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Abstract

As the Internet becomes more mature, there is a realization
that improving the performance of routers has the poten-
tial to substantially improve Internet performance in general.
Currently, most routers forward packets in a First-In-First-
Out (FIFO) order. However, the diversity of applications
supported by modern IP-based networks has resulted in un-
predictable packet flows, and heterogeneous network traffic.
Thus, it is becoming more reasonable to consider differen-
tiating between different types of packets, and perhaps to
consider allowing packets to specify a deadline by which it
must be processed. These issues have made buffer manage-
ment at routers a critical issue in providing effective quality
of service to the various applications that use the network.

In this paper, we study an online problem in which
each packet is described by its discrete arrival time, non-
negative weight and discrete deadline; arriving packets are
buffered for delivery and all packets have the same processing
time. The packets arrive online, and our objective is to
maximize the sum of weights of those packets that are sent
by their deadlines. We describe an online deterministic
algorithm with a competitive ratio of 1.854, improving the
best previous known competitive ratio of 1.939 (Bartal et al.
STACS 2004).

The algorithmic framework we use has several interest-
ing features. First, we do not use a potential function. In-
stead, after each step we modify the adversary’s buffer. Sec-
ond, we introduce “dummy packets” to facilitate the decision
making.

1 Introduction

As the Internet becomes more mature, there is a realiza-
tion that improving the performance of routers has the
potential to substantially improve Internet performance
in general. Currently, most routers forward packets in
a First-In-First-Out (FIFO) order. However, the diver-
sity of applications supported by modern IP-based net-
works has resulted in unpredictable packet flows, and
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heterogeneous network traffic. Thus, it is becoming
more reasonable to consider differentiating between dif-
ferent types of packets, and perhaps to consider allow-
ing packets to specify a deadline by which it must be
processed. These issues have made buffer management
at routers a critical issue in providing effective quality
of service to the various applications that use the net-
work. Motivated by these considerations, Kesselman
et al. [13] propose a model, called buffer management
with bounded delay. In this model, packets arrive over
time, and are buffered upon arrival. An arriving packet
(w, d) has a weight w and a deadline d before which it
must be transmitted. At most one packet can be sent
in each (integer) time step. A packet with deadline d
that is not sent before time d expires, and is dropped
from the buffer. The objective is to maximize weighted
throughput, defined as the total weight of the transmit-
ted packets.

If the relevant characteristics — release date,
weight, and deadline — of each packet are known ahead
of time, an optimal schedule can be found efficiently,
for instance, as a maximum weight matching problem
on a convex bipartite graph. In most applications, how-
ever, we do not know this information ahead of time.
Rather, packets arrive online, and we only learn about
a packet and its associated characteristics when it actu-
ally arrives. An online algorithm is k-competitive if its
weighted throughput on any instance is at least 1/k of
the weighted throughput of an optimal offline algorithm
on this instance. The smallest value of k for which an
algorithm is k-competitive is called its competitive ra-
tio [7]. If an algorithm decides which packet to process
based only on the contents of its buffer, and indepen-
dent of the packets that have already been processed,
we call it memoryless.

1.1 Prior Work Since this online buffer manage-
ment model was introduced in [13], many papers have
considered this problem as well as several variants. Two
natural restrictions on deadlines can be described in
terms of a packet’s span, defined as the difference be-
tween its deadline and release date. An input instance
is called s-bounded if the span of any packet is at most
s, and s-uniform if the span of any packet is exactly s.
An input instance has agreeable deadlines (or is simi-



larly ordered) if the deadlines of the packets (weakly)
increase with their release dates. The agreeable dead-
line model generalizes both the s-uniform model and the
2-bounded model.

The best known lower bound on the competitive
ratio of deterministic algorithms is φ ≈ 1.618 [12, 9, 2];
this lower-bound applies to 2-bounded instances, and
hence also to instances with agreeable deadlines.

For an arbitrary deadline instance, a simple greedy
algorithm that always schedules a maximum-weight
packet in the buffer is 2-competitive [12, 13]. A gener-
alization of the greedy algorithm, called EDFα, always
schedules the earliest packet with weight at least 1/α
(α ≥ 1) of the maximum-weight packet [6]. Although
EDFα improves the competitive ratio for s-bounded
instances, the best competitive ratio of this family of
algorithms is (asymptotically) 2 for the general case.
To improve the competitive ratio, it is natural to con-
sider alternating between the maximum-weight packet
and an earliest-deadline packet with sufficiently large
weight. As stated, this does not result in an improve-
ment, but Chrobak et al. [8] discuss a clever modifica-
tion that results in an algorithm with competitive ratio
64/33 ≈ 1.939. This algorithm is the first one with
competitive ratio strictly below 2 for the general case.

For instances with agreeable deadlines (and hence
also s-uniform instances), Li et al. [15] propose an (op-
timal) algorithm MG whose competitive ratio is φ. Un-
fortunately, this improved competitive ratio is achieved
by exploiting the agreeable deadline assumption; on
general instances, MG, like the greedy algorithm and
EDFα is also 2-competitive. (See the Appendix for such
an instance.)

Finally, for 2-uniform instances, Chrobak et al. [8]
find an algorithm that is 1.377-competitive and prove a
matching lower bound. This algorithm uses information
about the past, and so is not memoryless. In fact, a
lower bound of

√
2 has been proved on the competitive

ratio of memoryless algorithms for 2-uniform instances.
Randomized algorithms have also been given [6]

with competitive ratios of e/(e − 1) ≈ 1.582, and 1.25
for 2-bounded instances. For 2-bounded instances, the
lower bound is 1.25, while for the 2-uniform case it is
1.172.

