experts to express

their knowledge by rules and put it in the knowledge base. For example, ecologists can give

a rule like “there are no Eastern Wood Peewee in December in Canada”. Second, ILSEKB

can efficiently elicit knowledge from experts through interactions. Through interactions with

the learning system, the experts progressively provide knowledge to ILSEKB after they identify

problems in its outputs. Ideally, the experts can efficiently express their knowledge, and ILSEKB

can learn the knowledge effectively. Third, the knowledge base partially opens the black box

of the learning process, therefore, the end user of ILSEKB can have better understanding and

control of the learning system. Besides learning from the knowledge base, the learning system

can also put the knowledge extracted from the data into the knowledge base, so the user of the

learning system can scrutinize the system from both its outputs and extracted knowledge.

There are three issues to be considered to build an ILSEKB. The first issue is how to corre-

spond the entities in the knowledge base to data items in the data. The learning system needs

to find reference relations between entities in the knowledge base and data items to learn. One

naive solution is to construct a vocabulary for all data items and restrict experts to use the fixed

vocabulary to express their knowledge. The second issue is how to reconcile expert knowledge

with the data. There might be conflicts or inconsistencies between the expert knowledge and

the data. It is a good practice that the learning system gives feedback about such conflicts and

inconsistencies. For example, the system can tell the expert that a rule is inconsistent with 5%

of the data. Also, the learning system needs to resolve the conflict by either reducing the con-

fidence of the knowledge or making some corrective treatment of the data. The third issue is

how to construct the learning system from the data and the expert knowledge. The learning sys-

tem invented by Morik et al. [47] extracts knowledge from the data and then infers actions in

the knowledge space. The learning system can also use expert knowledge to edit the data, for

example, re-weighting data points, and restricting the hypothesis space [76].

In the longer term, the ILSEKB can be a powerful learning framework if its knowledge base

can be filled with other means besides experts’ input. For example, different learning systems

for different learning tasks can share knowledge via the knowledge base, which is one form of

transfer learning [69]. The knowledge can also be accumulated in the knowledge base over many

75

tasks and over a very long term, which is the research topic of lifelong machine learning. In the

very ideal case, the knowledge base can also be updated with knowledge extracted from natural

language, for example, scientific articles. Such an ILSEKB will be a big step forward in artificial

intelligence.

76

Bibliography

[1] Shivani Agarwal. The Infinite Push: a New Support Vector Ranking Algorithm that Di-
rectly Optimizes Accuracy at the Absolute Top of the List. In Proceedings of the 2011
SIAM International Conference on Data Mining, pages 839–850, 2011.

[2] Eric E. Altendorf, Angelo C. Restificar, and Thomas G. Dietterich. Learning from Sparse
Data by Exploiting Monotonicity Constraints. In Proceedings of the 21st Conference on
Uncertainty in Artificial Intelligence, pages 18–26, 2005.

[3] Mohamed Aly. Survey on Multiclass Classification Methods. Technical Report, 2005.

[4] Saleema Amershi, Maya Cakmak, William Bradley Knox, and Todd Kulesza. Power to the
People: The Role of Humans in Interactive Machine Learning. AI Magazine, 35(4):105–
120, 2014.

[5] M. H. G. Anthony and N. Biggs. Computational Learning Theory. Cambridge University
Press, 1997.

[6] Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Synthesis. Island
Press, Washington, DC, 2005.

[7] Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty. Nonlinear Programming: Theory
and Algorithms. Wiley, 3rd edition, 2006.

[8] Shai Ben-David, Nicolò Cesa-Bianchi, David Haussler, and Philip M. Long. Characteriza-
tions of Learnability for Classes of {0, . . . , n}-valued Functions. Journal of Computer and
System Sciences, 50(1):74–86, 1995.

[9] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[10] Avrim Blum and Adam Kalai. A Note on Learning from Multiple-Instance Examples.
Machine Learning, 30(1):23–29, 1998.

[11] Stephen Boyd, Corinna Cortes, Mehryar Mohri, and Ana Radovanovic. Accuracy at the
Top. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in
Neural Information Processing Systems 25, pages 953–961. Curran Associates, Inc., 2012.

