
End-to-end Service Quality Measurement Using
Source-routed Probes

Fei Li
Department of Computer Science

Columbia University
New York, NY 10027

Email: lifei@cs.columbia.edu

Marina Thottan
Center for Networking Research

Bell Labs
Murray Hill, NJ 07974

Email: marinat@research.bell-labs.com

Abstract— The need to monitor real time network services
has prompted service providers to use new measurement tech-
nologies, such as service-specific probes. Service-specific probes
are active probes that closely mimic the service traffic so that
it receives the same treatment from the network as the actual
service traffic. These probes are end-to-end and their deployment
depends on solutions that address questions such as minimizing
probe traffic, while still obtaining maximum coverage of all the
links in the network. In this paper, we provide a polynomial-time
probe-path computation algorithm, as well as a �-approximate
solution for merging probe paths when the number of probes
exceed a required bound �.

Our algorithms are evaluated using ISP topologies generated
via Rocketfuel. We find that for most topologies, it is possible to
cover more than ��� of the edges using just �� of the nodes as
terminals. Our work also suggests that the deployment strategy
for active probes is dependent on cost issues, such as probe
installation, probe set-up, and maintenance costs.

I. INTRODUCTION

The emerging need to support real-time services and ap-
plications over a converged IP network has prompted service
providers to monitor network wide service performance and
service availability. In addition to having sufficient capacity
to support the required throughput, service performance also
depends on the impairments due to routing, such as re-
convergence times and service disruption duration [21]. Thus,
the performance and availability of a network service depends
not only on available bandwidth, but also on router architec-
tures and the design of the control plane. Evaluating the impact
of network impairments on services can best be performed
by end-to-end probes, which can mimic the behavior of the
specific service being monitored. These end-to-end probes can
track the changes of crucial performance parameters, such as
network delay and loss. End-to-end probes fall in the general
category of active probes.

Current measurement methods, those based on the stan-
dard Simple Network Management Protocol (SNMP)-based
polling [35] or link-level measurements, cannot be used to
model network services. SNMP only provides a device centric
view of performance, while link-state metrics such as those
based on Hello packets can only be used to detect link fail-
ures/availability. Unlike employing end-to-end probes, neither
of these methods can be used directly to measure end-to-end
delay, loss, and the impact that these performance metrics

have on service quality. In this work, we explore the issues
surrounding the deployment of end-to-end network probes
and design optimal probe deployment algorithms to detect
service quality degradation over the IP path provisioned for
the specific service. For example, VoIP probes designed to
monitor stringent end-to-end delay and loss requirements.

There are different types of end-to-end probe mechanisms
[12], [26]: one-packet methods such as pathchar [22], the
packet pair family [31], IP Management Protocol (IPMP) [27],
and Internet Control Message Protocol (ICMP) [21]. Pathchar
is used for estimating link bandwidths via round trip delays
of packet sequences from successive routers [13]. Packet-
pair methods can be used for estimating available bandwidth
or the bottleneck link rate [9]. Using these � techniques to
obtain end-to-end measurements requires that the measured
data be correlated with the topology information obtained from
traceroute.

IPMP is used for measuring one-way delay and is designed
to overcome some of the limitations of the packet probes
[27]. The IPMP protocol combines both path and delay mea-
surements, thus alleviating the need for correlation with the
traceroute measurement (path information is determined from
the path record field in the IPMP packet, which is populated
by the routers). In [28], the authors propose a user-based path
diagnosis method that overcomes the limitations of pathchar.
In that approach, two end-users of a flow cooperate to find
performance faults that affect their flow. The users do not
make use of any privileged network information, but make
use of packet pair techniques such as ICMP. However the
treatment received by probe packets, such as IPMP and ICMP
at the individual routers, is dependent on the protocol used to
encapsulate the probe packet. The network may prioritize this
probe traffic differently from normal service traffic.

Thus, as noted in [28], any active measurement method
that is out-of-band (not end-to-end); and does not look like
application traffic might experience different network condi-
tions as compared to the service traffic. Therefore, it cannot be
used to measure service quality. An example of an out-of-band
network measurement scheme was proposed by Padmanabhan
et. al. [29] to identify faulty and malicious routing. In that
scheme, the goal was to securely trace the path of existing
traffic, thus preventing routers from misleading specialized

traceroute packets by treating them differently from normal
traffic.

Our service monitoring framework comprises of source-
routed probes crafted to mimic different network services
(e.g. VoIP, Video-on-Demand) [8], [21]. Using the complete
knowledge of network topology, the service provider can
efficiently choose the MPLS probe paths that cover a set
of interested edges, thus reducing the total probe traffic. We
call this the link-covering problem. Service specific probes
are sent along the computed probe paths at some predefined
frequency, and checked for violations in terms of end-to-delay
or loss metrics. Based on the probe paths that experienced
performance degradation, a miscreant-link detection algorithm
[30] can be initiated on the common set of links to isolate
the link that is contributing to the performance degradation.
Source-routed probes provide a deterministic map between the
probe measurements and the associated links. Thus we can
avoid the correlation problem with inaccurate traceroute data
(due to transient congestions), as well as the limitation of path-
record fields in IPMP.

Our framework assumes that, in general, most links have
good operational performance and the goal is to identify the
few links or nodes that may be encountering performance
degradations. We believe that this approach will significantly
reduce the total probing load on the network. The end-to-
end probe design described in this work assumes complete
knowledge of the topology and requires network support for
source-routing mechanisms such as MPLS.

In this paper, we simultaneously address � main issues
related to deploying active network probes: (��) to reduce
the amount of probe traffic, and (��) to minimize the cost
of deploying probes. The cost of probe deployments can be
captured in terms of terminal costs (installing software for
creating a probe terminal), as well as the path costs (capacity
cost of using a specific link) [3].

We formulate our link-cover problem as a combinatorial
graph problem where, we design a set of probes that can cover
a specified set of edges that we are interested in, and every
probe is elementary (does not traverse intermediate nodes more
than once). The design of our minimal total cost probe-paths
is obtained using a greedy approach. This is a polynomial-time
algorithm and is based on the idea of getting the minimal-cost
source-destination path for each edge to be covered. Notice
that our algorithm generates probes without loops, and results
in a set of probes with the minimal total cost. We also consider
� variants of the link-cover problem: one is to minimize the
maximal-cost of any probe while keeping the total number of
probes be � �; the other is to minimize the number of probes
while keeping the maximal-cost of any probe be � ����. We
show that these � variants are NP-hard; and, we design �-
approximation algorithms for them.

Our polynomial-time algorithm, as well as the � approxi-
mation algorithms are evaluated via the simulations on � of
the largest Internet Service Provider (ISP) topologies obtained
from the Rocketfuel project [34]. The evaluation criteria in
each case are (��) the total cost of all probes designed, (��)

the maximal cost of a probe when the total number of probes
is fixed, as well as (��) the average cost of a probe.

We show that, our algorithms perform extremely close to
the optimal solution when the probe terminal (the node that
a probe should start from and end at) set is chosen to be
the backbone nodes. In our prior work [30], we described
and designed probes to be those paths (tours) derived from a
Chinese Postman Tour covering all edges of a graph. However,
the probes deployed in that solution had loops, which made the
solution more tedious requiring a loop detection scheme and
the use of heuristics to eliminate the loops. The elimination
of loops is a necessary step for the practical implementation
of the probes. On the contrary, our current solution method
explicitly accounts for the elimination of loops by finding
probes that are elementary paths (tours) only — i.e. the probe
path never intersects a transit (intermediate) node more than
once.