There has also been work on models in which
the FIFO discipline is enforced [16, 14, 5, 17, 10].
In the FIFO model, packets have weights, but no
deadlines; and the buffer is finite. Some researchers
also consider packet scheduling in multiple FIFO input
queues connecting one output queue [3, 4, 1].

Englert and Westermann [11] independently gave
a 1.828-competitive algorithm and a 1.893-competitive
memoryless algorithm for the same buffer management

problem that we consider in this paper. That work also
appears in these proceedings. We compare our work
and their work further in Section 5.

1.2 Our Contribution We design an algorithm
called DP (for dummy packets) whose competitive ra-
tio on general instances is at most 3/φ ≈ 1.854. In
addition to improving the best known competitive ra-
tio, the algorithm presented here and the analysis have
several novel features. First, the algorithm generates
“dummy” packets whose status encodes relevant infor-
mation about the past behavior of the algorithm. Al-
though these dummy packets cannot be transmitted by
the algorithm, they influence the choice the algorithm
makes. Second, the analysis does not rely on a potential
function approach explicitly. Instead, it relies on mod-
ifying the algorithm’s buffer judiciously and on assign-
ing an appropriate credit to the adversary to account for
these modifications. This is similar to, but more compli-
cated than, the approach used in our earlier paper [15]
for a special case of the problem.

2 Motivation for Our Algorithm DP

Before describing our algorithm in detail, we discuss
some of the previous algorithms, and give insight into
their limitations. We will the use that insight to explain
the new features of our algorithm DP .

Recall that (w, d) denotes a packet with weight w
and deadline d. We first note why the greedy algorithm,
which always sends a heaviest packet regardless of the
deadline, is at best 2-competitive. This is because when
presented with packets p = (1 − ǫ, 1) and q = (1, 2),
it picks q (and p expires at the end of this time-slot)
whereas an optimal algorithm would send both. A
natural strategy then is to pick the earliest packet whose
weight is sufficiently large when compared with the
heaviest packet; that is, for some α ≥ 1, send the earliest
packet in the buffer whose weight is at least wh/α. (This
is the algorithm EDFα; note that EDF1 is a greedy
algorithm.) The following example shows that EDFα is
also (at best) 2-competitive.

Example 1. At each t = 0, 1, 2, . . . , n − 1, packets
pt = (1 − ǫ, t + 1) and qt = (1, n + t + 1) arrive. In
addition, a packet P = (α, 2n + 1) arrives at time zero.
Thus at time zero the buffer contains p0, q0, and P . The
algorithm EDFα will, in each of the first n time slots,
send the q packet, drop the p packet, and retain P . At
time n, it sends the only packet, P , in the buffer. An
optimal algorithm will deliver all the packets. It is easy
to verify that the competitive ratio of EDFα approaches
2 as n increases.

The main difficulty with the greedy algorithm is
that when the algorithm sends a packet q, there is



always the possibility that a packet p with wp = wq − ǫ,
and dp < dq exists; if p cannot be sent later by the
algorithm, but the adversary can send both p and q,
the competitive ratio becomes essentially 2. The same
difficulty persists with EDFα, except that it cannot be
done with 2 packets alone. In the above example, the
packet P forces EDFα to favor the q packet in each
time step over the p packet, and repeating this a large
number of times makes the larger weight of P negligible
in comparison to the total weight of the p packets.

In designing an algorithm with competitive ratio
better than 2, we have to address the following ten-
sion. On the one hand, the algorithm must send a
packet whose weight is sufficiently large compared to
the heaviest packet. On the other hand, when it sends
a packet, it should consider the possibility that the ad-
versary sends an earlier packet in the buffer with slightly
smaller weight, especially when the algorithm does not
get a chance to send this packet in the future. Under-
standing this latter possibility is critical in deriving an
improved algorithm.

We show in [15] that for instances with agreeable
deadlines, whenever the latter condition occurs, the
“earlier” packet with slightly smaller weight must be
an earliest-deadline packet. For such instances, it is
natural to modify EDFα as follows: instead of sending
the earliest packet with weight at least wh/α, we look
for the earliest packet p in the buffer whose weight is
at least 1/α of the heaviest packet and whose weight
is at least α times the earliest deadline packet. This
algorithm is called MGα and its competitive ratio is
max{α, 1 + 1/α}; choosing α = φ, we get an optimal
deterministic competitive ratio of φ.

For instances that do not satisfy the agreeable
deadline assumption, the latter case may occur even if
the “earlier” packet is not an earliest deadline packet, so
MG may not achieve this competitive ratio in general.
Indeed, the appendix includes a family of examples on
which MG’s competitive ratio approaches 2.

Motivated by all of these observations, we describe
a new algorithm that is able to achieve an improved
competitive ratio. This algorithm is inspired by both
MG and EDFα. Like MG, we first find a maximum-
weight subset, Mt, of packets that can be scheduled
on-time at each time period t, and we identify two
special packets from Mt: the “earliest-deadline” packet
e and the “heaviest” packet h. One of the difficulties
with EDFα is that a single heavy packet P could
influence the choice of the algorithm in each of the first
n steps. To overcome this, we associate an additional
status bit with each packet, and whenever we send a
packet f other than e or h, we set h’s status bit to
1, and reduce its weight to wh/α; this reduced weight

is used when identifying the “heaviest” packet in the
future. If, in a future time step, this (reduced weight)
packet is the heaviest packet, the algorithm simply
sends it, preventing the scenario observed with EDFα

on Example 1. Moreover, a “dummy” packet h′ is
generated whose weight is wh/α and whose deadline
is df , the deadline of the packet just sent by the
algorithm. The status of the dummy packet encodes
useful information about the history of the packets sent
by the algorithm as well as the input sequence. For
instance, if it is optimal for the adversary not to send f ,
but to send a packet after f (for instance, the h packet
itself), one may expect many packets better than f to
arrive in the near future; if, on the other hand, it is
optimal for the adversary to send a packet earlier than
f now, one may expect future packets to be of lower
value. When deciding which packet to send now, the
algorithm has no way of knowing which of these cases
will occur. However, the status of the dummy packet
captures this information implicitly: in the former case,
we expect the dummy packet to leave Mt soon, whereas
in the latter case we expect the dummy packet to remain
in Mt until its deadline. Thus it makes sense to let these
packets influence the algorithm’s choice. This argument
is not rigorous, but this intuition drives the design of
the algorithm, described next. An example further
illustrating the use of dummy packets is described in
the Appendix.