[12] T. Scott Brandes. Automated Sound Recording and Analysis Techniques for Bird Surveys
and Conservation. Bird Conservation International, 18(S1), 2008.

77

[13] Forrest Briggs, Xiaoli Z. Fern, and Raviv Raich. Rank-loss Support Instance Machines
for MIML Instance Annotation. In Proceedings of the 18th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 534–542, 2012.

[14] Forrest Briggs, Raviv Raich, and Xiaoli Z. Fern. Audio Classification of Bird Species: a
Statistical Manifold Approach. In Proceedings of the Ninth International Conference on
Data Mining, pages 51–60, 2009.

[15] Peter F. Brussard, J. Michael Reed, and C. Richard Tracy. Ecosystem Management: What
is it Really? Landscape and Urban Planning, 40(1-3):9–20, 1998.

[16] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton, and
Greg Hullender. Learning to Rank Using Gradient Descent. In Proceedings of the 22nd
International Conference on Machine Learning, pages 89 – 96, 2005.

[17] Sara Mc Carthy, Milind Tambe, Christopher Kiekintveld, Meredith L. Gore, and Alex Kil-
lion. Preventing Illegal Logging: Simultaneous Optimization of Resource Teams and Tac-
tics for Security. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
pages 3880–3886, 2016.

[18] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Machines.
ACM Transactions on Intelligent Systems and Technology, 2(3):1–27, 2011.

[19] Jon Conrad, Carla P. Gomes, Willem-Jan van Hoeve, Ashish Sabharwal, and Jordan F.
Suter. Wildlife Corridors as a Connected Subgraph Problem. Journal of Environmental
Economics and Management, 63:1–18, 2012.

[20] Timothee Cour, Ben Sapp, and Ben Taskar. Learning from Partial Labels. Journal of
Machine Learning Research, 12(May):1501–1536, 2011.

[21] Timothee Cour, Benjamin Sapp, Chris Jordan, and Ben Taskar. Learning From Ambigu-
ously Labeled Images. In Proceedings of the 2009 IEEE Conference on Computer Vision
and Pattern Recognition, pages 919–926, 2009.

[22] Amit Daniely, Sivan Sabato, Shai Ben-David, and Shai Shalev-Shwartz. Multiclass Learn-
ability and the ERM Principle. In Proceedings of the 24th Annual Conference on Learning
Theory, pages 207–232, 2011.

[23] A. P. Dawid and S. L. Lauritzen. Hyper Markov Laws in the Statistical Analysis of De-
composable Graphical Models. The Annals of Statistics, 21(3):1272–1317, 1993.

[24] Fei Fang, Thanh H. Nguyen, Rob Pickles, Wai Y. Lam, Gopalasamy R. Clements, Bo An,
Amandeep Singh, and Milind Tambe. Deploying PAWS to Combat Poaching: Game-
theoretic Patrolling in Areas with Complex Terrains (Demonstration). In Proceedings of
the Thirtieth AAAI Conference on Artificial Intelligence, pages 4355–4356, 2016.

78

[25] William Feller. An Introduction to Probability Theory and Its Applications, Vol. 2. Wiley,
1968.

[26] Daniel Fink, Wesley M. Hochachka, Benjamin Zuckerberg, David W. Winkler, Ben Shaby,
M. Arthur Munson, Giles Hooker, Mirek Riedewald, Daniel Sheldon, and Steve Kelling.
Spatiotemporal Exploratory Models for Broad-Scale Survey Data. Ecological Applica-
tions, 20(8):2131–2147, 2010.

[27] Glenn M. Fung, Olvi L. Mangasarian, and Jude W. Shavlik. Knowledge-Based Support
Vector Machine Classifiers. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances
in Neural Information Processing Systems 15, pages 537–544. MIT Press, 2003.

[28] Carla Gomes. Computational Sustainability: Computational Methods for a Sustainable
Environment, Economy, and Society. National Academy of Engineering, 39(4):5–13, 2009.

[29] Yves Grandvalet. Logistic Regression for Partial Labels. In Proceedings of the Ninth
International Conference on Information Processing and Management of Uncertainty in
Knowledge-Based Systems, pages 1935–1941, 2002.