The rest of the paper is organized as follows: Section II
presents related work, the probe models we consider, as well
as our formal problem statement. In Section III, we introduce
our algorithms along with the complexity analysis. Section IV
presents the evaluation of the algorithms on ISP topologies,
along with the discussion of the results and insights. We
propose problems for future investigations, as well as the
conclusions of our study in Section V.

II. MOTIVATION AND PROBLEM FORMULATION

In this section we place our probe design work in the context
of previous work and highlight the differences in our problem
definition. We also provide an illustration of the the link-
cover problem and provide a formal problem statement. Note
that depending on context, we use the words edge and link
interchangeably.

A. Related work

Network probing with low overhead has prompted a flurry
of research activity in recent past. The IDmaps project [15]
produces the latency maps of the Internet from which latencies
of any arbitrary path can be obtained. However, since only a
relatively few paths are actually monitored, it is possible to
make errors in estimating the latencies of any arbitrary path.
For the overlay network setting, the authors of [10] find the
minimal set of paths to monitor so that the behavior of all
paths can be inferred. Adler et. al. [1] provide a solution to
compute the minimum cost set of multicast trees that can cover
links of particular interest in the network.

Recently, the authors in [5] have provided algorithms for
selecting probe stations such that all links are covered and
computed the minimal set of probe paths that must be trans-
mitted by each station, such that the latency of every link can
be measured. However, the probe paths are computed via IP
routes available from the probing stations. In [20], the authors
consider the problem of probe-path design where they assume
local flexibility — the probe-paths can be selected as either
the current IP route or one of the current IP routes of the
immediate neighbors. The efficient probe node (called beacon)

placement strategy proposed in [25] provides the minimum
number of probe nodes required to deterministically monitor
all network links even in the presence of dynamism in IP
routes.

All of the above work on probe-paths and probe-node
location has focused on IP routes as potential probe-paths.
In the work presented here, the focus is on explicitly routed
probe packets. A closely related work was presented in [6].
This work studies the problem of measuring path latencies
through explicitly routed packet probes while minimizing the
overhead imposed by the probe traffic. However, probe packets
are generated using a different deployment architecture. In [6]
all probes originate from a central point in the network. Our
link-cover algorithms focus on the design of probe paths and
differs from [6], since we can choose probe paths (source-
routed) that originate and terminate from any given set of
terminal nodes in the network. This new problem setting raises
a series of natural questions: (��) how to define a probe? (��)
how to find a minimum cost set of probes to cover a given set
of edges? and (��) what is the tradeoff between the number of
probes and the cost of probes? In this paper, we address the
above questions, by providing theoretical limits and qualitative
evaluation of the algorithms through simulations over ISP
topologies.

B. Problem description

Fig. 1 provides an illustration of the link-cover problem.

����
����
����
����
����

����
����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

a

d

f
g

h

b

10

10

10

10

10
50

10

10

10

Probe 1

Probe 2

Probe 3

e c

Fig. 1. An example showing the link-cover problem.

Consider the following scenario, in the given network, there
are � nodes, � � �. �, �, and � act as the terminals and all
others are regular nodes. Each probe we want to create must
locate its end-points at either �, �, or �. Each network link
has a cost (weight) as specified in the figure. The high-lighted
edges are the network links of interest. We want to design a
set of probes that covers all high-lighted (interesting) edges.

In this example, we have � probes, probe � goes from
terminal �, traverses links ��� ��, ��� 	�, and reaches back to
terminal �; probe � goes from node �, traverses links ��� ��,
���
�, �
� �� and arrives at terminal �. Probe � is a tour. Probe
� starts from terminal �, runs across edges ��� ��, ��� �� and
ends at terminal �. All the links of interest are covered by
these � probes. We use the sum of the weights of all edges

of a path to represent the cost of the probe. Clearly, the total
cost of the set of probes is ���� ��� ���� ���� ��� ���
��� � ��� � �� � ��� 	 �
�, and the maximum cost probe is
probe �, whose cost is ��. From this example, link ��� �� is
covered by � probes, and its weight counts twice to the total
cost of these � probes. Note that a probe (elementary path)
is allowed to have both its ends lie at the same terminal, like
probe �. Also, probe � is redundant in covering all specified
edges. We can remove probe � and all interesting edges are
still covered by probes � and �, and the total cost is reduced
to ��� from �
�.

C. Problem formulation

In this subsection, we present a formal description of the
link-cover problem. We model the network as a connected,
undirected graph, � 	 ����, is the set of the vertices
(which represents the nodes in the network), and � is the
set of edges (which represent the network links); � � 	 � and
��� 	 �. Note that there is no self-loop in �: there is no edge
that goes from one node and returns to the node itself, and �
is not necessarily a planar graph. Without confusion, in graph
�, we use node and vertex, link and edge interchangeably.

There is a cost function over each edge
 � �, �� � �� �
�
� . This function denotes the cost of a probe when it uses a

specific network link (edge). A set of specific nodes � in the
graph are called terminals, � � . � is the set of edges that
we are interested in, and � � �. Normally, � �	 � (� � �� � �
�), and � �	 � (� � ��� � �). A path � is defined to be a
set of concatenated edges between � nodes in , and these �
nodes are called ends of the path. If both ends of a path are
the same node, the path can also be called a tour. Given a
path � , we use
 � � to denote the fact that path � contains
(runs across) edge
. Except for end-nodes, all nodes that a
path crosses are called intermediate nodes. Notice that, in the
general case, a path may have loops — a loop is defined to be
a sub-path that crosses an intermediate node more than once.
A path (resp. tour) not traversing any intermediate node more
than once is called an elementary path (resp. tour); that is, an
elementary path (resp. tour) is loop-less. Also, the path from
node �� � to node �� � is denoted as �� � ��; and the
cost of a path � is defined as ��� � �	

�
��� ��.

A specific path called probe is defined to be an elementary
path from one terminal �� � � to another terminal �� � � .
That is, both ends of a probe must be terminals. �� and �� are
not required to be distinct; if �� 	 ��, it results that the probe
is a (loop-less) tour. The motivation of enforcing a probe to
be elementary is that, typically, a route with loops are not
permitted in an IP network; such a path will be rejected by
the routers. Therefore, a feasible solution to the link-cover
problem is to find a set of elementary probe-paths 	 such
that every edge
 � � (� �) is covered by at least one path
� � 	 .

Input instance: given an undirected, connected weighted
graph � 	 ����. � � � and � � . A mapping �� exists,
from each edge
 � � to a non-negative number representing
its cost, �� � �� � �

� ; for each edge
 � �, ��
 �. The set

of probe-paths 	 is defined as all such probes (� 	 � � � ��),
��� �� � � . For each edge
 � �, there exists at least one
probe � � 	 , such that
 � � . Our optimization objectives
can be represented as three subproblems:

1. Minimum-cost link-covering Problem (LCP): in which
the goal is to minimize the total cost of the probes
required. The cost of the probes is measured in terms
of the traffic load on the network. That is,

��
�

��� ��� ��

subject to:

�
 � �� ��� � 	 �
 � �� �

��� � 	 � �� has no loop�

2. Primal link-covering problem (PLP): in which the goal
is to minimize the maximum cost of a probe. The cost of
a probe can be measured in terms of latency, throughput,
or length. That is,

�� ����� ��� �

where �	� � ��

subject to:

�
 � �� ��� � 	 �
 � �� �

��� � 	 � �� has no loop�

where � is a constant, and is the upper bound of the
number of probes that can be used.