3 Algorithm DP

Associated with each packet p is a non-negative integer
release date rp, a positive integer deadline dp > rp,
and a non-negative real weight wp, which represents
the value gained by sending p at some time in the
interval [rp, dp). We call a sequence feasible if all packets
can be scheduled by their deadlines. We associate two
additional pieces of data with each packet: a virtual
value and a status bit. We also introduce dummy
packets.

Status bits and virtual values. Each packet p
in the buffer has a status bit p.c, which is set to zero
upon p’s arrival, but may be modified (and re-modified)
during the course of the algorithm. The virtual value of
a packet p in the buffer depends on its status bit, and
is defined as

vp :=

{

wp, if p.c = 0,
wp/α, if p.c = 1, α > 1.

Notice that v-value of p depends on both wp and
p.c, and that p.c may be modified over time.

Dummy packets. In certain cases, the algorithm
generates dummy packets. The dummy packets are not



eligible to be sent by the algorithm, but play a role in
deciding which packets the algorithm does send. The
status bit of any dummy packet is always 0 until it is
dropped from the buffer. Each dummy packet (with
status bit of 0) in the buffer is always “paired” with
a real packet with status bit of 1 in the buffer. Note
also that real packets are never dropped from the buffer
before they expire, but dummy packets may be.

3.1 The Algorithm We describe a family of algo-
rithms, DPα, parametrized by α ≥ 1. The analysis in
the next section shows the competitive ratio β to be at
most max{α, 1 + 1/α, 3/α, 3/(1 + 1/α)}. Setting α = φ
results in an upper bound on the competitive ratio of
3/φ. The algorithm is described in two parts. At any
time t, we first identify the set Mt, the set of matched
packets at time t. From this set, two special packets
— e and h — are identified, which influence the packet
delivery part of the algorithm.

3.1.1 Identifying the matched packets for step
t. Let Mt be a maximum-weight subset (using the
w values) of (real and dummy) packets that can be
sent successfully in steps t, t + 1, . . . , assuming no
future arrivals. Mt can be determined as a maximum
weight matching of the natural convex bipartite graph
associated with the scheduling problem. The convexity
is an immediate consequence of the fact that in the
matching there is never a reason to have two edges that
“cross.”

Let p′ be a dummy packet and p its associated real
packet. Then the algorithm will always set dp′ to a value
less than dp (the exact setting is described in the next
subsection). The algorithm will always set the virtual
value of the dummy packet equal to the virtual value of
the real packet, i.e.

wp′ = vp′ = vp = wp/α < wp,

where the last inequality holds because α > 1. Further-
more, we may assume without loss of generality that
Mt contains p′ only if it contains p. This is because any
maximum-weight matching that contains p′ but not p
can be improved by replacing p′ with p. Also, when-
ever p ∈ Mt and p′ 6∈ Mt, we drop p′ from the buffer
altogether and reset p.c to zero (from one).

The packets in Mt are called matched packets for
this step. They are placed in the buffer in canonical
order: non-decreasing deadline order, with ties broken
in non-increasing weight order. All valid, unmatched
real packets are placed in an arbitrary order after all
the matched packets; unmatched dummy packets are
dropped (as mentioned earlier). In the rest of the paper,
whenever we use the term “earlier in the buffer” we

mean “earlier in Mt.”

3.1.2 Packet delivery for step t.

2.0 (Identifying h and e packets) Let h denote
the packet with the largest v-value among all real
packets in Mt (ties are broken in favor of the earliest
deadline packet); and and let e denote the earliest
deadline (real or dummy) packet in Mt (ties are
broken in favor of the heaviest packet).

2.1 If h.c = 0, let f̂ be the earliest packet in Mt

satisfying v
f̂
≥ vh/α = wh/α. (Clearly f̂ exists as

h itself is a candidate for f̂ .) If f̂ is a real packet,

f̂ is sent, and its corresponding dummy packet (if

any) is dropped from the buffer. If f̂ is a dummy

packet, its corresponding real packet is sent and f̂
is dropped from the buffer. Let f denote the (real)
packet sent.

If f 6= e, h and df < dh, set h.c = 1, and generate a
dummy packet h′ with wh′ = wh/α, dh′ = df , and
h′.c = 0. (Note: dh > dh′ > t.)

2.2 If h.c = 1, send h and drop the associated dummy
packet h′ from the buffer.

We use f to denote the packet sent by the algorithm,
and observe the following.

• e.c must be 0, otherwise, e′, the dummy packet
associated with e, is before e in the buffer.

• If h.c = 0, then

(a) If f is the e packet or the h packet, f.c = 0.

(b) If f 6= e, h and df ≥ dh, then f must be
the real packet associated with the dummy
packet f̂ that was “selected” by the algorithm.
(Otherwise the algorithm would have sent the
h packet or a packet that appears before the
h packet.) Note that f̂ is dropped from the
buffer in this step.

