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Abstract— Server-based computing (SBC) is becoming a popular ap- linear interpolation (OLI) algorithm. The underlying idea in OLI is
proach to deliver computational services across the netwérdue to itsre- o treat screen updates as linear pixel arrays and to take pixel values
duced administrative costs and better resource utilizatio. In SBC, all o the server side as sample values of a curve. A re-sampling of this
application processing is done on servers while only screewpdates are . . .

curve is performed to capture as much essential information on the

sent to clients. While many SBC encoding techniques have beexplored o . i ! ;
for transmitting these screen updates efficiently, existig screen update ap-  Original curve as possible. Pixel values chosen from this re-sampling

proaches do not effectively support multimedia applicatims. To address
this problem, we propose optimal linear interpolation (OLI), a new pixel-
based SBC screen update coding algorithm. With OLI, the serweselects
and transmits only a small sample of pixels to represent a seen update.
The client recovers the complete screen update from thesersales using
piecewise linear interpolation to achieve the best visualuplity. OLI can
be used to provide lossless or lossy compression to adaptiverade-off
between network bandwidth and processing time requiremers. We fur-
ther propose and evaluate 2-D lossless linear interpolatio(2DLI), which
is based on OLI but additionally provides lower encoding comgexity for
lossless compression. Our experimental results show that wh compared
with other compression methods, 2DLI provides good data copression

curve are transmitted from the server to the client to represent screen
updates. The client then employs piecewise linear interpolation to re-
cover the curve. The sampling rate can be varied to provide lossless
or lossy compression to trade-off different resource constrainth s

as network bandwidth and processing time.

In particular, we also present a 2-D lossless linear interpolation
(2DLlI) algorithm based on OLI that provides good lossless compres-
sion of screen updates with low coding complexity. We have im-
plemented 2DLI and compared its performance against other screen
update encoding techniques on various display workloads, including

ratio with modest computational overhead, for both serversand clients. smooth-toned images, web pages, desktop screen dumps, and-instruc

tional video content. Our experimental results show that when com-
pared with other compression methods, 2DLI provides good data com-
pression ratio with modest computational overhead, for both servers
In recent years, there is a growing trend away from the distributegd clients.
model of desktop computing toward a more centralized server-based his paper describes both OLI and 2DLI and is organized as fol-
computing (SBC) model. In SBC, all application processing is carrigdws. Section Il describes related work on SBC coding techniques.
out by a set of shared server machines. Clients connect to theser@uction 1l discusses SBC coding requirements and formulates the
for all their computing needs. Since SBC servers maintain the fi88C coding problem in further detail. Section IV presents the OLI
persistent state of user sessions, the only functionality required for #ilgorithm. Section V presents the 2DLI algorithm based on OLI.
client is to be able to send keyboard and mouse input to the ser@gction VI shows the results of our experimental measurements com-
and receive graphical display updates from the server. By employipgring 2DLI against other encoding algorithms for different display
a more centralized computing model, SBC offers the potential of rerorkloads. Finally, we present some concluding remarks.
ducing total cost of computational services through reduced system
management cost and better utilization of shared hardware respurces Il. RELATED WORK
SBC is being deployed to deliver computational services in a wide Previous approaches in encoding screen updates can be loosely
range of environments, from LAN-based work group environments tfassified into two categories, graphics-based and pixel-based.
Internet ASPs [4] [5] [8] [9] [10]. Graphics-based approaches employ a variety of higher-level graph
The key enabling technology underlying the SBC approach is tius primitives for representing screen updates in terms of fonts, lines,
remote display protocol, which enables graphical displays to be sentsitinaps, etc. These approaches are used in systems such as X, Win-
across a network to a client device while applications and even witlews Terminal Services [5], Citrix MetaFrame [4], and Tarantella [9].
dow systems are executed at the server side. Because sendingDigspite the range of available encoding primitives, the screen updates
display information as raw pixels alone would be impractical due tassociated with multimedia applications such as images and video
network bandwidth limitations, the display information is sent as emre typically encoded as raw pixel bitmaps. In some cases, an ad-
coded screen updates. A number of SBC encoding techniques hditnal run-length encoding step is applied. Because run-length en-
been developed, ranging from using higher-level graphics primitivesding does not perform well on multimedia display workloads, little
to using lower-level pixel-based compression techniques. Howevesmpression is achieved on these screen updates. Furthermore, the
existing SBC encoding techniques have been shown to not be effaigher-level graphics-based encoding primitives require more client
tive in supporting the display demands of multimedia applications [@Gbmplexity, potentially resulting in higher client decoding time.
[7]. Pixel-based approaches are simpler and treat a screen update as just
To improve support for multimedia applications in SBC environa region of pixels. These approaches are used in systems such as Sun
ments, we have developed new encoding algorithms that can proviigy [10] and Virtual Network Computing (VNC) [8] [11]. These ap-
screen updates with less data. In this paper, we focus on an optimpdaches do not employ higher-level primitives such as fonts and lines
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thereby avoiding the client complexity associated with graphics-based Sample deskiop with pixel value shown in scan-line manner
approaches. However, they employ similar bitmap encoding primi- ., [ ' ' T ol i
tives for multimedia display workloads, which limits the achievable
compression on screen updates for such applications.