[30] Robert G. Haight and Stephanie A. Snyder. Integer Programming Methods for Reserve
Selection and Design. In A. Moilanen, K. A. Wilson, and H. P. Possingham, editors, Spa-
tial Conservation Prioritization - Quantitative Methods and Computational Tools. Oxford
University Press, Oxford, 2009.

[31] Eyke Hüllermeier and Jürgen Beringer. Learning from Ambiguously Labeled Examples.
In Proceedings of the Sixth International Symposium on Intelligent Data Analysis, pages
168–179, 2005.

[32] Luo Jie and Francesco Orabona. Learning from Candidate Labeling Sets. In J. D. Lafferty,
C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in
Neural Information Processing Systems 23, pages 1504–1512. Curran Associates, Inc.,
2010.

[33] Rong Jin and Zoubin Ghahramani. Learning with Multiple Labels. In S. Becker, S. Thrun,
and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages
921–928. MIT Press, 2003.

[34] Thorsten Joachims. Transductive Inference for Text Classification Using Support Vector
Machines. In Proceedings of the 16th International Conference on Machine Learning,
pages 200–209, 1999.

[35] Thorsten Joachims. A Support Vector Method for Multivariate Performance Measures. In
Proceedings of the 22nd International Conference on Machine Learning, pages 377 – 384,
2005.

79

[36] Purushottam Kar, Harikrishna Narasimhan, and Prateek Jain. Surrogate Functions for Max-
imizing Precision at the Top. In Proceedings of the 32nd International Conference on
Machine Learning, pages 189–198, 2015.

[37] Maxim Larrivée, Kathleen L. Prudic, Kent McFarland, and Jeremy T. Kerr. eButter-
fly: a Citizen-Based Butterfly Database in the Biological Sciences. http://www.
e-butterfly.org, 2014.

[38] Steffen L. Lauritzen. Graphical models. Oxford University Press, 1996.

[39] Joona Lehtomäki and Atte Moilanen. Methods and Workflow for Spatial Conservation
Prioritization Using Zonation. Environmental Modelling & Software, 47(Sep):128–137,
2013.

[40] Nan Li, Rong Jin, and Zhi-Hua Zhou. Top Rank Optimization in Linear Time. In
Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 27, pages 1502–1510. Curran Asso-
ciates, Inc., 2014.

[41] Yu-Feng Li, Ivor W. Tsang, James T. Kwok, and Zhi-Hua Zhou. Convex and Scalable
Weakly Labeled SVMs. Journal of Machine Learning Research, 14(Jul):2151–2188, 2013.

[42] Moshe Lichman. UCI machine learning repository. http://archive.ics.uci.
edu/ml, 2013.

[43] Li-Ping Liu and Thomas G. Dietterich. A Conditional Multinomial Mixture Model for
Superset Label Learning. In F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger,
editors, Advances in Neural Information Processing Systems 25, pages 548–556. Curran
Associates, Inc., 2012.

[44] Po-Ling Loh and Martin J. Wainwright. Structure Estimation for Discrete Graphical
Models: Generalized Covariance Matrices and their Inverses. The Annals of Statistics,
41(6):3022–3049, 2013.

[45] Philip M. Long and Lei Tan. PAC Learning Axis-Aligned Rectangles with Respect to
Product Distributions from Multiple-Instance Examples. Machine Learning, 30(1):7–21,
1998.

[46] William K. Michener and James W. Brunt. Ecological Data: Design, Management and
Processing. Wiley-Blackwell, 2000.

[47] Katharina Morik, Peter Brockhausen, and Thorsten Joachims. Combining Statistical Learn-
ing with a Knowledge-Based Approach - a Case Study in Intensive Care Monitoring. In
Proceedings of the 16th International Conference on Machine Learning, pages 268–277,
1999.

http://www.e-butterfly.org
http://www.e-butterfly.org
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

80

[48] Indraneel Mukherjee and Robert E. Schapire. A Theory of Multiclass Boosting. Journal
of Machine Learning Research, 14(Feb):437–497, 2013.

[49] B. K. Natarajan. On Learning Sets and Functions. Machine Learning, 4(1):67–97, 1989.