4 Analysis of DP

This section is devoted to proving the following result.

Theorem 4.1. The competitive ratio of DPα with α =
φ is at most 3/φ ≈ 1.854.

Let O be the sequence of packets sent by an
optimal offline algorithm (= adversary). To analyze the
algorithm, we maintain, at each time step t, a sequence
of packets St such that it is possible to deliver all the
packets in St by their deadlines. The sequence St will be



constructed inductively, starting with S0 = O. Given
St, the sequence St+1 is constructed based on the the
first packet in St, the packet sent by the algorithm in
step t, as well as the following input sequence. Before
enumerating the various cases, we state briefly how the
proof proceeds. Let Wt be the weight of the packet sent
by the algorithm in step t, and let

Vt =
∑

p∈St

vp −
∑

p∈St+1

vp.

Observe that
∑

t Vt =
∑

p∈S0
vp =

∑

p∈O
wp

is the total weight of the packets sent by the optimal
offline algorithm, and

∑

t Wt is the total weight of the
packets sent by the algorithm DP . To prove the main
result, it is sufficient to show that Vt ≤ β ·Wt, for each
step t. Our proof does almost this, but not quite: we
shall show that the time steps can be partitioned into
groups T1, T2, . . . , such that for any group Tk,

∑

i∈Tk

Vi ≤ β ·
∑

i∈Tk

Wi.

Each of the groups we construct in the proof will involve
either a single time-step or will involve two time-steps.

We consider cases defined 3 factors: the packet sent
by the algorithm in step t, the first packet in St, and
the subsequent input sequence. We make two important
points about the sequence St that will be useful. At the
beginning of step t, we are allowed to modify St using
the following operations:

(A) We are free to reorder St as long as all the packets
in the reordered sequence can be sent by their
deadlines.

(B) We are free to replace a packet p ∈ St by another
packet q 6∈ St as long as vq ≥ vp and the resulting
sequence is still feasible; in particular, if p is the
earliest deadline packet in St, p.c = 1, and if St

contains p but not p′, we can always replace p by
p′.

Remark 4.1. Note that operation (B) results in a
larger Vt than what is necessary; as a result,

∑

t Vt ≥
∑

p∈O
wp. We will use this operation frequently in what

follows, so it will be convenient to let St − p + q denote
the sequence obtained by replacing p ∈ St with q 6∈ St.

Fix a time step t. A packet p ∈ St is available if
rp ≤ t. We state and prove two useful lemmas, one
about each of the operations discussed earlier. The first
lemma is a standard result about the EDD algorithm.

Lemma 4.1. Among all available packets from the se-
quence St, let i denote the one with the earliest dead-
line (ties broken arbitrarily). Then, there is a feasible
reordering of St in which i appears as the first packet.

Lemma 4.2. Given a sequence St, let i denote the
packet with the earliest deadline among all available
packets (ties broken arbitrarily). Then, we may assume
without loss of generality that i ∈ Mt and i.c = 0.

Proof. Suppose i 6∈ Mt. Then for some k ≥ di, the
buffer must contain k packets, all due by time t + k,
and moreover, each of these matched packets p must
satisfy wp ≥ wi. (Otherwise, i must be matched.) As
i ∈ St and St is feasible, it follows that not all of these k
packets belong to St. Let p be such a packet. Consider
the sequence S̄t := St − i + p. By Lemma 4.1, we may
assume that i appears first in St. Since dp ≥ t + 1, S̄ is
clearly feasible. To show the validity of the replacement,
we need to show that vp ≥ vi. This follows from wp ≥ wi

if p.c = 0: in that case, vp = wp whereas the largest
vi can be wi. Suppose, however, p.c = 1. Then we
know that p′ ∈ Mt, and dp′ ≤ dp, so p′ is among the
“bottleneck” set of k packets. In particular, this implies
vp′ ≥ vi. Noting that vp = vp′ , we conclude that vp ≥ vi

in all cases. We now have a new sequence S̄t that has
one more packet in common with Mt. Let ī denote
the packet with the earliest deadline among all available
packets in S̄t. If ī 6∈ Mt, we apply the same argument
with S̄t and ī, assuming the role of St and i respectively.
As the number of packets in common with Mt increases
at each step, eventually we find a sequence, St, whose
earliest-deadline available packet i ∈ Mt. To prove the
second statement, if i.c = 1 then i′ (the dummy packet
associated with i) must also be matched. Since di′ < di,
this implies i′ 6∈ St. The sequence St − i + i′ satisfies
the properties claimed in the lemma. �

Recall that the algorithm always sends the h packet
when h.c = 1, but makes a possibly different choice
when h.c = 0. We examine these cases in turn. In
what follows i denotes the first packet in the (possibly
modified and reordered) sequence St. By Lemma 4.2,
i ∈ Mt and i.c = 0.

Case 1: h.c = 1. There must be an associated
dummy packet h′ that is also matched and appears
earlier in the buffer. The algorithm sends h, and drops
h′ from the buffer. By the definition of the h packet, for
any packet p ∈ Mt, vp ≤ vh = wh/α. Let i be the first
packet in St. Note that i may be real or dummy, but
i is matched. In either case, vi ≤ vh. Define St+1 as
St−i−h′−h. The feasibility of St implies the feasibility
of St+1. Now,

Vt = vi + vh′ + vh ≤ vh′ + 2 · vh

= wh/α + 2 · wh/α = (3/α) · wh

≤ β · wh = β · Wt.