3. Dual link-covering problem (DLP): in which the goal is
to minimize the total number of probes. The total number
of probes reflects the cost of probe installation. That is,

�� �

where �	� 	 �

subject to:

�� � 	 � ��� � � �����

�
 � �� ��� � 	 �
 � �� �

��� � 	 � �� has no loop�

where, ���� is the given maximal cost allowed for any
probe, and � is the number of probes required.

III. ALGORITHMS AND ANALYSIS

In this section we describe the complexity of the three
variants of the link-cover problem. Since LCP is not a NP-hard
problem, we present a polynomial-time algorithm designed
for LCP and a �-approximation algorithm for PLP and DLP
respectively. Before we proceed to introduce the algorithms,
we first analyze the complexity (hardness) for PLP and DLP.

A. Complexity analysis for relaxations of PLP and DLP

Note that in our problem setting in Subsection II-C, we
enforce a probe to be an elementary path or tour. Even if we
relax our problem setting, such that a probe is not necessarily
an elementary path (can have loops), PLP and DLP are still
NP-hard. This can be easily generalized from the Min-Max �-
Chinese Postman Problem (MM �-CPP), and the Capacitated
Arc Routing Problem (CARP) respectively.

Briefly speaking, PLP is the generalization of MM �-CPP
when we let � 	 � and � 	 ��, where � is the depot node
in MM �-CPP. At the same time, DLP is the generalization
of CARP when we let � 	 � and � 	 ��, where � is
the depot node, and ���� is the vehicle capacity in CARP.
We skip introducing MM-�-CPP and CARP since they are
classical NP-hard problems and can be found in the references
herein [2], [4], [16], [23].

B. NP-hardness of the primal link-cover problem: PLP

Please note that, if a probe is restricted to be defined as
an elementary path (tour), we cannot induce PLP’s hardness
directly from the Min-Max �-Chinese Postman Problem.

Now, consider the following problem (minimal makespan
scheduling): given a set of tasks � , there are � identical
machines (� is a fixed number), each task � � � requires
time �� to be finished, and any task can be run on any
(identical) machine. The objective of this problem is to min-
imize the makespan, which is the maximal completion time
for any machine in this schedule. This problem, minimizing
makespan scheduling, is known to be NP-hard (even for � is
�) and there exists a simple greedy policy, which results in
a �-approximation algorithm [17], [36]. Also, a polynomial-
time approximation scheme (PTAS) algorithm improves the
approximation ratio to be � � � [19]. We will prove PLP’s
hardness via a transformation to the problem of minimizing
makespan scheduling.

Theorem 1: The decision version of PLP is NP-hard.
Proof: Theorem 1 is proved by the contradiction

method via a transformation from the problem of minimizing
makespan scheduling. Given any instance � of the minimum
makespan scheduling problem, we shall prove that we can
construct an instance � � to PLP (in polynomial-time), such
that if � � satisfies PLP in polynomial-time, then � satisfies
the decision version of the minimum makespan scheduling
problem in polynomial-time. Therefore, assume there exists
a polynomial-time algorithm for PLP, then, the problem of
minimizing makespan over multiple machines would not be
NP-hard since it can be solved via the algorithm for PLP in
polynomial-time. Details of the proof follow:

Consider an instance � of the minimum makespan schedul-
ing problem: there are � identical machines, and a set of
jobs � . Each job � � � requires processing time of � �. Now,
we construct an instance � � to ���. In � �, there is a graph
� 	 ����, � � 	 �� �� �� �. Each job � � � corresponds
to � nodes in graph �, and without loss of generality, we can
view each job has a left node and a right node in the graph.

The weight of the edge connecting the left node and the right
node is ��.

�������
�������
�������

�������
�������
�������

������
������
������
������

������
������
������
������

������
������
������

������
������
������

�������
�������
�������

�������
�������
�������

�������
�������
�������
�������

�������
�������
�������
�������

������
������
������
������

������
������
������
������

S1 S2

0

0

0

0

0 0

00

0

0
0

0
0

0

0

(f, f’) cost: 10.5

(d, d’) cost: 1

(e, e’) cost: 3

(c, c’) cost: 7

(b, b’) cost: 12

(a, a’) cost: 10

Fig. 2. A figure illustrating the proof of Theorem 1. Not all links are shown
in this figure.

Suppose there are � specific nodes �� and ��. � 	 ��� ���.
Now, we link �� to each job’s left node and set the weight of
the link to be �; we also link each job’s right node to �� and the
weight assigned to that link is �. Furthermore, we link each
job’s right node to all other jobs’ left nodes and assign the
weight of the link by �. The corresponding edges (connecting
a job’s left node and right node) of all jobs consist of the set
of interesting edges � � �. Till now, we create an instance � �

to PLP in which only � terminals, �� and ��, exist. Set � is
the set of edges we want to cover and the number of probes
to be used � is limited by � (� � �); and � is the number
of identical machines in instance � to the minimum makespan
scheduling problem.

Clearly, for this instance � �, if we can construct a
polynomial-time algorithm that will minimize the maximal
cost of a probe, then, given the existence of � 	 � probes
(the more probes we use, the smaller the probe length), we
see that in the instance � , all the edges belonging to the
same probe lead to all corresponding jobs scheduled on one
machine. Notice that there are � 	 � machines to run these
jobs. So, any instance to the minimum makespan scheduling
problem can be converted in polynomial-time to an instance
to PLP. Since the decision version of the minimum makespan
scheduling problem is NP-hard, the decision version of PLP
is NP-hard. So, Theorem 1 holds.

Refer to Fig. 2 as an example to the proof of Theorem 1.
Given � edges to be covered, �� and �� are only � terminals in
� . The costs of traversing each edge are shown as those in the
figure. Now, assume we limit the number of probes be � 	 �,
and � probes: �� �
��� ��� �
��� ��� � ��, and �� �

��� ����
�
�
���
��� ����
�	� 	 ��� �� are found in a
polynomial-time algorithm for PLP; with the maximal cost of
a probe ��. So, correspondingly, in the minimum makespan
scheduling problem, these � jobs can be optimally arranged
in � identical machines, one is running jobs with processing
time ��, ��; and one is running jobs with processing time �,
�, �, and ����. The optimal makespan is ��.

Next, we consider the NP-hardness of DLP. We notice that
DLP is the counterpart of PLP, and, they have the same NP-
hardness. Similarly, the hardness of DLP cannot be proved
via a direct transformation from CARP. Consider a classical
NP-hard problem: bin-packing problem. Given � items with
sizes ��� ��� � � � � �� � �� ��, find a packing in unit-sized bins
that minimizes the number of bins used. Bin-packing problem
has been proved to be NP-hard [36]. From that, we have

Corollary 1: The decision version of DLP is NP-hard.
Proof: Corollary 1 can be proved via a transformation

from the classical problem of bin-packing [11]: same as what
we have constructed in the proof of Theorem 1, except that
the weight of the edges we want to cover corresponds to the
value of an item in the bin-packing problem. The maximal cost
of a probe is limited by ����; and ���� 	 � is the maximal
capacity of a bin in the bin-packing problem.