[50] Lawrence Neal, Forrest Briggs, Raviv Raich, and Xiaoli Z.Fern. Time-Frequency Segmen-
tation of Bird Song in Noisy Acoustic Environments. In Proceedings of the 2011 IEEE
International Conference on Acoustics, Speech and Signal Processing, pages 2012–2015,
2011.

[51] Nam Nguyen and Rich Caruana. Classification with Partial Labels. In Proceedings of the
14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 551–559, 2008.

[52] Allan F. O’Connell, James D. Nichols, and K. Ullas Karanth. Camera Traps in Animal
Ecology: Methods and Analyses. Springer, 2010.

[53] Gurobi Optimization. Gurobi Optimizer Reference Manual. http://www.gurobi.
com, 2015.

[54] Dmitry Pechyony. Theory and Practice of Transductive Learning. PhD thesis, Department
of Computer Science, Technion-Israel Institute of Technology, 2008.

[55] Alain Rakotomamonjy. Sparse Support Vector Infinite Push. In Proceedings of the 29th
International Conference on Machine Learning, pages 1335–1342, 2012.

[56] Lu Ren, Lan Du, Lawrence Carin, and David Dunson. Logistic Stick-Breaking Process.
Journal of Machine Learning Research, 12(Jan):203–239, 2011.

[57] Cynthia Rudin. The P-Norm Push: A Simple Convex Ranking Algorithm That Concen-
trates at the Top of the List. Journal of Machine Learning Research, 10(Oct):2233–2271,
2009.

[58] Sivan Sabato and Naftali Tishby. Homogeneous Multi-Instance Learning with Arbitrary
Dependence. In Proceeding of the 22nd Annual Conference on Learning Theory, pages
93–104, 2009.

[59] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels : Support Vector
Machines, Regularization, Optimization, and Beyond. MIT Press, 2002.

[60] Daniel Sheldon and Thomas G. Dietterich. Collective Graphical Models. In J. Shawe-
Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 24, pages 1161–1169. Curran Associates, Inc.,
2011.

http://www.gurobi.com
http://www.gurobi.com

81

[61] Daniel Sheldon, Tao Sun, Akshat Kumar, and Thomas G. Dietterich. Approximate Infer-
ence in Collective Graphical Models. In Proceedings of The 30th International Conference
on Machine Learning, pages 1004–1012, 2013.

[62] Vikas Sindhwani and S. Sathiya Keerthi. Large Scale Semi-Supervised Linear SVMs. In
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 477–484, 2006.

[63] F. Sinz and M. Roffilli. UniverSVM. http://mloss.org/software/view/19/,
2012.

[64] Simone Stumpf, Vidya Rajaram, Lida Li, Weng-Keen Wong, Margaret Burnett, Thomas
Dietterich, Erin Sullivan, and Jonathan Herlocker. Interacting Meaningfully with Machine
Learning Systems: Three Experiments. International Journal of Human-Computer Studies,
67:639–662, 2009.

[65] Brian L. Sullivan, Christopher L. Wood, Marshall J. Iliff, Rick E. Bonney, and Daniel
Finkand Steve Kelling. eBird: a Citizen-based Bird Observation Network in the Biological
Sciences. Biological Conservation, 142:2282–2292, 2009.

[66] Rolf Sundberg. Some Results about Decomposable (or Markov-type) Models for Mul-
tidimensional Contingency Tables: Distribution of Marginals and Partitioning of Tests.
Scandinavian Journal of Statistics, 2(2):71–79, 1975.

[67] Majid Alkaee Taleghan, Thomas G. Dietterich, Mark Crowley, Kim Hall, and H. Jo Albers.
PAC Optimal MDP Planning for Ecosystem Management. Journal of Machine Learning
Research, 16(Dec):3877–3903, 2015.

[68] Yee Whye Teh. Dirichlet processes. In C. Sammut and G. I. Webb, editors, Encyclopedia
of Machine Learning, pages 280–287. Springer, 2010.

[69] Lisa Torrey and Jude Shavlik. Transfer Learning. In E. Soria, J. Martin, R. Magdalena,
M. Martinez, and A. Serrano, editors, Handbook of Research on Machine Learning Appli-
cations. IGI Global, 2009.