Case 2: h.c = 0. We make some general observa-
tions that will be useful later on. Note that vh = wh



as h.c = 0. Recall that i denotes the first packet in St.
As i ∈ Mt, we may assume that i appears no later than
h in the buffer. Otherwise, i 6= h and di > dh (Mt is
arranged in canonical order), and we can swap i and h
in St; the new St remains feasible and its first packet
is the h-packet, satisfying the property claimed. Thus,
in the rest of this section we assume that i appears no
later than h in the buffer.

Let f be the packet sent by the algorithm. In this
case, f is the e packet, or the h packet, or neither. The
last case (f 6= h, e) is further subdivided, depending on
whether df < dh or not. We now examine each of these
cases.

Case 2a: f = e. If e ∈ St, we claim that we
may consider e to be the first packet in St. Otherwise,
assume i 6= e is the first element; since i, e ∈ Mt, di ≥ de

by definition, so we can reorder St by swapping i and
e so that e is the first element of St. As e.c = 0, note
that ve = we.

Define St+1 by omitting e from St. The feasibility
of St+1 follows from the feasibility of St, and

Vt = Wt = we < β · Wt.

If e /∈ St, let St+1 = St \ i. Clearly, St+1 is feasible;
moreover

Vt = vi ≤ vh ≤ α · ve = α · we < β · we = β · Wt.

Case 2b: f = h. In this case, we know that f is a
real packet with f.c = 0 (because h.c is assumed to be
zero). Moreover, any (real or dummy) packet p ∈ Mt

that appears in the buffer before h has vp < vh/α =
wh/α.

Let i be the first packet in St. Recall that i appears
no later than h in Mt (and hence in the buffer). Define
St+1 by removing i and h from St. (If i and h are
identical, or if h 6∈ St, only one packet is removed.) The
feasibility of St+1 is evident. Also,

Vt ≤ vi + vh < wh/α + wh ≤ β · wh = β · Wt.

Case 2c: f 6= e, h, df ≥ dh. If f 6= h, and if df ≥
dh, it follows that a dummy packet f̂ was “selected”
by the algorithm (so f̂ ∈ Mt, see Case 2.2(b.) in the
description of the algorithm), and f is the real packet

associated with that dummy packet f̂ . In particular,
f.c = 1 and so f 6= i as i.c = 0.

As f̂ was “selected” by the algorithm, v
f̂

≥ vh/α.

Since f̂ is associated with f , v
f̂

= w
f̂

= wf/α; also,

h.c = 0 implies vh = wh. wf/α ≥ wh/α, which implies

wf ≥ wh. Recall also that i, f̂ , f are all in Mt, so all of
these packets are matched packets in the buffer. Finally,
if f̂ ∈ St and d

f̂
≤ di we can swap i and f̂ in St, noting

that f̂ .c = 0 as required; therefore we may assume that
the first packet in St (denoted i) is a packet that appears

no later than f̂ in the buffer whenever f̂ ∈ St.
Suppose i appears no later than f̂ in the buffer (this

also covers the possibility i = f̂). Then vi < vh/α =

wh/α. Define St+1 by removing i, f̂ , and f from St; if

i = f̂ or if some of these packets are not in St, fewer
packets will be removed. Clearly St+1 is feasible because
St is. For this step,

Vt ≤ vi + vf ′ + vf ≤ wh/α + wf/α + wf/α

≤ (3/α) · wf ≤ β · wf = β · Wt.

Suppose i appears after f̂ in the buffer. By the
earlier discussion, f̂ 6∈ St. Define St+1 by removing i
and f from St (if f 6∈ St, only i is removed). As before,
St+1 is feasible because St is, and

Vt ≤ vi + vf = wi + vf ≤ wh + vf

≤ wf + vf = wf + wf/α ≤ (1 + 1/α) · wf

≤ β · wf = β · Wt.

Case 2d: f 6= e, h, df < dh. This case is the only
one in which the algorithm generates a dummy packet.
Note that any packet p that appears before f in the
buffer satisfies vp < vh/α = wh/α; and vf ≥ vh/α =
wh/α. When f.c = 0, this implies wf ≥ wh/α, whereas
when f.c = 1 this implies wf ≥ wh. The algorithm
generates a dummy packet h′ with weight wh/α and
deadline df , and sets h.c to 1. Since h′ is a dummy
packet, h′.c = 0 as long as h′ is in the buffer. Recall
that at the first time-step in which h′ is unmatched,
it is dropped from the buffer and h.c is reset to zero.
Therefore if h′ is in the buffer, it implies h′ is matched
from the moment it was generated until the current
time-step.

Case 2d(i): f.c = 0. Let i be the first packet in
St. Then either i = f , i appears after f in the buffer,
or i appears before f in the buffer. We analyze each of
these possibilities after noting the following useful fact:
If f ∈ St and df ≤ di we can swap i and f in St, noting
that f.c = 0 as required; therefore we may assume that
the first packet in St (denoted i) is a packet that appears
no later than f in the buffer whenever f ∈ St.

When i = f , define St+1 = St−f . The feasibility of
St+1 is immediate. For this step, Vt = wf +(1−1/α)·wh,
where the second term accounts for the change in the
status bit of h in this step: h.c is set to 1, resulting in
vh decreasing from wh to wh/α. Note that

Vt = wf + (1 − 1/α) · wh ≤ wf + (1 − 1/α) · (α · wf )

= α · wf ≤ β · wf = β · Wt.

Now, suppose i appears after f in the buffer. By
our earlier discussion, f /∈ St. If i = h, let St+1 = St \h.



The feasibility of St+1 is immediate. And

Vt = wh = vh ≤ α ·vf = α ·wf ≤ β ·wf = β ·Wt.

Suppose i 6= h, h ∈ St and assume St = {pt =
i, pt+1, . . . , pk−1, pk = h, pk+1, . . .}. (If h /∈ St, we can
always use h to replace i in St since h.c = i.c = 0 and
vh ≥ vi. Then, we turn to the case in which i = h.) We
now have 2 subcases, depending on the value of di.