Clearly, for this instance � �, if we can construct a
polynomial-time algorithm that can minimize the number of
the probes, then, given the existence of each probe cost
� ����, we see that in the instance � , the number of probes
reflects the number of bins to be used. So, any instance to
the bin-packing problem can be converted in polynomial-time
to an instance to DLP. Since the decision version of the bin-
packing problem is NP-hard, the decision version of DLP is
NP-hard also. So, Corollary 1 holds.

Given the fact that PLP and DLP are NP-hard, there is
no efficient algorithm solving them. So, in Subsection III-C,
we will design approximation algorithms for solving them.
Some previously well-known results that will be useful in
understanding our algorithms are, (��) finding a Chinese Post-
man Tour in a mixed graph is NP-hard. However, there exists
an efficient algorithm to calculate a Chinese Postman Tour
in an undirected graph; (��) there is an efficient algorithm
for calculating the shortest-path between any � nodes in an
undirected, connected, and non-negative weighted graph. If the
weight of an edge is allowed to be negative, the shortest path
problem is NP-hard; and (��) there is an efficient algorithm
for breath-first search or depth-first search. Using the breath-
first search algorithm, we can get a simpler shortest path
algorithm (in linear time) on un-weighted, undirected graphs.
Based on the above mentioned techniques � and �, we design
a polynomial-time algorithm for LCP and a �-approximation
algorithm for both PLP and DLP.

C. Algorithms

In the following, we will design a polynomial algorithm
that can compute a set of elementary probes 	 , such that all
edges in � are covered by at least one path � � 	 , and the
total cost of the probes is minimized. We will also present a
�-approximation algorithm for PLP; with a little modification
on the algorithm for PLP, we get a �-approximation algorithm
for DLP.

Without loss of generality, we use ��� � � � � ��� � to denote
the set of terminals, and we use ��� �� to denote the edge
connecting node � and node �; � is the left node for the
edge and � is the right node for the edge. Remember that,

in undirected graphs, there is no difference between left node
and right node of an edge. Here, we specify “left” and “right”
only for ease of illustrating our algorithms. In the following,
whenever we mention a shortest path, we are talking about
the shortest path on a weighted, undirected graph; we refer
to the shortest path as the probe (path) that is with minimal
cost.

1) A polynomial-time algorithm for LCP: Before we
introduce our algorithm, we have one obvious lemma saying:

Lemma 1: Given an edge
 	 ���� ���, a set of terminals
� , the shortest path from one terminal to the nodes �� and ��,
say � �	 �� � ���� ��� � �� , is either an elementary path, or
� is a tour that has only one loop. Here, ��� �� � � , ��, and ��
are not necessarily distinct.

Proof: Please note that the shortest path stated in
Lemma 1 may not be a probe though both its ends are
terminals — since a probe is required to be only an elementary
path (tour). The proof of Lemma 1 is straightforward: given
a path � �	 �� � ���� ��� � �� , first of all, we notice that
there is no other terminals in-between �� � ��, ���� ���, and
�� � �� . Otherwise, the given path is not a shortest path
from the nodes of the given edge ���� ��� to a terminal in � .
The reason is that since we apply the shortest path algorithm
(on non-negative weighted graph) in locating the terminal for
��, so, once we meet a terminal for ��, any other possible
terminal will have a greater distance to ��. Therefore, there is
no terminal other than �� and �� in �.

If both nodes of the edge
, �� and ��, have one same
terminal as their destination of the shortest paths, exactly one
loop is generated. Lemma 1 holds.

Lemma 1 serves the purpose of finding the shortest probe
that covers only one edge. We notice that, given an edge
 	
���� ��� (
 � �), and given the set of terminals � � , �� � �
�, there are at most �� �� pairs of terminals that can serve as the
probe-ends for a probe covering edge
. Also, if the shortest
path to �� is given, say �� 	 �� � ��, in order to avoid
generating a loop, other than �� � � , any intermediate node
in the path, � � �� (� �	 ��) cannot be one of the intermediate
nodes in the path from �� to a terminal, �� � �� . Therefore,
once we get the shortest path from one terminal to ��, to
avoid generating loops, we need to remove all intermediate
nodes � in the path, and remove all edges associated with
those intermediate nodes� � from the graph� 	 ����. Then,
given the remaining graph� � 	 � � �� ����� (� is the set
of intermediate nodes in the shortest path from one terminal
to ��, and � � is the set of edges associated with those nodes),
we apply the same procedure to find a shortest path �� from
�� to another terminal � � . Clearly, if such a path exists,
�� � ��, it is an elementary path (tour).

Remember that, we should take care of the order of picking
�� and ��. Without loss of generality, we index all terminals,
and if node �� has the same distance to more than one terminal
in � , we select the one that is with a smaller index number.
With such an approach, the procedure for locating the nearest
terminal for a given node is fixed in polynomial-time. Also, if
�� cannot be found, then, there is no elementary path (tour)

containing the edge
.
Now, given �� �� pairs of terminals, we can get at most �� ��

different elementary path (tour) covering each edge
 � �.
Then, among those �� �� elementary paths (tour) we calculated,
we can determine which one is the shortest one covering the
edge
 	 ���� ���. We will select it as the shortest elementary
path that we assign to
. Therefore, followed by Lemma 1,
we have,

Lemma 2: Given an edge
 	 ���� ���, a set of terminals � ,
there exists a polynomial-time algorithm to find the shortest
(minimum-cost), and elementary path from � � � ���� ��� �
�� . ��� �� � � and ��, and �� are not necessarily distinct.

Proof: Given a terminal �� � � , there exists a
polynomial-time algorithm to find the minimal-cost path from
�� to ��. Then, we remove all intermediate node in the path
and their associated edges, from the remaining graph, we apply
the same algorithm to get the minimal-cost path from �� to
a terminal �� � � . We conclude that the concatenated path
(tour) (a path from a terminal to ��, edge
, and a path from ��
to a terminal) is elementary. Among all feasible concatenated
paths or tours (at most �� �� paths or tours since both �� and
�� can be the first node in finding a path in the procedure),
the minimal-cost one can be found and it serves as the probe
covering edge ���� ���.

Now we claim that, any shorter (less cost) path or tour that
covers edge ���� ��� will result in a loop. Assume a shorter
path exists (say, an optimal path), it has � parts, without loss of
generality, we assume it consists of a path from one terminal
to ��, edge
, and a path from �� to one terminal. So, the
optimal path from one terminal to �� is the same as one we
get; note that with the same distance to different terminals, the
node will choose the one with the smallest indexed number.

Refer to Fig. 3 for an example illustrating the proof of
Lemma 2.

T1

T2

T3

T4

V

E1

V1

V2 V4
E2

V3

Fig. 3. A figure illustrating the proof of Lemma 2.

Assume there are � edges we want to cover
� 	 ���� ���
and
� 	 ���� ���. We get � elementary paths to cover them
and one path covering
� starts from terminal �� and ends at
terminal ��; the other path covering
� starts from terminal ��
and ends at terminal ��. Assume these � paths interact at node
�. Now, we consider the path covering
�, when it goes from
node �, it chooses terminal �� instead of terminal �� as its end

since the path length from � to �� is larger than the path length
from � to ��. At the same time, the path covering
� chooses ��
instead of �� as its terminal, so, the path length from � to �� is
shorter than that of the path from � to ��. These � conclusions
conflict, thus, we state that our assumption is wrong. So,
any � elementary paths calculated from the shortest-distance
algorithm, cannot intersect with each other.