[70] Nicolas Usunier, David Buffoni, and Patrick Gallinari. Ranking with Ordered Weighted
Pairwise Classification. In Proceedings of the 26th International Conference on Machine
Learning, pages 1057–1064, 2009.

[71] Vladimir N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

[72] Martin J. Wainwright and Michael I. Jordan. Graphical Models, Exponential Families, and
Variational Inference. Foundations and Trends in Machine Learning, 1(1-2):1–305, 2008.

http://mloss.org/software/view/19/

82

[73] Hong Wang, Wei Xing, Kaiser Asif, and Brian Ziebart. Adversarial Prediction Games
for Multivariate Losses. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and
R. Garnett, editors, Advances in Neural Information Processing Systems 28, pages 2728–
2736. Curran Associates, Inc., 2015.

[74] Wei Wang and Zhi-Hua Zhou. Learnability of Multi-instance Multi-label Learning. Chi-
nese Science Bulletin, 57(19):2488–2491, 2012.

[75] Alexander Ypma and Tom Heskes. Novel Approximations for Inference in Nonlinear Dy-
namical Systems Using Expectation Propagation. Neurocomputing, 69(1-3):85–99, 2005.

[76] Ting Yu. Incorporating Prior Domain Knowledge into Inductive Machine Learning & Its
Implementation in Contemporary Capital Markets. PhD thesis, University of Technology
Sydney, 2007.

[77] Min-Ling Zhang. Disambiguation-free Partial Label Learning. In Proceedings of the 2014
SIAM International Conference on Data Mining, pages 37–45, 2014.

[78] Zhi-Hua Zhou and Min-Ling Zhang. Multi-Instance Multi-Label Learning with Applica-
tion to Scene Classification. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors, Advances
in Neural Information Processing Systems 19, pages 1609–1616. MIT Press, 2007.

[79] Zhi-Hua Zhou, Min-Ling Zhang, Sheng-Jun Huang, and Yu-Feng Li. Multi-instance Multi-
label Learning. Artificial Intelligence, 176(1):2291–2320, 2012.

[80] Xiaojin Zhu and Andrew B. Goldberg. Introduction to Semi-Supervised Learning. Morgan
& Claypool, 2009.

83

APPENDICES

84

Appendix A: Appendix for manuscript 1

A.1 Variational EM

The hidden variables in the model are y, z, and θ. For these hidden variables, we introduce the

variational distribution q(y, z, θ|φ̂, α̂), where φ̂ = {φ̂n}Nn=1 and α̂ = {α̂k}Kk=1 are the parame-

ters. Then we factorize q as

q(z, y, θ|φ̂, α̂) =
N∏
n=1

q(zn, yn|φ̂n)
K∏
k=1

q(θk|α̂k), (A.1)

where φ̂n is a K × L matrix and q(zn, yn|φ̂n) is a multinomial distribution in which p(zn =
k, yn = l) = φ̂nkl. This distribution is constrained by the candidate label set: if a label l /∈ Yn,

then φ̂nkl = 0 for any value of k. The distribution q(θk|α̂k) is a Dirichlet distribution with

parameter α̂k.

With Jensen’s inequality, the lower bound of the log likelihood is

LL ≥ E[log p(z, y, θ|x,w, α)]− E[log q(z, y, θ|φ̂, α̂)] + log(p(w|0,Σ))

=
N∑
n=1

E[log p(zn|xn,w)] +
K∑
k=1

E[log p(θk|α)] +
N∑
n=1

E[log p(yn|zn, θ)]

−
N∑
n=1

E[log q(yn, zn|φ̂n)]−
K∑
k=1

E[log q(θk|α̂k)] + log(p(w|0,Σ)), (A.2)

where E[·] is the expectation under the variational distribution q(z, y, θ|φ̂, α̂).

85

Expand the expectation in the first, second and third term.

E[log p(zn|xn,w)] =
K∑
k=1

L∑
l=1

φ̂nkl log(φnk), (A.3)

E[log p(yn|zn, θ)] =
K∑
k=1

L∑
l=1

φ̂nkl

∫
θk

Dir(θk; α̂k) log θkldθk, (A.4)

E[log p(θk|α)] ∝
∫
θk

Dir(θk; α̂k)
L∑
l=1

(α− 1) log θkldθk, (A.5)

where Dir(θk; α̂k) is the density at θk of the Dirichlet distribution with α̂k.