Subcase 1: di ≥ k: We reorder St by swapping i
and h, that is, we let St = {pt = h, pt+1, . . . , pk−1, pk =
i, pk+1, . . .}. Clearly, St is feasible if di ≥ k. Thus,
St+1 = St \ h, and

Vt = vh ≤ α · vf = α · wf ≤ β · wf = β · Wt.

Subcase 2: di < k. Recall that in this time step,
the algorithm changed the status bit of h from 0 to 1.
Observe also that h will stay in the buffer until either
the algorithm sends it or it expires. In the former case
h.c may be 0 or 1, but in the latter case h.c will be 0. We
further subdivide the analysis into two cases depending
on whether h.c is reset to 0 or not.

Subcase 2a: h.c is reset to 0 by DP . Let j > t
be the earliest time step at which h.c = 0. It is clear
that j ≤ di because dh′ = df < di and h.c is reset to 0
when h′ expires. Observe also that dh ≥ k and wh ≥ wi.
Therefore we let St+1 = St − i, but we also modify the
release date of h in St+1 to j. That is, this packet
h is “unavailable” until time step j. (Thus, it is not
possible to “drop” this packet from St+1, St+2, . . . , Sj−1

based on the operations of Lemma 4.2.) Therefore,

St+1 = {pt+1, . . . , pk−1, pk = ĥ, pk+1, . . .}, where

pk = ĥ is the same as h, but with its release date
modified to j. Thus,

Vt = vi ≤ vh ≤ α · vf = α ·wf ≤ β ·wf = β ·Wt.

Subcase 2b: h.c is not reset to 0 by DP . In
this case, it must be sent by the algorithm with h.c = 1.
Suppose DP sends h in time step j. As h.c = 1, h′ must
be matched in steps t + 1, . . . , j. Let pj be the packet
with the earliest deadline among all available packets
in Sj . (That is, pj is the “i-packet” in step j.) Since
pj .c = 0 and h.c = 1, pj 6= h. (Note that pj may be h′

as Lemma 4.2 may have been used earlier to replace h
with h′.)

Let h̄ be the heaviest packet (i.e. the “h-packet”)
in step j. As the algorithm sends h in step j, either (i.)
h = h̄, or (ii.) h 6= h̄, but h̄.c = 0. We will define St+1

as St − i, and Sj+1 as Sj \ {j, h}. We shall group these
2 time-steps together and relate Vt +Vj to Wt +Wj . To
that end, we first show wpj

≤ wh.
If h = h̄, then h is the heaviest packet in the buffer

at time j. So vpj
≤ vh. As pj .c = 0, wpj

= vpj
≤

vh ≤ wh, as required. If h 6= h̄, then h̄.c = 0. As DP
sends h, we have vh ≥ vh̄/α. But by the definition of h̄,
vpj

≤ vh̄, so

wpj
= vpj

≤ vh̄ ≤ α · vh = wh.

It is clear that Wt = wf and Wj = wh. Also, Vt =
wi +(1−1/α) ·wh, and Vj = vpj

+vh = wpj
+(1/α) ·wh.

Therefore, we have

Vt + Vj = wi + wh + wpj
≤ 3 · wh

≤ β · (1 + 1/α) · wh = β · (wh/α + wh)

≤ β · (wf + wh) = β · (Wt + Wj).

In the above chain of expressions, we used wi ≤ wh,
(1 + 1/α) · β ≥ 3, and wf ≥ wh/α. The first follows
because h was the “h-packet” in step t and i was in the
buffer then; the second from the definition of β; and
the third from the definition of f , the packet DP sent
at time t. (Note that DP sends a packet with status
bit 1 in time step j, so step j cannot fall into this case
again. In other words, we are not led to a longer chain
of steps.)

Finally, suppose i appears before f in the buffer.
Note that vi < vf because i was not chosen by the
algorithm but f was; since i.c = f.c = 0, this implies
wi < wf as well. Therefore, we may assume that
f ∈ St, otherwise we may replace i by f and appeal
to the case “i = f” discussed earlier. To get St+1

from St, we remove i, and replace f ∈ St by the newly
generated dummy packet h′. Since h′ and f have the
same deadline, the feasibility of St implies the feasibility
of St+1. In this step,

Vt = vi + (vf − vh′) + (wh − vh)

= wi + (wf − wh/α) + (1 − 1/α) · wh

≤ wi + wf + (1 − 2/α) · wh

≤ wh/α + wf + (1 − 2/α) · wh

≤ wf + wf + (1 − 2/α) · (α · wf )

= α · wf ≤ β · wf = β · Wt.

Case 2d(ii): f.c = 1. Note that in this case, i 6= f
because i.c = 0 and f.c = 1. Let i be the first packet
in St. Then either i appears after f in the buffer, or i
appears before f in the buffer. We analyze each of these
possibilities.

Now suppose i appears after f in the buffer. Since
f.c = 1, we know that the dummy packet associated
with f denoted f ′ satisfies f ′.c = 0 and f ′ ∈ Mt. We
may assume that f ′ 6∈ St, otherwise we can switch f ′

and i, and appeal to the case to be discussed later (the
one in which i appears before f in the buffer).

Suppose f ∈ St, but f ′ 6∈ St. We obtain St+1

from St by replacing f with i. Clearly, St+1 is feasible.



Noting that the most f can contribute to Vt is wf , we
see that

Vt ≤ wf + (1 − 1/α) · wh = wf + (1 − 1/α) · vh

≤ wf + (1 − 1/α) · (α · vf ) = (2 − 1/α) · wf

≤ α · wf ≤ β · wf = β · Wt.

