An optimal online algorithm for packet scheduling with agreeable deadlines

Fei Li*

1 Introduction

An important issue in IP-based QoS networks is the
effective management of packets at the router level.
Specifically, if the arriving packets cannot all be stored
in a buffer, or if the packets have deadlines by which
they must be delivered, the router needs to identify
the packets that should be dropped. In recent work,
Kesselman et al. [6] propose a model, called buffer
management with bounded delay, which can be thought
of as an online scheduling problem on a single machine:
packets arrive at a network switch and are stored in a
buffer of size B. Each packet has a positive weight and
a deadline, with the weight representing the value of
transmitting the packet by its deadline. At each integer
time step, exactly one packet can be transmitted, and
the objective is to maximize the total weight of the
transmitted packets. If B = oo, this is the online version
of the scheduling problem 1| p; = 1,7;,d; | > w;U;.
(We assume that r; and d; are integers.)

Previous work. A simple greedy algorithm that
always schedules a maximum-weight available job is
2-competitive [5, 6]. An improved algorithm [3] is
~ 1.939-competitive. A lower-bound of ¢ := (v/5+1)/2
for deterministic algorithms is known [5, 4, 1], as is
a randomized algorithm with a competitive ratio of
e/(e —1) ~ 1.582, and a lower bound of 1.25 [2].

Several restricted variants have been considered.
Define the span of a job to be the difference between
its deadline and release date. An instance is s-bounded
if the span of any job is at most s, and s-uniform if
the span of any job is exactly s. These cases arise
naturally in the buffer management problem in which
only the end-to-end delay matters, and only a small
amount of delay can be tolerated. If for any two jobs i
and j, r; < r; implies d; < dj, then we say they have
agreeable deadlines. Note that s-uniform instances are
a special case of the instances with agreeable deadlines.
The lower-bound construction in [5, 4, 1] is valid for
both 2-bounded instances as well as for instances with
agreeable deadlines. For s-bounded instances, Bartal

~ *Dept. of CS, Columbia U. lifei@cs.columbia.edu

fDept. of IEOR, Columbia U. jay@ieor.columbia.edu Re-
search partially supported by NSF Grant DMI-0093981

fDept. of IEOR, Columbia U. cliff@ieor.columbia.edu
Research partially supported by NSF Grant DMI-9970063

Jay Sethuraman'

Clifford Stein?

et al. [2] propose an algorithm with competitive ratio
2 —2/s+0(1/s); this algorithm has (the best possible)
competitive ratio ¢ for s = 2,3, and /3 for s = 4.
For instances with agreeable deadlines (and hence also
s-uniform instances), Chrobak et al. [3] propose an
algorithm with competitive ratio ~ 1.838.

Our result. Our main result is an online algorithm
with competitive ratio ¢ for instances with agreeable
deadlines. Both the algorithm and the analysis are
strikingly simple. Note that this competitive ratio is
the best achievable by a deterministic algorithm.

2 Algorithm and Analysis

We consider the problem of agreeable deadlines. A buffer
of size B stores all the packets that have not been
dropped yet. We allow early dropping of packets; thus
if three packets arrive, each with span 2, the algorithm
can immediately drop a minimum-weight packet. At
each time step, the online algorithm needs to transmit a
packet from the buffer, without any knowledge of future
arrivals. Recall that our objective is to find an online
algorithm that maximizes the total value or gain (sum of
the values) of the transmitted packets. We assume the
packets in the buffer are in a canonical order: increasing
deadline, with ties broken in order of decreasing weight.

Algorithm. Why does the greedy algorithm fail
to be better than 2-competitive? Let (w,d) denote a
packet with weight w and deadline d. Then, faced with
2 packets (1 — €,1) and (1,2), the greedy algorithm
chooses the latter, even though the former has only
slightly lower value. A variant is to choose the earliest
packet among a set of sufficiently large weight, but this
runs into a similar difficulty. Our idea (called MG
for modified greedy) is to identify a packet that has a
“sufficiently large” weight compared to the maximum-
weight packet, but also a “sufficiently large” weight
compared to an earliest-deadline packet. Formally, let
e denote the first (i.e. earliest-deadline) packet in the
buffer and let h denote the first maximum-weight packet
in the buffer. Note that e has the maximum weight
among all earliest deadline packets; and h has the
earliest deadline among all maximum-weight packets.
Also, a set of packets is feasible if each packet can be
scheduled before its deadline.

Online algorithm MG works as follows: at the

beginning of each time step t, M G considers the packets
in the buffer and the newly arrived packets, and from
this set selects the maximum-valued feasible subset of
at most B packets. The remaining packets are dropped,
and the packets in the buffer are arranged in canonical
order. (This can be computed efficiently via matching.)
The algorithm then identifies the packets e and h. If
we > wp /¢, then e is sent; otherwise the earliest packet
f satistying both w; > ¢w. and wy > wy/¢ is sent.
Such a packet exists because h itself is a candidate; so
either f = h or f is some packet in the buffer that
appears between e and h. In particular, df < dp.