More recently, some SBC pixel-based encoding techniques have*®
been developed that take advantage of the common image charac-
teristics of screen updates. A new mixed method caf@dC was 3 50| L ]
proposed in [1]. Based on characteristics of color of a pixel is statist§ "
cally related to its surrounding colors for palette images, a piecewisé- \“ “v““' il
constant image model was given to describe boundaries between gowo | i ‘\ |
mains of palette images. Another method that has been proposed sepa- ‘ “ “ \\ ‘
rates background from foreground and uB®¢C to encode the marks © w |

| |

f

in foreground as a codebook [2] [3]. Both of these methods achieve L I Uuh \ ~

improved compression ratios, but at the cost of higher encoding and M‘JJJ W

decoding complexity. These coding costs limit the utility of these tech- o = = : o p— o
nigues for supporting multimedia applications in SBC environments. Pixel position

Fig. 1. Sample desktop with blue value shown in scan-line manner
I1l. PROBLEM FORMULATION

A. Coding Requirements

We summarize the coding requirements for SBC model as follows: K
1. Low complexity: As encoding and decoding processing must oc- flz) = Z Pi(aiz + b;) 1)
cur on frequent screen updates, it is important for a coding algo- i=1

rithm to have low enough coding complexity to operate in rea{,—vhereai andb; areslope andy-intercept for thei** segment respec-
time on current hardware. For example, to guarantee showi{?\gdy andy); is thesign function defined as:

video with size 0f352 x 240 at the rate of25 frames/second,
more than 2M true color pixels should be processed per second. 0; ifx; <a < xig1

2. Good compression: Given the limited availability of bandwidth i = { 1; else.
in current broadband environments, it is important for a coding
algorithm to provide effective compression of screen updates forWhile pixel values can be linear interpolated horizontally or verti-
multimedia applications. For example, existing SBC encodirgglly, we consider the horizontal case to formalize the problem; verti-
techniques begin to perform poorly in deliver 32240 resolu- cal interpolating pixel values can be done in the same way. With mini-
tion multimedia video when available bandwidth drops below 1tal overhead, the client can ugér) to reconstruct the update region.
Mbps [6]. The reconstructed curve is defined with(val ue, position)

3. Universal Su|tab|||ty Given that a wide range of app"cationspairs of piXelS transmitted from the server, where the valu afe-
may be used in an SBC environmen’[, it is desirable for a Codirﬁ@nds on the bandwidth available. If we use $d¢b denote the data

algorithm to provide good performance across different displ&et from server to client, for & segment piece-wise curve, we have:
workloads, including both smooth-toned and discrete-toned im-

K
ages.
=1
B. Problem Formulation wherev; is pixel value ang; is the relative offset for the;. Our goal

In SBC, a region to be updated at the client side is representedibyo minimize the size of while maintaining the same visual quality
a sequence of rectangles of pixels. Each pixel is typically representadnaximize the visual quality under the same bandwidth limitation.
by 8-bit or 24-bit data foRGB color values as supported and agreed to Desktop applications in server-based computing are different from
by both server and clients. We can regard a rectangle ofisizéh as  multimedia-only applications, as they tend to have more console-like
a 2-dimensional plane. The x-coordinates range fodimw (h), and applications. Exact values for images of console applications are more
are made up by the cardinal number of pixels in the rectangle travergedferred than interpolation with approximate value. Because we use
left-right (top-down) for any pixel. The y-coordinates represenfRhe a piecewise curve to reconstruct the pixel values, a curve covering
G, or B value of the corresponding pixel. Hend®,& B values for as many original pixels as possible is preferred. Therefore, metrics
the rectangle can be treated as samples from 3 individual curvessirth ageast square cannot be used to govern the selection criteria for
this 2-dimension space. Fig. 1 shows B&alues of the first, 000 interpolation methods in that they do not reflect any resulting client
pixels from a typical update rectangle @2 x 420 pixels using the image quality with respect to non-multimedia applications.
xy-coordinate system as described above. Problem 1: Given rectangleR of dimensionsw x h with origi-

As we can see from Fig. 1, standard desktop update rectanglesrakpixel valuep;, (0 < ¢ < w x h), an interpolation method re-
very amenable to piece-wise linear interpolation. From the 2D spasdting in K segments will have reconstructed pixel valye Sup-
representation of an update rectanglds segment piece-wise linear poseS contains thg val ue, positi on) pairs to represent &-
interpolation functionf (x) as given in Equation 1 can be used to capsegment piece-wise linear interpolation function, then there will be
ture the update rectangle: CE., many ofS.