Here as f.c = 1, vf = wf/α < wf . But note that
when f is sent per its slot in the current St, its status
bit may be reset to zero; to account for this contingency,
we let Vt = wf instead of the smaller value. Also the
second term in Vt is due the h packet changing its status
bit from zero to one.

If neither f nor f ′ belongs to St, St+1 is obtained
from St by deleting i; St+1 is feasible because St is, and

Vt = wi + (1 − 1/α) · wh < wh · (2 − 1/α)

= vh · (2 − 1/α) ≤ (2 − 1/α) · (α · vf )

= (2 − 1/α) · wf ≤ α · wf ≤ β · wf = β · Wt.

Suppose i appears before f in the buffer. Recall that
at the end of this step, the algorithm will drop both f ′

and f and add a new dummy packet h′. We obtain St+1

from St by dropping f ′ and i, and by replacing f with
h′. (In other words, h′ occupies f ’s slot.) Since h′ has
the same deadline as f , the new sequence is feasible.
For this step,

Vt = vi + vf + vf ′ − vh′ + (wh − vh)

= wi + wf/α + wf/α − wh/α + (1 − 1/α) · wh.

Since i appears before f and was not chosen by the
algorithm, we know that vi < vh/α. This, along with
i.c = 0 and h.c = 0, implies wi < wh/α. Similarly,
vf ≥ vh/α, which implies wf = α ·vf ≥ vh = wh. Using
all of these in the expression for Vt, we get

Vt ≤ wh/α + 2 · wf/α + wh − 2 · wh/α

≤ (1 + 1/α) · wf ≤ β · wf = β · Wt.

5 Remarks

Independently of this work, Englert and Wester-
mann [11] design an online algorithm for the same prob-
lem that we consider here. Their results include a 1.828-
competitive algorithm for the buffer management prob-
lem, and a 1.893-competitive memoryless algorithm for
the same problem. It is instructive to compare and con-
trast their algorithm with ours.

Their algorithm maintains what they call a “provi-
sional schedule” (which is the same as the sequence of
matched packets in our terminology), which is a sched-
ule for all the pending packets in the buffer assuming
no future arrivals. Unlike our algorithm, they do not

use dummy packets. Instead they introduce the con-
cept of a “suppressed” packet, defined as follows: if a
packet p in the current provisional schedule is removed
from the buffer, it may be possible to add a new packet
q to the provisional schedule. In this case, p is said
to suppress q (equivalently, q is suppressed by p). In
evaluating whether or not to send a packet p in the cur-
rent time step, most algorithms simply use the weight
of packet p, perhaps in relation to other packets in the
buffer. The key innovation in their algorithm is that in
making this decision they take into account the weight
of the packet suppressed by p. Thus, for each packet in
the buffer, they compute a “rank”, obtained by adding
the packet’s weight and a (fixed) fraction of the weight
of the packet suppressed by it. Their algorithm makes a
choice between the first packet in the provisional sched-
ule and the maximum-rank packet in the buffer. This
idea results in a memoryless algorithm that is 1.893-
competitive. They improve the competitive ratio to
1.828 by letting the last step — deciding whether to
send the first packet or the maximum rank packet —
depend on the history.

In terms of the analysis, both analysis rest on
an exhaustive enumeration of various cases. The key
difference is that our analysis does not explicitly rely on
a potential function argument, but their analysis does.
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Appendix: Some Examples

In this appendix, we give some lower bound examples
for DP and MG, and try to motivate further the use of
dummy packets.

5.1 A lower bound on DP We are not able to
construct an instance on which DP ’s competitive ratio
is 3/φ. The best lower bound we have been able to
achieve is via the following simple instance in which
there are no arrivals.

Note that this example has agreeable deadlines. So
DP clearly has a worse competitive ratio than algorithm
MG on instances with agreeable deadlines.

Example 2. Consider the four packets e0 = (1 −
ǫ, 1), e1 = (1 − ǫ, 2), f0 = (1, 3), and h0 = (φ, 4). The
optimal offline algorithm sends all the packets for a gain
of (3 + φ − 2 · ǫ).

The algorithm sends f0 first, and sets h0.c = 1.
A dummy packet h′

0 = (1, 3) is generated, and e0 is
dropped; the buffer thus has the packets e1, h

′
0 and h0

in that order at time 1. The algorithm then sends h0,
as h0 has the maximum v-value 1. As h0.c = 1, h′

0 is
dropped when sending h0. Finally, e1 is dropped at time
2 because of its deadline. The buffer is empty, and the
total gain of the algorithm is 1 + φ. The competitive
ratio for this instance is thus (3 + φ− 2 · δ) / (1 + φ) ≈
1.764.

While we have not been able to find an example
on which DP ’s competitive ratio is 3/φ, we can show
that an improvement in DP ’s analysis must come from
a more involved analysis. For the particular grouping
we do (grouping steps of size 2), the following example
shows that the bound of 3/φ cannot be improved.

5.2 A lower bound on MG Algorithm MG [15]
achieves a φ competitive ratio for agreeable deadline
instances. It is natural to speculate that it might
be better than 2 on general instances. However, the
following example shows that MG’s competitive ratio
on general instances is (no better than) 2.

Example 3. Without loss of generality, we assume
the first time step is 1 instead of 0 — this is for the ease
of indexing groups of packets. We use ∞ in the deadline
field of a packet to show that this packet’s deadline is
very large. Let n = 2k. The packets are released in
a stage-manner. There are log n = k stages. The
superscript of a packet shows the stage in which it is
released.