In the E step, this lower bound is maximized with respect to φ̂ and α̂. Each φ̂n can be

optimized separately. Adding all terms involving φ̂n (i.e. the first, third and the fourth terms),

we obtain

K∑
k=1

L∑
l=1

φ̂nkl log
(
φnk exp(Eq(θk|α̂k)[log(θkl)])

)
− φ̂nkl log(φ̂nkl), (A.6)

Maximizing the term (A.6) is equivalent to minimizing the KL divergence between φ̂n and

the term in the first logarithm function. With the constraint imposed by the candidate label set,

the updating formula for φ̂n is (A.7). The update of α̂k for each k follows the standard procedure

for variational inference in the exponential family and is shown in (A.8).

φ̂nkl ∝

{
φnk exp

(
Eq(θk|α̂k) [log(θkl)]

)
, if l ∈ Yn

0, if l /∈ Yn
(A.7)

α̂k = α+
N∑
n=1

φ̂nkl (A.8)

We calculate the expectation of log(θkl) via Monte Carlo sampling.

In the M step, the lower bound is maximized with respect to w. Only the first and the last

terms in the lower bound are related to w, and each wk, 1 ≤ k ≤ K − 1, can be maximized

separately. After some derivation, we obtain the optimization problem in Eq. (A.9), which is

similar to the problem of logistic regression. It is a concave maximization problem, so any

86

gradient based method, such as BFGS, can find the global optimum.

max
wk

− 1
2
wT
k Σ−1wk +

N∑
n=1

[
φ̂nk log(expit(wT

k xn)) + ψ̂nk log(1− expit(wT
k xn))

]
, (A.9)

where φ̂nk =
∑L

l=1 φ̂nkl and ψ̂nk =
∑K

j=k+1 φ̂nj .

A.2 Prediction

For a test instance xt, we predict the label with maximum posterior probability. The test instance

can be mapped to a topic, but there is no coding matrix θ from the EM solution. We use the

variational distribution p(θk|α̂k) as the prior of each θk and integrate out all θks. Given a test

sample xt, the prediction l that maximizes the probability p(yt = l|xt,w, α̂) can be calculated

as

p(yt = l|xt,w, α̂) =
K∑
k=1

∫
θk

p(yt = l, zt = k, θk|xt,w, α̂)dθk

=
K∑
k=1

p(zt = k|xt,w)
∫
θk

p(θk|α̂k)p(yt = l|θk)dθk

=
K∑
k=1

φtk
α̂kl∑
l α̂kl

, (A.10)

where φtk =
(

expit(wT
k xt)

∏k−1
i=1 (1− expit(wT

i xt))
)

.

87

Appendix B: Appendix for manuscript 3

B.1 Proof of Proposition 4.2.1

The usual way of writing the CGM distribution is to replace f(n; θ) in Eq. (4.3) by

f ′(n; θ) =

∏
C∈C,iC∈X |C| µC(iC)nC(iC)∏

S∈S,iS∈X |S|
(
µS(iS)nS(iS)

)ν(S)
(B.1)

We will show that f(n; θ) = f ′(n; θ) for any n such that h(n) > 0 by showing that both

descibe the probability of an ordered sample with sufficient statistics n. Indeed, suppose there

exists some ordered sample X = (x1, . . . ,xN) with sufficient statistics n. Then it is clear

from inspection of Eq. (4.3) and Eq. (B.1) that f(n; θ) =
∏N
m=1 p(x

m; θ) = f ′(n; θ) by the

junction tree reparameterization of p(x; θ) [72]. It only remains to show that such an X exists

whenever h(n) > 0. This is exactly what was shown by Sheldon et al. [60]: for junction

trees, the hard constraints of Eq. (4.4), which enforce local consistency on the integer count

variables, are equivalent to the global consistency property that there exists some ordered sample

X with sufficient statistics equal to n. (Since these are integer count variables, the proof is quite

different from the similar theorem that local consistency implies global consistency for marginal

distributions.) We briefly note two interesting corollaries to this argument. First, by the same

reasoning, any reparameterization of p(x; θ) that factors in the same way can be used to replace

f(n; θ) in the CGM distribution. Second, we can see that the base measure h(n) is exactly the

number of different ordered samples with sufficient statistics equal to n.