In summary, if there exists a shorter path from �� to one
terminal, then the path should intersect with one intermediate
node in the path to ��. Therefore, it turns out that the path
is not elementary. One thing that we should note is, if path
�� and �� share an edge, they must share at least one node.
From the above analysis, Lemma 2 holds.

¿From Lemma 1 and Lemma 2, we immediately have,
Theorem 2: There is a polynomial-time algorithm for find-

ing a set of probes 	 , such that all interesting edges are
covered by the probes and

�
��� w(P) is minimized.

Proof: Theorem 2 can be proved by a construction
method directly from Lemma 1 and Lemma 2. Lemma 1
and Lemma 2 provide a polynomial-time procedure to find an
elementary path (tour) covering any given edge
. The above
lemmas provide the background for finding the minimal total-
cost probes covering all edges in �. Notice again, the minimal-
cost path from one node to a given terminal can be calculated
using any shortest-path algorithm over an undirected, non-
negative weighted graph. Once a probe for edge
 is located,
all interesting edges in this probe can be removed from �.
Among those paths with interested edges on it that are also
covered by other probes, we remove that probe from 	 . We
repeat this until there is no such probe in the set 	 . The
above steps remove the redundancy of the probes covering all
required edges. Notice that the greedy approach reduces the
total cost of the probes in each step and each newly generated
probe cannot be replaced by the set of all probes generated
already. So, we can apply the same procedure to find the
shortest path covering the remaining edges in �. We repeat
this until set � is empty.

Then, we get a set of elementary probe paths 	 — a path
covering one or more interesting edges. Finally, we claim the
above procedure results in a polynomial-time algorithm for
LCP in minimizing the total cost of all probes. Theorem 2
holds.

The algorithm describing how to find the set of probes with
the minimal total cost of probes written in pseudo-code is
presented in Algorithm Link-covering for LCP.

2) A �-approximation algorithm for PLP: Notice that
the proof of Theorem 2 is a constructive proof. Assume the
number of elementary shortest paths we get is � �, we realize
that if the number of probes for all edges in �, � � � �, we can
say that we have found the optimal solution to PLP, which is
the maximal-cost of the probe in the probe-sets we found. If
�� � �, we need to reduce the number of probes by merging
some of them until the number of elementary paths (tours) is
�. In order to merge � elementary paths, we claim that, under
a bounded cost for the maximal-cost probe, � elementary paths
(probes) can be merged into one elementary path (probe).

Algorithm 1 Link-covering for LCP(� 	 ����)

Given a graph � 	 ����;
Index all terminals;
The set of interesting edges is �;
for each edge
 �	 ��	� �
�,
 � � do

for each terminal �� � � do
Find a shortest path �� 	 �	 � �� along with the
indexed distance of a node;
Choose the nearest terminal, ties broken in favor of the
smaller indexed terminal;
Remove all intermediate node � in ��, between �	
and �� from graph �;
Remove all associated edges for node set �;
On the remaining graph � 	 � � �� � � ���, find
the shortest path �� 	 �
 � �� , �� � � ;

end for
end for
Among all elementary paths or tours, choose the one with
minimal total cost;
Denote it as probe �� for edge
;
Associate each node in �� with the difference between its
shortest distance to �	 and �
 and the total cost of the edges
it covers on that path;
Use associated distance as the shortest path calculation;
Remove all interesting edges
�, � � � �
�,
� � ��;
Mark
 and all removed edges as � to ��;
if 	 has been covered by other probes and 	 � �� then

Mark 	 as � ;
end if
for each probe �� � 	 do

if �	 � ��, 	 is marked � , 	 � � then
Remove the heaviest probe ��;

end if
end for

Before we proceed to our approximation algorithm, we
give several definitions that help us illustrate our algorithms
clearly and efficiently. Briefly speaking, for our approximation
algorithm for PLP, we first get a series of elementary probes
as we did in the algorithm for LCP, then, if the number of
probes �� is more than what we can afford, say � � � �, we
will merge probes such that the number of probes is reduced,
while we sacrifice the maximal-cost of a probe in the probe
set. The following definitions are related to the procedure of
merging � probes.

Definition 1: Merge distance: the minimal cost of the final
probe after connecting � probes via linking one node in one
probe to another node in the other probe.

Clearly, from our discussion in Subsection III-B, there exists
an efficient algorithm (polynomial-time) to identify the cost of
linking � probes. Please note here, not every pair of probes
can be merged into one longer probe.

Definition 2: Shared edge: if several probes (
 � probes)
cross an interesting edge
 � � that we want to cover, edge

is said to be shared by all the probes that are incident on it. If
an edge only has one probe to cover it, that edge is necessary
to that probe.

Clearly, we know that given any � probes, we can link them
together while leaving (possible) shared edges aside. Based on
the above definitions, we have,

Lemma 3: Given any � elementary paths (tours) (there
may exist other terminals on the path since such a path
may be concatenated by several elementary paths covering a
given edge), there exists a method that concatenates these �
elementary paths and still get an elementary path.

Proof: Lemma 3 can be proved by the contradiction
method. For each elementary path, the left or right node of
an edge has the minimum-cost to the nearest terminals in the
elementary path we find. If � elementary paths �� and �� have
a node � that both of them traverse, we can conclude that for
the given node � in these � paths, there are � terminals that
both have minimal-cost to it. Refer to Fig. 4 for an illustration.

T1

T2

V

E1

V1

V2 V4
E2

V3Path P1
Path P2

W

Fig. 4. An example showing the proof of Lemma 2.

Both path �� and path �� share the same node �,
� is the
edge that �� is supposed to cover, and
� is the edge that �� is
supposed to cover. �� � � and �� � � are the terminals for ��
and �� end. Now, investigate the paths from � to �� and from
� to ��. Since when we locate the probe �� for edge
�, ��
ends at terminal ��, so, �
������ � ��� � �
������ � ���;
otherwise, �� will end at �� based on the order of the terminals
and the distance of the terminals we consider. In the same
manner by analyzing the path ��, we conclude �
������ �
��� � �
������ � ���. This conflicts with the conclusion we
made before. Therefore, the elementary paths �� and �� do
not traverse the same node.

Furthermore, we can link �� and �� to generate an elemen-
tary path for both paths if there is no shared intermediate node
(or no shared edges) in path �� and in path �� (as illustrated
in Fig.2). If path �� and path �� have shared edges, there is
no way to reduce the number of probes by removing � � or
�� only (remember that, for any probe all of whose interested
edges are shared has been removed from the probe set 	 by
Algorithm Link-covering LCP). Based on the above analysis,
Lemma 3 holds.

In the following, we present an approximation algorithm for
PLP. Let � denote the maximum-cost of a probe path in a

graph � 	 ���� under the restriction that there are at most �
probe paths (our solution). We use ��� to denote an optimal
solution for the ����� ���� . The number of probes is � �,
and returns the maximum length of a probe.