At the beginning of step 1, there are 3 packets in
MG’s buffer. The adversary has the same buffer. These
3 packets are e1

1 := (1, 2), f1
1 := (φ − ǫ, 2k+1 − k), and

h1
1 := (φ,∞). MG sends h1

1, and e1
1 is dropped out of

the buffer due to its deadline.
In each of the following (2k − k + 1) time steps, say

step i, a group of 3 packets are released: e1
i := (1, i+1),

f1
i := (φ − ǫ, 2k+1 − k), and h1

i := (φ,∞). In step i,
MG sends h1

i and drops e1
i due to its deadline. At the

end of the (2k − k + 1)-th step, MG’s buffer is full of
(2k − k + 1) f1

i -packets (∀i = 1, 2, . . . , 2k − k + 1). The
first stage ends. The length of stage 1 guarantees that
no f1

i packet, especially packet f1
1 , becomes the first

packet in the buffer.
At the beginning of step 2k − k + 1, the second



stage starts. The adversary releases a pair of packets
f2
1 := (φ · (φ − ǫ) − ǫ, 2k+1 − k + 1) and h2

1 := (φ2,∞).
The newly released packets have later deadlines and are
sorted canonically after the packets already in MG’s
buffer. MG sends h2

i . Stage 2 contains 2k−1 − k + 2
steps. The length of stage 2 guarantees that no packet
f2

i becomes the first packet in the buffer. In each of
those 2k−1−k+2 steps, say step i, 2 packets are released
f2

i := (φ · (φ − ǫ) − ǫ, 2k+1 − k + 1) and h2
i := (φ2,∞).

MG sends h2
i in step i. Stage 2 is half as long as stage

1.
We repeat this pattern in each stage, for k stages.

Stage i + 1 is half as long as stage i. In each step j
of stage i, 2 packets are released, f i

j := (φ · (wf
i−1

1

−
ǫ), 2k+1 − k + i) and hi

j := (φi,∞). MG sends hi
j

in step j. In the last stage, which is step 2k+1, the
adversary only releases 2 packets fk

1 := (φk, 2 · n) and
hk

1 := (φk+1 + ǫ,∞). MG sends hk
1 and fk

1 is dropped
out of the buffer due to its deadline.

For each step in stage i, MG only delivers the hi

packets, and eventually, all packet f i are dropped out
of the buffer due to their deadlines. On the contrary,
the adversary sends all f i packets and all hi packets.
A routine calculation shows that the optimal weighted
throughput is nearly twice MG’s weighted throughput.

5.3 The role of dummy packets Here, we show
how dummy packets are used in our algorithm DP .

To show that dummy packets play an important
role in scheduling packets, we first propose an algorithm
called Markα, which employs status bits but no dummy
packets. Markα uses the same matched packets as DP .
Each packet p has a status bit p.c and vp = wp/α when
p.c = 1. After identifying h, the maximum-v-value
packet, if h.c = 0, Markα sends the earliest packet f
such that wf ≥ wh/α. f can always be found since h
itself is a candidate. If f 6= e (e is the first packet), h.c
is marked 1. If h.c = 1, Markα sends h.

Example 4. Consider the following example for
Markα where α = φ. Let n be a large number. At the
beginning of a time step 0, there are 3 packets in the
buffer: ǫ0 := (ǫ, 1), f1 := (1, 2), h1 := (φ, n + 2). The
algorithm sends f1 and marks h1 such that h1.c = 1.
At the beginning of step 1, 3 packets are released.
ǫ1 := (ǫ, 2), f2 := (1 + ǫ, 3) and h2 := (φ + ǫ, n + 3).
The algorithm sends f2 and marks h2, and so on.

In one of the following n − 1 steps, say step i, the
adversary releases ǫi := (ǫ, i + 1), fi := (1 + i · ǫ, i + 2)
and hi := (φ + i · ǫ, n + i + 2). The algorithm sends fi

in step i and marks hi. At the beginning of step n, the
algorithm releases a single packet P with value φ and
deadline n + 1. The algorithm sends this packet in step
n.

At the beginning of step n + 1, n − 1 packets with
value (φ−ǫ, n+i+1), where i = 1, . . . , n−1, are released.
All newly released packets are dropped out of the buffer
due to the existence of those n − 1 h-packets. From
the packets left in the buffer, the algorithm sends an
h-packet in each time step since all these packets have
their status bits set to 1. Note that hi−1 is sent first,
then, hi−2, and so on. Assume n is a large odd number,
only (n−1)/2 packets are sent. Thus Markφ’s weighted
throughput is at most (n−1)·1+φ+(φ+n·ǫ)·(n−1)/2.

The adversary can send hi (i = 1, 2, . . . , n − 1) in
the first n − 1 time steps, then, sends P in step n, and
sends all newly released packets in the following n − 1
steps. The adversary’s weighted throughput is at least
(n−1)·φ+φ+(n−1)·(φ−ǫ). Thus, on this instance, the
adversary’s weighted throughput is (2 · φ)/(1 + φ/2) ≈
1.788 of Markα’s weighted throughput for large n and
small enough ǫ.

In the above example, DP works the same as
Markα for the first n steps. At the beginning of step
n + 1, all dummy packets are dropped due to their
deadlines, and thus, all packets in the buffer have status
bits reset 0. In step n + 1, the algorithm DP will send
the first packet h1 instead of the highest-v-value packet
hn−1. DP will send all packets in the buffer. The total
value gained by DP is at least (n−1)·1+φ+(n−1)·φ. It
is easy to verify that the optimal weighted throughput is
only (2 · φ)/(1 + φ) ≈ 1.236 of the weighted throughput
of DP , when n is large and ǫ is small enough. This
is substantially better than Markα performance on the
same instance.


