Bird Part Localization Using Exemplar-Based Models with Enforced Pose and Subcategory Consistency

Jiongxin Liu and Peter N. Belhumeur
\{liujx09, belhumeur\}@cs.columbia.edu
Columbia University

Problem

The goal of our work is to localize the parts automatically and accurately for fine-grained categories. We evaluate our method on bird images in the CUB-200-2011 [1] dataset.

Approach

Does $X_{k, t}$ match the image $I ? \Longleftrightarrow P\left(X_{k, t} \mid I\right)=$?

$$
\begin{equation*}
P\left(X_{k, t} \mid I\right)=P\left(X_{k, t} \mid D_{p}\right)^{\alpha} P\left(X_{k, t} \mid D_{s}\right)^{1-\alpha} \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
P\left(X_{k, t} \mid D_{p}\right)=\mathrm{G}_{\text {avg }}\left\{P\left(x_{k, t}^{i} \mid d_{p}^{i}\left[c_{k}^{i}, s_{k, t}^{i}\right]\right)\right\} \tag{3}
\end{equation*}
$$

$P\left(X_{k, l} \|_{p}\right)=G_{\text {avg }} T\left(\left.x_{k, t}\right|_{p} t_{k}, s_{k, t}\right)$
$P\left(X_{k, t} \mid D_{s}\right)=\max _{l} P\left(X_{k, t} \mid l, D_{s}\right)$
$P\left(X_{k, t} \mid l, D_{s}\right)=\mathrm{G}_{\text {avg }}\left\{P\left(x_{k, t}^{i} \mid d_{s}^{i}\left[l, s_{k, t}^{i}, \theta_{k, t}^{i}\right]\right)\right\}$
We use the most likely models \mathcal{M} to predict the part locations of the testing sample
$\hat{x}^{i}=\underset{x^{i}}{\arg \max } \sum_{k, t \in \mathcal{M}} P\left(\triangle x_{k, t}^{i}\right) P\left(x^{i} \mid d_{p}^{i}\left[c_{k}^{i}, s_{k, t}^{i}\right]\right)$

Pose Detectors

Pose 1

Pose 2

Pose 3

Poses clusters of Back
For each pose cluster c^{i} of part i, we build a detector. The detector scans the image over scales and the response map of this detector at a particular scale s^{i} is denoted as $d_{p}^{i}\left[c^{i}, s^{i}\right]$.

Pipeline

(1) Sliding-window detection. (2) Matching and ranking exemplars. (3) Predicting the final part configuration.

Subcategory Detectors

Species 1
Species 2
Species 3 Subcategory clusters of Back
For each species l of part i, we build a detector after aligning the samples. Assuming the detector scans he image over scales and orientations, then the response map of this detector at a particular scale s and orientation θ^{i} is denoted as $d_{s}^{i}\left[l, s^{i}, \theta^{i}\right]$.
Enforcing Consistency
$P\left(x_{k, t}^{i} \mid d_{p}^{i}\left[c_{k}^{i}, s_{k, t}^{i}\right]\right) \quad P\left(x_{k, t}^{i} \mid d_{s}^{i}\left[l, s_{k, t}^{i}, \theta_{k, t}^{i}\right]\right)$

References

[1] C. Wah, S. Branson, P. Welinder, P. Perona, S. Belongie. The Caltech-UCSD Birds-200-2011 Dataset. Computation \& Neural Systems Technical Report, CNS-TR-2011-001, 2011
[2] P. N. Belhumeur, D. W. Jacobs, D. J. Kriegman, N. Kumar Localizing CVPR 11

Localization Examples
 Comparisons

PCP	CoE [2]	Ours
Back	46.29	$\mathbf{6 2 . 0 8}$
Beak	43.08	$\mathbf{4 9 . 0 2}$
Belly	54.44	$\mathbf{6 9 . 0 2}$
Breast	54.19	$\mathbf{6 6 . 9 8}$
Crown	64.69	$\mathbf{7 2 . 8 5}$
Forehead	51.48	$\mathbf{5 8 . 4 6}$
Left Eye	47.53	55.78
Left Leg	29.67	40.94
Left Wing	59.58	$\mathbf{7 1 . 5 7}$
Nape	58.91	70.78
Right Eye	46.50	55.51
Right Leg	29.03	40.52
Right Wing	58.47	$\mathbf{7 1 . 5 6}$
Tail	27.77	40.16
Throat	58.89	$\mathbf{7 0 . 8 3}$
Average	48.70	$\mathbf{5 9 . 7 4}$