First of all, we know that before we merge any probes
together, after the Algorithm Link-covering for LCP, we get
a series of elementary paths (tours) as the probes for the
interesting edges. Assume the number is � �. If �� � �, we
return the optimal maximal-cost of a probe. If � � � �, we
should merge elementary paths in order to reduce the number
of probes; while, we have the maximal-cost of the probe as
the lower bound of ��� . The merge part is similar to the bin-
packing problem if we regard the probe-length as the bin’s load
and the number of probes is limited as the number of bins, �.
With the goal of reducing the complexity of the algorithm, we
apply optimal suit method [11] to merge any � probes: if their
probe distance is the smallest among all pairs of probes, these
� elementary paths are merged if possible. The algorithm for
��� goes as follows.

Algorithm 2 Link-covering for PLP (� 	 ����� �)

Given a graph � 	 ����, � of probes � �;
Apply Algorithm Link-covering for LCP;
if �� � � then

Return the maximal-cost ���� � 	 ;
else

Calculate the merge distance for each pair of probes
��� �� � 	 ;
while �� � � do

Merge(��, ��) with the minimal merge distance;
�� � �� � �;

end while
end if

The procedure for merging � elementary probes, we call
Merge(��, ��). The nearest nodes are defined to be the node
pair �� � �� and �� � ��, linking these � nodes makes the
final probe connecting �� and �� the minimal newly generated
probe cost.

Algorithm 3 Merge(��, ��) in Algorithm Link-covering for
PLP (� 	 �����)

for � shared edge
 � �� and
 � �� do
if
 is shared by another probe 	 then

Link �� and �� at the connecting node �;
else

Return 	���
 for Merge(��, ��);
end if

end for
if �� and �� have no shared edges between them then

Link the nearest node between them;
end if

Theorem 3: The algorithm Link-covering for PLP is �-
approximation.

Proof: Theorem 3 states a fact that the algorithm Link-
covering for PLP works the same way as the optimal suit
algorithm for bin-packing [36], if we regard the number of
probes as the number of bins, and the maximal-cost of a
probe as the maximal-load of a bin. Directly following the
bin-packing algorithm’s analysis, we can prove Theorem 3.
The detailed proof goes as follows.

The lower bound of ��� (remember that we use ���
to denote the optimal maximal-cost of probe, instead of the
optimal algorithm itself) corresponds to a set of � probes,
such that each interesting edge
 � � is covered by at least
one probe, and the maximal-cost of a probe in such probe
set is minimized to be ��� . Notice that, in each step we
merge � elementary paths, the increase of the probe’s cost is
bounded by ��� as we choose the minimal merge distance.
Also, we note the sum of the total cost of the covered edges
to the nearest terminal is the lower bound of � � ��� , and
the cost of each probe to be merged is also the lower bound
of ��� . So, in each step, the cost of any probe we generate
is still bounded by ����� . Therefore, Theorem 3 holds.

3) A �-approximation algorithm for DLP: In the fol-
lowing, we introduce a �-approximation algorithm for DLP.
Remember that the variant DLP is the counterpart of the
variant PLP.

Assume the maximal cost of a probe is limited by ����, our
goal is to minimize the number of probes to be employed. First
of all, with a fixed initial number � � 	 � (as the number of
probes used), we will apply the Algorithm Link-covering for
PLP to estimate the maximal length of a probe we generate.
If in the resulting probe set 	 , we get the maximal cost of a
probe is ��, and if �� � ����, we claim that �� is the minimal
number of probes to be used. If �� � ����, we double �� (��

is increased by � time), � � � ����, and then, apply the same
algorithm for PLP to locate a set of probes and the maximal-
cost of a probe in it. We repeat doing this until we end up
with a set of probes 	 in which the maximal-cost of probe
� ����, we return �� and claim that �� � �� � (to be proved
in Theorem 4).

Algorithm 4 Link-covering for DLP (� 	 ����� ����)

Given a graph � 	 ����, the maximal-cost of a probe
����;
�� 	 �; � 	�;
while � � ���� do
�� 	 �� �;
Apply Link-covering for PLP (� 	 ����� � �);
Get a probe set 	 and the maximal-cost �;
if � is covered by 	 (a reasonable solution) then

Return �;
else
� 	�;

end if
end while

Using Theorem 3 and following the same idea, we have,

Theorem 4: The algorithm Link-covering for DLP is �-
approximation.

Proof: Theorem 4 can be proved via following Theo-
rem 3 directly. From Theorem 3, we know that, if the number
of probes used is increased by � time, then, the Algorithm
Link-covering for PLP returns the lower bound of the optimal
maximal-cost of a probe, when the optimal algorithm has �
probes to be used; our algorithm is allowed to employ �� �
probes. So, in Algorithm Link-covering for DLP, in the step
� � ����, the number of probes increases up to � times
the number of probes that an optimal algorithm will use. So,
Theorem 4 holds.

IV. SIMULATION RESULTS

Our link-cover solutions are evaluated on different realistic
ISP topologies obtained from Rocketfuel project [34]. We
choose to use the largest � topologies since they provide
the most interesting analysis in terms of the complexity of
the network being monitored. For each set of simulations we
performed � runs (in some cases up to 10 runs) to obtain
statistically significant results. Each link in the network is
assigned a cost which is its inferred latency (link cost). In
each case, we choose (a fraction of) the backbone nodes as
the potential set of terminals.

Since for ISP topologies, the number of terminals (backbone
nodes) is relatively large when compared with the total number
of nodes (almost half), we restrict the choice of number of
terminals to be ��, ���, and ��� of the total number of
nodes � � of that topology. However, the chosen terminals
were placed at randomly chosen backbone node locations.
Also, the set of interested edges to be covered is chosen to be
���, ���, ���, and ���� of the total number of edges in
the network.

Table I shows the results of our polynomial-time algorithm
LCP on different ISP topologies. The algorithm is used to
compute the number of probes required to cover the interested
edges using �� and ��� of the total nodes as terminals.
Two sets of interested edges comprising of ��� and ����
of the total edges are considered. In each case, we obtain the
maximal-cost of a probe, the average-cost of a probe, as well
as the total cost of all the probes. An important scenario to
note is where (for Telstra and Sprintlink networks), not all
edges randomly selected can be covered by a probe since the
probe is required to be an elementary path linking � terminals.
The specific question of the impact of the number of probe
terminals on coverage is studied using the Telstra topology
and the results are presented in Table II.

In the discussion of our algorithms and analysis, we consid-
ered the general case of undirected, and non-negative weighted
graphs. So, the cost of probe traversal is assigned as a non-
negative real number. Without loss of generality, and for
simplicity in experimental design, we use the number of hops
to denote the cost of the path. That is, we calculate the shortest
path on an un-weighted graph.

¿From Table I and Table II, we see that as expected the
number of probes almost doubles as the number of interested

edges increases from ��� to ���� of all edges in the network.
Similar effect is observed in the total probe costs: covering
additional edges with the same number of terminals increases
the total probe costs, while increasing the number of terminals
decreases total probe cost. We also observe that the maximal
cost and the average cost of the probe decreases as the number
of terminals increases. Furthermore, the values of these metrics
are found to be comparable for all � topologies.

The evaluation of the �-approx PLP algorithm is presented
in Table III. Here, we are targeting the fixed � as �!� of the
number of probes obtained using LCP. The table provides
a comparison of probe characteristics (number of probes,
maximal-cost of a probe) obtained by the polynomial algo-
rithm LCP and the number of probes obtained after merging
using the PLP algorithm.

A. Discussion

As described in the introduction the goal of this work was
to design optimal probe paths to cover the selected edges in a
network. The optimality criteria was evaluated using metrics
such as the total cost of the probes deployed, maximal cost
of the probe, and the number of probes required to cover the
edges. Under these evaluation metrics, we find that the LCP
algorithm provides very good performance.