In each sef5, for each pixel valuep;, we have a sign function:

A
Ll <T F(AK)=)Y (mxCh+F(A-mK-1). (4
%7 o0; else. m=2

Therefore, we know OLI has an exponential computational com-
whereT'is the threshold to guarantee that satisfactory image qualityjfexity on encoding, which makes it inappropriate for SBC applica-
reconstructed by the clienfS|| is used to denote the number of pixekjons. The exponential complexity is due to the selecting of re-sampled
values reconstructed under threshigtd pixels under threshold. This may result in a linear algorithm if the
threshold i9, which is a special case for lossless compression. Based

on this idea, we give a 2-D lossless solution for local interpolation in
I51'= Z 51 ®)  the following section.

=1

wXh

N(.)W we have formulated the prqblem Into ChOOSlﬁgN_'th the v 2.p LOSSLESSLINEAR INTERPOLATIONALGORITHM — 2DLI
maximum ||S|| as the re-sampled pixel set to be transmitted to the ‘ o ] )
client. To be practical for SBC applications, an algorithm to select pixel

values for interpolation usage by the client should have linear running
time with respect to the number of pixels in the screen update rect-
angle. In this section, we propose a greedy algorithm, which does
We illustrate OLI algorithm according to the problem formulatior2D interpolation (2D lossless linear interpolation — 2DLI). It tries to
to reflect the idea of optimal interpolation. For a given bandwidtminimize the number of pixels that can not be interpolated by gradi-
availableB, OLI finds an optimal piece-wise linear interpolation funcents with a constant through its neighboring pixels in the rectangu-
tion of S with K o B pixels in that||.S|| is maximal. lar region. Those pixel values that cannot be interpolated are deliv-
ered to the clients for recovery of the rectangular region through 2-
dimensional linear interpolation. This solution give a low-complexity

A. Algorithm encoding algorithm for SBC.
OLlI recursively iterates through all combinations of pixels in search

of an optimal set for piece-wise linear interpolation. For each iterati% Algorithm
with k pixels to be chosen from remaining pixels, if thé pixel is ) .g ) _ _ - )
chosen to be in the resultir) k — 1 pixels are to be chosen fromthe ~ Given a rectangle of dimensions x h with original pixel value

IV. OPTIMAL LINEAR INTERPOLATIONALGORITHM — OLI

(j +1)t" pixel to the(w x h—1)t" pixel. We use[0, - - - ,w x h—1]  Pi, (0 < i < w x h), an interpolation method results #3-element
to contain the pixel values in scan-line manner. pair (p;, 6z, dy). For those pixels with value of;, we call themiso-
Algorithm 1: OLI(begin, end, K) lated pixels. Pixel values that can be horizontally interpolated or ver-
1: if K = 1then tically interpolated by going fromp; are calleddependent pixels. For
2. for any pixel pairSz‘, ;) betweerbegin andend do isolated pixel;, its dependent pixel values can be calculated through,
3: slope = M,
. . J_Zv[i]xj—v[j]xi. p]:pz+5z X(xjimi)+b (5)
4: intercept = e
5: calculate|| S; ;||; and
6: end for Pk =pi+ 0y X (yr —yi) +¢ (6)
7o |1S]l = max(|Si ) h , - .
8 [* a,bare subscripts; ; chosen agS|| */ whereb gndc are horizontal and ve_rtlcal intercepts re_spectn@;and
9:  Putqandbinto S pi, are pixel values recovered horizontally and vertically j < w
andl < k < h.

