

Summer intern project presentation

Fei Li

lifei@cs.columbia.edu

Mentor: Dr. Marina Thottan

Outline

➤ Why – motivation?

- ➤ What abstract model?
- ➤ How algorithms?
- ➤ How good simulation results?

➤ Summary

Motivation

Real-timely monitoring the network performance and service availability requires measurement techniques

Measure end-to-end delay, packet loss, and the impact on service quality

- Service-specific *probes* are active probes that closely mimic the service traffic such that they receive the same treatment from the network as the actual service traffic
- Evaluating their impact of network impairments on service can be performed by end-to-end probes

Measurement Methods

Previous/related work

- 1. SNMP-based or link-level measurements cannot be used to model network services for link failure or availability only
- 2. Measured data should be correlated with topology information: traceroute
 - One-packet (pathchar): estimate link bandwidths
 - Packet-pair (ICMP): estimate available bandwidths and the bottleneck link rate
- 3. IPMP: measure one-way delay using the path-record field in the IPMP packet; differently treated from normal service traffic

Source-routed Probes

Source-routed probes mimic different network services

- 1. Complete knowledge of the network topology
- 2. Combined with the miscreant-link detection algorithm (Parthasarathy, Rastogi, & Thottan, Bell Labs Technical Memo, 2005) (to isolate the links contributing to the performance degradation)
- 3. Source-routed probe mechanism avoids the correlation problem
- 4. Network support for source-routing mechanism, such as MPLS.

Design Source-routed Probes

- \gg In designing a set of probes, our goals are:
 - 1. To minimize the cost of the probe traffic, while obtaining the maximum (resp. full) coverage of all (resp. interesting) links
 - \Rightarrow Optimizing the total cost of the probe traffic
 - \Rightarrow Optimizing the maximal-cost of a probe
 - 2. To minimize probe installation costs and maintenance costs
 - \Rightarrow Optimizing the number of probes
 - ★ We do not consider minimizing the number of *terminals* in the context of this talk

Our contributions

Theoretical results:

- 1. An exact algorithm for minimizing the total probe traffic
- 2. A 2-approximation algorithm for minimizing the maximal-cost of a probe, in case the number of probes is bounded
 - Getting the exact solution is NP-hard
- 3. A 2-approximation algorithm for minimizing the number of probes, in case the maximal-cost of a probe is bounded
 - Getting the exact solution is NP-hard
- Simulation results:

For most ISP topologies: just 5% of the nodes as *terminals* to cover more than 98% of the edges \implies increasing the number of terminals does not help much in minimizing the total probe traffic

Outline

- ➤ Why motivation?
- ➤ What abstract model?
- ➤ How algorithms?
- ➤ How good simulation results?
- ➤ Summary

Abstract model

Model the network as an undirected graph G = (V, E)
 A set of specific nodes as *terminals* T ⊆ V; a set of interesting edges S ⊆ E
 A *path* is a set of concatenated edges between 2 nodes in V; an *elementary path* is a path without loops
 A *probe* is an elementary path from one terminal to another terminal
 Why: eliminating loops is necessary for practical implementation – a path with loops will be rejected by the routers

> A cost function $w_e \in \mathbb{R}^+$ over each edge $e \in E$

The cost of a probe P is $w(P) := \sum_{e \in P} w_e$

> Our target: find a set of probes, such that \ldots

Abstract model

 \blacktriangleright Find a set of probes \mathcal{P} , such that $\forall e \in S$, there exists at least one probe $P \in \mathcal{P}, e \in P$ Link-covering problem (LCP) : $\min \sum w(P)$ $P \in \mathcal{P}$ $\min(\max_{P \in \mathcal{P}} w(P))$ Primal link-cover problem (**PLP**) : subject to: $|\mathcal{P}| \leq k$ $\min k$ Dual link-cover problem (**DLP**) : subject to: $|\mathcal{P}| = k$ $w(P) \leq l_{max}, \forall P \in \mathcal{P}$

➤ Why – motivation?

- ➤ What abstract model?
- \gg How algorithms?
 - 1. LCP
 - 2. $\ensuremath{\mathbf{PLP}}$ and its hardness
 - 3. \mathbf{DLP} and its hardness
- ➤ How good simulation results?

➤ Summary


```
Indexing all terminals;
```

for each edge e do

for each terminal do

Find a shortest path from one end of e to one terminal in G, ties broken;

Remove all intermediate nodes and associated edges;

On the remaining graph, find the shortest path from the other end of e to one terminal;

end for

end for

```
Choose the minimal-cost probe P_e for edge e;

Remove all interesting edges \in P_e; mark e and them as Y to P_e if edges \notin P_i,

\forall i \neq e; else mark as N to P_e;

for each probe P_i do

if \forall f \in P_i, f is marked N to P_i or shared edge(s) are marked N to P_i then

Remove probe P_i or concatenate unshared part at the joint point;

Update edge status;

end if

end for
```

Optimality Proof

- 1. Optimal for divide (single edge) and conquer (combine)
- 2. Contradiction method used to prove for the single edge case
- 3. Any 2 probes have no shared nodes (crossing points), but (possibly) shared edges
- 4. No cross-link terminals \Rightarrow end nodes of end edges act as terminals with associated gain \Rightarrow Disjoint probes can be combined if cost is reduced