We note that with just �� of the nodes as terminals we
can cover almost ���� of the edges. Increasing the number
of terminals to ��� does not provide any additional edge
coverage, and reduces the total cost of the probes on the
average by only �����. This is an important finding since
using fewer terminal nodes implies that fewer nodes need to be
enhanced to host probe generation software (probe installation
costs are minimized).

Using �� of the nodes as terminals, and ���� coverage
of links, the average cost of a probe is found to be ����;
suggesting that the load induced by probing on the different
network links is minimal. The goal of the PLP algorithm was
to reduce the number of probes by merging the probe paths
obtained using LCP. We find that after merging, the average
percentage reduction in the number of probes is around ���.
This implies that the probe paths identified by our LCP and
PLP algorithms are close to optimal.

We also note that, from Table II, for any given topology,
there is no linear relation between the number of terminals and
the total number of probes or probe costs. We believe that this
effect is a consequence of the shortest path computation used
to determine probe paths as well as some experimental factors
involved with the random choice of the interested edges.

Figure 5 shows the relationship between the maximal cost of
a probe and the number of terminals in the Telstra topology.
We observe that, as the number of terminals increases, the
maximum probe cost decreases. However, we reduce the
maximal probe cost by ��� by increasing the number of
terminals from ��� to ���. Thus, it suggests that even in
terms of minimizing the maximal probe cost, there is no
need to use more than ��� of the nodes as terminals. Thus,
we claim that for the topologies considered here, the gain

10 20 30 40 50 60 70 80 90
3

4

5

6

7

8

9

Number of terminals

M
ax

im
al

 c
os

t o
f a

 p
ro

be

25% of edges

50% of edges

75 % of edges

~100% of edges

Fig. 5. Maximal-cost of a probe v.s. the number of terminals for the Telstra
topology.

expected by solving the dual problem of PLP, namely DLP,
may not be significant. Thus the two step design for probe
based monitoring will consist of the LCP algorithm followed
by PLP.

B. Impact from network topology

From Figure 6, we find that the number of probes required
to cover the interested edge set is almost linearly dependent on
the number of edges in the network. The observation is found
to be true regardless of the number of interested edges or the
number of terminals used. However, from Table I, we see that
the number of nodes does not have any characterizable impact
on the number of probes. We also observe that in the case of
covering all edges, in two of the 5 topologies, increasing the
number of terminals did not improve the edge coverage. The
same number of links are left uncovered in both cases. We
believe that this is a consequence of the location of these edges
in the network with respect to the position of the (randomly)
chosen terminal nodes.

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Number of edges

N
um

be
r

of
 p

ro
be

s

5% terms: all edges

15% terms: 50% edges

5% terms: 50% edges

15% terms: all edges

Fig. 6. The total number of edges in the network v.s. the total number of
probes.

TABLE I

SIMULATION RESULTS FOR LCP (NUMBER OF TERMINAL NODES, AND PERCENTAGE OF EDGES COVERED VERSUS THE OPTIMAL TOTAL PROBE COST,

AVERAGE COST PER PROBE, MAXIMAL COST OF PROBE AND THE NUMBER OF PROBES. � IS THE SET OF TERMINALS; � IS THE SET OF EDGES).

Name �� � ��� used � covered � probe cost probe cost probe cost # of probes
(as �) (as �) total average maximal

Telstra (Australia) 351 784 17 (5%) 392 (50%) 934 3.98 8 235
769 (98.1%) 1614 3.66 8 441

52 (15%) 392 (50%) 707 2.79 6 254
769 (98.1%) 1305 2.67 6 489

Sprintlink (US) 604 2279 30 (5%) 1139 (50%) 3340 3.93 10 851
2277 (99.9%) 6250 3.84 10 1627

90 (15%) 1139 (50%) 2550 2.85 6 894
2277 (99.9%) 4883 2.80 8 1741

Verio (US) 972 2839 48 (5%) 1419 (50%) 3824 3.96 11 966
2839 (100%) 6937 3.97 11 1748

145 (15%) 1419 (50%) 3005 2.87 8 1048
2839 (100%) 5445 2.774 8 1964

Level3 (US) 624 5301 31 (5%) 2650 (50%) 7592 3.23 11 2351
5301 (100%) 15501 3.36 11 4662

93 (15%) 2650 (50%) 6584 2.76 8 2384
5301 (100%) 13107 2.76 7 4756

AT&T (US) 631 2078 31 (5%) 1039 (50%) 3223 4.28 10 755
2078 (100%) 5802 4.15 12 1300

94 (15%) 1039 (50%) 2457 3.00 8 820
2078 (100%) 4534 2.97 7 1527

TABLE II

SIMULATION OF LCP ON TELSTRA TOPOLOGY WITH �� � � ��� AND ��� � ���. � MEANS THE SET OF TERMINALS; � MEANS THE SET OF EDGES).

used � covered � probe cost probe cost probe cost # of probes
(as �) (as �) total average maximal

17 (5%) 196 (25%) 452 3.80 7 120
392 (50%) 934 3.98 8 235
588 (75%) 1381 4.15 9 334

769 (98.1%) 1614 3.66 8 441
38 (10%) 196 (25%) 416 3.12 6 134

392 (50%) 739 3.02 7 245
588 (75%) 1144 3.20 7 358

769 (98.1%) 1388 2.96 6 469
52 (15%) 196 (25%) 397 2.94 6 134

392 (50%) 704 2.78 6 255
588 (75%) 1037 2.76 6 375

769 (98.1%) 1326 2.72 6 487
88 (25%) 196 (25%) 325 2.23 4 146

392 (50%) 614 2.22 4 276
588 (75%) 885 2.20 4 403

769 (98.1%) 1148 2.18 4 527

TABLE III

SIMULATION OF PLP ALGORITHM USING ��� OF NODES AS TERMINALS, AND COVERING ALL EDGES, AND � � ��� OF THE PROBES OF LCP.

FOOTNOTE �: DUE TO CIRCUIT TECHNOLOGY [34].

Name �� � average �� � # probes # probes maximal cost maximal cost Gain of LCP
degree before merge after merge before merge after merge (percentage reduction in # of probes)

Telstra (Australia) 351 2.336 52 485 211 6 8 56.5%
Sprintlink (US) 604 3.77 90 1742 752 7 8 56.8%

Verio (US) 972 2.92 145 1964 863 8 8 56.0%
Level3 (US) 625 8.411 93 4750 1963 7 10 58.7%
AT&T (US) 631 3.29 94 1534 682 7 8 55.5%

We also observe that the percent reduction obtained using
PLP in the number of probes and the maximal cost of the
probe is dependent on the degree of the network. We find that
for the network with the highest degree of ��
�, the reduction
after PLP is significantly smaller than the other
 topologies
which have an average degree in the range ����� to ����.
Thus, we can say that for networks with higher degree the
polynomial-time LCP algorithm provides a nearly optimal
solution.