10:  return(S);
11: else
12:  for begin < i < end do

The algorithm goes as follows. Beginning from an image with all
pixel direction value ofl (isolated), we find as many as dependent

13: 5= OLI(begin, i, 1); pixt_el val.ues Fhat can be recovered throughéi,ts_and dy. After de-
14:  end for qotlng _dzrectzon values for th_ose depe_ndent pixel valuesiagver-
15 ||S|| = max(|S|| + OLI(i, end, K — 1)); tically |Qter|polzzljt$_d)(j(_)er(horlzdontaIIy |n|ter;|)olated)fI WIT Eearph Ithe
16: S =8JOLI(i,end, K — 1); nextI pixel and find its dependent pixel values until all the pixel are

traversed. 2DLI results in a minimadolated pixel values set to be
delivered to clients. Hence, we have:
Algorithm 2: 2DLI(pixel, index, pair)
) 1: For eachR, G, B value, do
B. Analysis 2: for i in (1, height) do
The OLI algorithm computes the optimal pixel set under bandwidtfs:  for j in (1, width) do

17 return(S);
18: end if

limitation B. Although ways can be devised to improve OLI, it is 4: if index[i][7] = I then

still too expensive to be useful because of its intrinsic computationas: 0z = pizelli][j + 1] — pizel[d][J];
complexity. If we haveA pixel values @ = w x h) and denote 6: 0y = pixelli + 1][j] — pizel[i][j];
computational complexity?’(A, K) under the bandwidth limitation 7: for kin (5 + 1, width) do

K, we have: 8: A = pizel[i][k] — pizel[i][j] — (k — J) X 0



9: if A =0then
10: Mark indez[i][k] = V;
11: end if
12: end for
13: for 'in (i + 1, height) do
14: B = pizel[l][j] — pizel[i][j] — (I — i) X dy
15: if B =0then

16: Mark indez[l][j] = H;
17: end if

18: end for

19: end if
20: end for
21: end for

22: for ¢ in (0, height) andj in (0, width) do

23:  if index[i][j] = I then

24 S =S (pizelld][j], 6z, 6y)

25:  endif

26: end for

27: Using universal data compression fardex andS;

B. Analysis
2DLI algorithm has a running complexity 6#(n) for both encod-

JPEG. Although JPEG has slightly better compression performance
on smooth-toned images, Table Il shows that JPEG takes almost three
times as much processing time to encoding the display data as 2DLI.
Overall, 2DLI encodes on average 2.41 times faster than JPEG and
decodes on average 1.75 times faster than JPEG. While 2DLlI is not as
fast as Gzip and VNC hextile, it provides superior compression than
both techniques across all four different display workloads.

VII. CONCLUSION

In this paper, we have developed a family of linear interpolation
algorithms for encoding SBC screen updates. We developed an OLI
algorithm and 2DLI with linear encoding and decoding computational
complexity. These algorithms represent a region of pixels as a piece-
wise linear function of a small number of values, and can be used to
provide lossless or lossy compression. We have implemented our lin-
ear interpolation algorithm and compared its performance with other
approaches on discrete-toned and smoothed-toned images. Otg resu
show that 2DLI provides much better compression than JPEG, gzip or
VNC on web pages, screen dumps, and instructional videos, and per-
forms second only to JPEG on smooth-toned images, but with much
lower coding time. This combination of low coding complexity and
good compression performance across a wide range of images make

ing and decoding, where is the number of pixels. Also, it could the linear interpolation method a viable universal technique for effec-
be lossy once the difference between the interpolated pixel value divg§ encoding of SBC screen updates for multimedia applications.
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Fig. 2. Smooth-toned image Fig. 3. Web page
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Fig. 4. Desktop screen dump Fig. 5. Instructional video

TABLE |
COMPARISON ON AVERAGE COMPRESSION RATIO AMON@DLI, JPEG,GzIP AND HEXTILE

Compression Ratio vs. Image§ Smooth-toned| Web page | Screen dump Instructional video
JPEG 1.67 2.49 1.58 1.61
Gzip 1.16 16.38 19.32 1.14
Hextile 1.08 6.14 17.93 1.00
2DLI 1.40 20.04 23.14 2.15
2DLI Compression Ratio Rangg 1.04-2.70 | 9.72-33.32| 7.20-65.73 2.15

TABLE Il
COMPARISON ON CODING COMPLEXITY(M pizels/sec) AMONG 2DLI, JPEG,GZIP AND HEXTILE

Coding | Time vs. Images|| Smooth-toned| Web page| Screen dump| Instructional video
Encoding JPEG 1.00 1.16 1.03 1.05
Gzip 8.94 9.72 8.99 8.64
Hextile 6.12 7.74 9.57 531
2DLI 2.77 1.98 1.96 3.52
Decoding JPEG 1.91 1.96 2.00 1.96
Gunzip 9.04 12.75 12.28 9.34
Hextile 5.12 9.77 11.12 11.55
2DLI 2.52 4.31 3.09 3.80