Analysis. Our analysis is essentially a potential
function argument. Suppose that at some time ¢, MG
and the adversary have identical buffers. Both MG and
the adversary will each process arriving packets and
transmit a packet, but at the end of the time step,
their buffer contents may be different. We will then
modify the adversary’s buffer and make it identical to
the algorithm’s buffer; but to do so, we may have to
let the adversary collect additional weight. The crux
of the analysis is to show that the algorithm’s gain in
this time step is at least 1/¢ of the adversary’s modified
gain, i.e. the sum of the weight of the packet that the
adversary transmitted and the additional weight given
to the adversary in modifying its buffer.

THEOREM 2.1. Algorithm MG is ¢-competitive.

Proof Sketch We may assume wlog that the adver-
sary (but not MG) delivers packets in non-decreasing
deadline order. Fix a time ¢, and suppose MG and ADV
have identical buffers. After processing the arrivals at
time ¢, the buffer contents of MG and ADV will remain
the same. Moreover, the packets that arrived at time ¢
and stored in the buffer (if any) will form the tail of the
buffer. The proof proceeds by considering various cases,
depending on which packet MG transmits. Let vapy
and vy denote the value collected by the (modified)
adversary and the algorithm at time ¢.

1) If ADV and M@ transmit the same packet, vapy =
vpme and their buffers are identical.

2) Suppose MG transmits e, and ADV transmits a
packet j. Since w. > wip/¢ > w;/P, vapy =
w; < ¢pwe = ¢pvyg. Modify the adversary’s buffer by
replacing packet e with packet j; this only helps the
adversary. After this step, ADV and M G have identical
buffers, and vapv /vme < ¢, as required.

3) Suppose MG transmits f # e and ADV sends e.
Note that wy > ¢w,, and dy > d.. Clearly, ADV must
transmit f eventually, if not it gains by transmitting
f now instead of e. We let ADV send both e and
f in this time step and keep e in its buffer. Now,
vapv = We + wy, and vyg = wy. Since wy > pw.,
vapv/vmg =1+ w./wy <1+ 1/¢ = ¢.

4) Suppose MG sends packet f # e, h, and ADV sends a
packet j that is after packet f in the buffer. Since ADV
transmits packets from the buffer in deadline order,
d; > dy, ADV does not send f, and so w; > wy.

As wy > wp/p > wj/d, vapy = w; < dwyp =

¢vpe. The adversary’s buffer does not contain j, but
contains f; and MG’s buffer contains j, but not f. To
make ADV’s buffer identical to M G’s, we increase f’s
value to w; and increase its deadline to d;. This helps
the adversary and vapy /vy < .
5) Suppose MG sends packet f # e and ADV sends
a packet j # e that is earlier than f in the buffer.
Clearly, w; < wy and d; < dy; moreover w;, wy > we,
d;,ds > d., and e is dropped by the adversary (because
of EDD order). We know that f must be eventually
transmitted by the adversary. We argue next that
the adversary has a feasible schedule in which f is
transmitted now, regardless of the future arrivals.

For convenience, let pi, ps, ..., be the packets in the
buffer; note that f = p;, j = py, for some k < [, k, [# 1;
and e = p;. Since the packets are all schedulable in
the absence of future arrivals, d,,, > t 4+ ¢. A packet
p; is critical if d,, = t 4+ i. The adversary schedules
pr and p;, and possibly some packets that appear in
between. We also know that the adversary drops e = p; .
Since dp; > t + i, and since the future arrivals all have
deadlines no earlier than the deadline of f, none of the
packets pg, pr/, - - -, Prr, pr transmitted by the adversary
is critical. So the sequence p;, pg, pr/,--.,pr is a valid
transmission sequence for the adversary.

So we may assume that f is sent by the adversary
during this time slot. So MG and ADV transmit the
same packet and gain identical weight in this time step.
References

[1] N. Andelman, Y. Mansour, and A. Zhu, Competitive
Queuing Polices for QoS Switches, SODA 2003.

[2] Y.Bartal, F. Y. L. Chin, M. Chrobak, S. P. Y. Fung, W.
Jawor, R. Lavi, J. Sgall, and T. Tichy, Online Compet-
itive Algorithms for Mazimizing Weighted Throughput
of Unit Jobs, 21st Annual Symposium on Theoretical
Aspects of Computer Science, pp.190 — 210, 2004.

[3] M. Chrobak, W. Jawor, J. Sgall, and T. Tichy, Im-
proved Online Algorithms for Buffer Management in
QoS Switches, ESA 2004.

[4] F.Y.L. Chin and S. P. Y. Fung, Online Scheduling with
Partial Job Values: Does Timesharing or Randomiza-
tion Help?, Algorithmica, 2003.

[6] B. Hajek, On the Competitiveness of Online Scheduling
of Unit-Length Packets with Hard Deadlines in Slotted
Time, Proceedings of 2001 Conference on Information
Sciences and Systems, The John Hopkins U., 2001.

[6] A.Kesselman, Z. Lotker, Y. Mansour, B. P. Shamir, B.
Schieber, and M. Sviridenko, Buffer Overflow Manage-
ment in QoS Switches, STOC 2001, pp.520 — 529.