V. CONCLUSION

Based on our simulation study, we conclude that for any
network topology, for covering almost ���� edges, only ��
of the nodes need to be assigned as terminal nodes. This is a
significant finding for probe-based monitoring systems. Since
there is no edge coverage advantage by adding additional
probe terminals, the design of the probe-based monitoring
system can be optimized based on just deployment costs.
The deployment cost are in terms of the cost of terminal
installations and the cost of setting up and maintaining probe
paths. Furthermore, using the LCP algorithm we can obtain
probe paths that provide nearly optimal results in terms
of minimizing all three criteria: the number of probes, the
maximal cost of the probe, as well as the average probe cost.

As part of our future work, we would like to explore
the use of the DLP algorithm and also take into account
topological issues, such as degree of network connectivity for
further improvement of the PLP algorithm. The PLP and DLP
algorithms presented in this paper can be easily mapped on to
the minimum makespan scheduling problem, and bin-packing
problem. Therefore, we believe that a (� � �)-approximation
algorithm can be found, when � is a constant.

VI. ACKNOWLEDGEMENT

The authors would like to thank Neil Spring, Tian Bu,
Rajeev Rastogi, and Vahab Mirrokni for the comments and
suggestions on the initial draft.

REFERENCES

[1] M. Adler, T. Bu, R. Sitaraman, and D. Towsley, Tree layout for inter-
nal network characterizations in multicast networks, in Proc. of NGC,
London, UK, Nov 2001.

[2] D. Ahr and G. Reinel, New heuristics and lower bounds for the Min-Max
k-Chinese Postman Problem, in Proceedings of the 10th Annual European
Symposium of Algorithms (ESA), September, 2002.

[3] S. Agrawal, P. P. S. Narayan, J. Ramamirtham, R. Rastogi, M. Smith,
K. Swanson and M. Thottan, VoIP Service Quality Monitoring Using
Active and Passive Probes in Proc. of First International Conference on
Communication System Software and Middleware (COMSWARE) 2006,
New Delhi, India.

[4] G. Ausiello, P. Crescenzi, G. Gambosi, V. Kann, A. Marchetti-
Spaccamela, and M. Protasi, Complexity and approximation, Springer,
1999.

[5] Y. Bejerano and R. Rastogi, Robust monitoring of link delays and faults
in IP networks, in Proc of IEEE INFOCOM San Francisco, CA, USA.
Mar 2003.

[6] Y. Breitbart, C. Y. Chong, M. Garofalakis, R. Rastogi, and A. Silberschatz,
Efficiently monitoring bandwidth and latency in IP networks, in Proc of
IEEE INFOCOM Tel Aviv, Israel, Mar 2000.

[7] T. Bu, N. Duffield, F. Lo Presti, and D. Towsley, Network tomography
on general topologies, in Proc. ACM SIGMMETRICS, 2002.

[8] G. Prabhakar, R. Rastogi, and M. Thottan, OSS architecture and require-
ments for VoIP networks, Bell Labs Technical Journal, Vol. 10, No. 1,
2005.

[9] R. L. Carter and M. E. Crovella, Measuring bottleneck link speed in packet
switched networks, Performance Evaluation, Vol. 27 & 28, pp 297-318,
1996.

[10] Y. Chen, D. Bindel, H. Song, and R. H. Katz, An algebraic approach
to practical and scalable overlay network monitoring, in Proc of ACM
SIGCOMM Portland, Oregon, USA. Aug 2004.

[11] E. G. Coffman, M. R. Garey, and D. S. Johnson, Approximation
algorithms for bin packing: a survey, Approximation algorithms for NP-
hard problems, 1997.

[12] C. Dovrolis, P. Ramanathan, and D. Moore, What do packet dispersion
techniques measure?, in Proc. IEEE INFOCOM, Anchorage, Alaska,
USA, April 2001.

[13] A. B. Downey, Using Pathchar to estimate Internet link characteristics,
in Proc. ACM SIGCOMM, Cambridge, MA 1999.

[14] W. Fernandez and G. S. Lueker, Bin packing can be solved within �	 �
in linear time, Combinatorica, 1981.

[15] F. Francis, S. Jamin, V. Paxson, L. Zhang, D. F. Gryniewwicz, and Y.
Jin, An architecture for global Internet host distance estimation service
in Proc. of IEEE INFOCOM 1999, New York City, NY.

[16] G. N. Frederickson, M. S. Hecht, and C. E. Kim, Approximation
algorithms for some routing problems, SIAM Journal of Computing, Vol.
7, No. 2, May 1978.

[17] R. L. Graham, Bounds on certain multiprocessing anomalies, Bell
System Technical Journals, 45:1563 - 1581, 1966.

[18] R. L. Graham, M. Grotschel, and L. Lovasz, edited, Handbook of
combinatorics, Elsevier, 1995.

[19] D. S. Hochbaum and D. B. Shmoys, Using dual approximation algo-
rithms for scheduling problems: theoretical and practical results, Journal
of the ACM, 34:144 - 162, 1987.

[20] J. D. Horton and A. Lopez-Ortiz, On the number of distributed measure-
ments points for network tomography, In Proc. of Internet Measurement
Conference, IMC 2003.

[21] G. Iannaccone, C. Chuah, R. Mortier, S. Bhattacharyya, and C. Diot,
Analysis of link failures in an IP back bone, Internet Measurement
Workshop, 2002.

[22] V. Jacobson, Congestion avoidance and control, in Proc. ACM SIG-
COMM, Stanford, CA, USA, 1988.

[23] D. Jungnickel, Graphs, networks, and algorithms, Springer, 1999.
[24] N. Karmakar and R. M. Karp, An efficient approximation scheme for

the one-dimensional bin packing problem, IEEE FOCS, 1982.
[25] R. Kumar and J. Kaur, Efficient beacon placement for network tomog-

raphy, In Proc of Internet Measurement Conference, IMC 2004.
[26] K. Lai and M. Baker, Measuring link bandwidths using a deterministic

model of packet delay, in Proc. ACM SIGCOMM, Stockholm, 2000.
[27] M. J. Luckie, A. J. McGregor, and H. W. Braun, Towards improving

packet probing techniques, Internet Measurement Workshop, 2001.
[28] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson, User-level

Internet path diagnosis, in Proc of ACM SOSP, Bolton Landing, NY,
USA. Oct 2003.

[29] V. N. Padmanabhan and D. R. Simon, Secure traceroute to detect faulty
or malicious routing, in Proc of HotNets-I Princeton, NJ, USA. Oct 2002.

[30] S. Parthasarathy, R. Rastogi, and M. Thottan, Efficient design of end-to-
end probes for source-routed network, Bell Labs Technical Memo. April,
2005.

[31] A. Pasztor and D. Veitch, Active probing using packet quartets, in Proc.
Internet Measurement Conference, 2002.

[32] A. Reddy, R. Govindan, and D. Estrin, Fault isolation in multicast trees,
in Proc. ACM SIGCOMM, 2000.

[33] Y. Shavitt, X. Sun, A. Wool, and B. Yener, Computing the unmeasured:
an algebraic approach to Internet mapping, in Proc. IEEE INFOCOM
2000, Tel Aviv, Israel, Mar 2000.

[34] N. Spring, R. Mahajan, and D. Wetherall, Measuring ISP topologies
with rocket fuel, in Proc of ACM SIGCOMM 2002.

[35] W. Stallings, SNMP, SNMPv2, SNMPv3 and RMON 1 and 2, Addison-
Wesley Longman Inc. 1999, (Third Edition).

[36] V. V. Vazirani, Approximation algorithm, Springer, 2003.
[37] D. B. West, Introduction to graph theory, Prentice Hall, 1996.