B.2 Proof of Theorem 4.3.1: Additional Details

Suppose {nN} is a sequence of random vectors that converge in distribution to n, and that nNA ,

nNB , and nNS are subvectors that satisfy

nNA ⊥⊥ nNB | nNS (B.2)

88

for all N . Let α, β, and γ be measurable sets in the appropriate spaces and define

z = Pr(nA ∈ α,nB ∈ β | nS ∈ γ)− (B.3)

Pr(nA ∈ α | nS ∈ γ) Pr(nB ∈ β | nS ∈ γ)

Also let zN be the same expression but with all instances of n replaced by nN and note that

zN = 0 for all N by the assumed conditional independence property of Eq. (B.2). Because the

sequence {nN} converges in distribution to n, we have convergence of each term in zN to the

corresponding term in z, which means that

z = lim
N→∞

zN = lim
N→∞

0 = 0,

so the conditional independence property of Eq. (B.2) also holds in the limit.

B.3 Proof of Theorem 4.3.3

We need to show IA can be recovered from ĨA+ with a linear function.

Suppose the last indicator variable in IA is i0A, which corresponds to the setting that all nodes

in A take value L. Let I′A be a set of indicators which contains all entries in IA but the last one

i0A. Then IA can be recovered from I′A by the constraint
∑

iA
IA(iA) = 1.

Now we only need to show that I′A can be recovered from IA+ linearly. We claim that there

exists an invertible matrix H such that H I′A = ĨA+ .

Showing the existence of H. Let ĨA+(iD) be the iD entry of ĨA+ , which is for configuration

iD of clique D,D ⊆ A.

ĨA+(iD) =
∑
iA\D

I′A(iD, iA\D) (B.4)

Since no nodes in D take value L by definition of ĨD, (iD, iA\D) cannot be the missing entry i0A
of I′A, and the equation is always valid.

Showing that H is square. For each D, there are (L − 1)|D| entries, and A has
(|A|
|D|
)

sub-

cliques with size |D|. So ĨA+ have overall L|A| − 1 entries, which is the same as I′A. So H is a

square matrix.

We view I′A and ĨA+ as matrices and each row is a indicator function of graph configurations.

89

Since no trivial linear combination of ĨA+ is a constant by the conclusion in Loh et al. [44], ĨA+

has linearly independent columns. Therefore, H must have full rank and I′A must have linearly

independent columns.

	Introduction
	Introduction
	Contribution
	Organization

	A Conditional Multinomial Mixture Model for Superset Label Learning
	Introduction
	The Logistic Stick Breaking Conditional Multinomial Model
	The Model
	Variational EM
	Prediction
	Complexity Analysis and Practical Issues

	Experiments
	A Toy Problems
	Controlled Experiments
	Real-World Problems

	Conclusions

	Learnability of the Superset Label Learning Problem
	Introduction
	Related Work
	Superset Label Learning Problem with Independent Instances (SLL-I)
	Small ambiguity degree condition
	A general condition for learnability of SLL-I

	Superset Label Learning Problem with Bagged Training Data (SLL-B)
	The general condition for learnability of SLL-B
	The no co-occurring label condition

	Conclusion and Future Work

	Gaussian Approximation of Collective Graphical Models
	Introduction
	Problem Statement and Notation
	Approximating CGM by the Normal Distribution
	Conditional Distributions
	Explicit Factored Density for Trees

	Inference with Noisy Observations
	Inferring Node Counts
	Complexity analysis

	Experimental Evaluation
	Concluding Remarks

	Transductive Optimization of Top k Precision
	Introduction
	The TTK model
	Analysis
	Experimental Tests
	An illustrative synthetic dataset
	Effectiveness of Optimization
	Precision evaluation on real-world datasets

	Summary

	Conclusion
	Conclusion
	Future Work

	Bibliography
	Appendices
	Appendix for manuscript 1
	Appendix for manuscript 3