NP-hardness for **PLP** and **DLP**

 $\min(\max_{P \in \mathcal{P}} w(P))$, subject to: $|\mathcal{P}| \leq k$

 $\min k$, subject to: $|\mathcal{P}| = k$, and $w(P) \leq l_{max}$, $\forall P \in \mathcal{P}$

Reduced from Minimal Makespan Problem

Reduced from Bin-packing Problem

Approximation Algorithms for **PLP** and **DLP**

```
\min(\max_{P \in \mathcal{P}} w(P)), subject to: |\mathcal{P}| \leq k
```

- ➤ Two-stages for PLP
 - 1. Find a probe for each edge; end nodes of end edge act as terminals
 - 2. Merge $2 \ {\rm probes} \ {\rm with} \ {\rm minimal-cost} \ {\rm between} \ 2 \ {\rm terminals}$
- Binary search for the solution to DLP
- ➤ Analysis

Feasibility: merging still results elementary probe when no shared edges (proved in the paper)

Performance: 2-approximation, similar to the bin-packing algorithm's proof (see the paper for details)

Outline

- ➤ Why motivation?
- ➤ What abstract model?
- ➤ How algorithms?
- ➤ How good simulation results?
- ➤ Summary

Simulation Set-up

- 1. ISP topologies from RocketFuel project
- 2. The largest 5 topologies: Telstra (Australia), Sprintlink (US), Verio (US), Level3 (US), and AT&T (US)
- 3. The terminals are chosen from the backbone nodes: 5%, 10%, and 15% of |V|
- 4. The interesting edges are randomly selected: 25%, 50%, 75%, and 100% of |E|

Name	V	E	used T (as $\%$)	covered E (as $\%$)	probe cost total	probe cost average	probe cost maximal	# of probes
Telestra (Australia)	351	784	17 (5%)	392 (50%)	802	3.46	8	232
				769 (98.1%)	1436	3.25	9	442
			52 (15%)	392 (50%)	635	2.56	5	248
				769 (98.1%)	1262	2.58	5	490
Sprintlink (US)	604	2279	30 (5%)	1139 (50%)	3290	3.91	10	842
				2277 (99.9%)	6323	3.85	10	1643
			90 (15%)	1139 (50%)	2495	2.77	5	902
				2277 (99.9%)	4852	2.77	5	1751
Verio (US)	972	2839	48 (5%)	1419 (50%)	3671	3.72	12	987
				2839 (100%)	6782	3.88	19	1749
			145 (15%)	1419 (50%)	2979	2.70	8	1103
				2839 (100%)	5240	2.66	8	1967
Level3 (US)	624	5301	31 (5%)	2650 (50%)	7588	3.29	8	2304
				5301 (100%)	15124	3.27	8	4621
			93 (15%)	2650 (50%)	6460	2.72	11	2378
				5301 (100%)	12951	2.72	11	4753
AT&T (US)	631	2078	31 (5%)	1039 (50%)	2889	3.93	11	736
				2078 (100%)	5356	3.85	11	1392
			94 (15%)	1039 (50%)	2281	2.94	8	776
				2078 (100%)	4432	2.89	8	1534

Simulation Results on Telestra

$used\ T$	covered E	probe cost	probe cost	probe cost	# of probes
(as $\%$)	(as %)	total	average	maximal	
17 (5%)	196 (25%)	558	3.44	7	162
	392 (50%)	802	3.46	8	232
	588 (75%)	1435	3.30	7	435
	769 (98.1%)	1436	3.25	9	442
38 (10%)	196 (25%)	519	3.00	5	173
	392 (50%)	911	2.99	5	305
	588 (75%)	1492	3.33	5	452
	769 (98.1%)	1490	3.13	5	476
52 (15%)	196 (25%)	457	2.77	5	165
	392 (50%)	630	2.50	5	248
	588 (75%)	1390	3.00	5	463
	769 (98.1%)	1262	2.58	5	490
88 (25%)	196 (25%)	337	2.88	3	117
	392 (50%)	946	2.92	4	324
	588 (75%)	1371	2.77	4	495
	769 (98.1%)	1520	2.87	4	530

Simulation Results on Approximation Algorithms

Simulation of PLP algorithm using 15% of nodes as terminals, and covering all edges, and k is 1/2 of the probes of LCP.

Name	V	average degree	$ \mathcal{T} $	# maximal-cost	# maximal-cost
				before merge	after merge
Telstra	351	2.336	52	5	9
Sprintlink	604	3.77	90	5	10
Verio	972	2.92	145	8	10
Level3	625	8.41	93	11	11
AT&T	631	3.29	94	8	10

Simulation

- 1. Not all edges randomly selected can be covered by a probe
- 2. The number of hops accounts for the cost of a probe
- 3. Terminals resides in backbone nodes

Outline

- ➤ Why motivation?
- ➤ What abstract model?
- ➤ How algorithms?
- ➤ How good simulation results?
- ➤ Summary

Future Work

- 1. Consider the location and/or number of terminals, see related work (Bejerano & Rastogi INFOCOM'03)
- 2. $(1 + \epsilon)$ -approximation algorithms for **PLP** and **DLP**, based on the PTAS solutions to the Minimal Makespan Problem & Bin-packing Problem ?
- 3. 2-criteria optimization problem (probe traffic, # of terminals), the Pareto optimality?
- 4. Topological issues should be taken into account
- 5. Online version of this topic