
Optimal Linear Interpolation Coding for Server-based Computing

Fei Li and Jason Nieh
Department of Computer Science

Columbia University
New York, NY, 10027, U.S.A.
{fl200, nieh}@cs.columbia.edu

Abstract— Server-based computing (SBC) is becoming a popular ap-
proach to deliver computational services across the network due to its re-
duced administrative costs and better resource utilization. In SBC, all
application processing is done on servers while only screenupdates are
sent to clients. While many SBC encoding techniques have been explored
for transmitting these screen updates efficiently, existing screen update ap-
proaches do not effectively support multimedia applications. To address
this problem, we propose optimal linear interpolation (OLI), a new pixel-
based SBC screen update coding algorithm. With OLI, the server selects
and transmits only a small sample of pixels to represent a screen update.
The client recovers the complete screen update from these samples using
piecewise linear interpolation to achieve the best visual quality. OLI can
be used to provide lossless or lossy compression to adaptively trade-off
between network bandwidth and processing time requirements. We fur-
ther propose and evaluate 2-D lossless linear interpolation (2DLI), which
is based on OLI but additionally provides lower encoding complexity for
lossless compression. Our experimental results show that when compared
with other compression methods, 2DLI provides good data compression
ratio with modest computational overhead, for both serversand clients.

I. I NTRODUCTION

In recent years, there is a growing trend away from the distributed
model of desktop computing toward a more centralized server-based
computing (SBC) model. In SBC, all application processing is carried
out by a set of shared server machines. Clients connect to the servers
for all their computing needs. Since SBC servers maintain the full
persistent state of user sessions, the only functionality required for the
client is to be able to send keyboard and mouse input to the server
and receive graphical display updates from the server. By employing
a more centralized computing model, SBC offers the potential of re-
ducing total cost of computational services through reduced system
management cost and better utilization of shared hardware resources.
SBC is being deployed to deliver computational services in a wide
range of environments, from LAN-based work group environments to
Internet ASPs [4] [5] [8] [9] [10].

The key enabling technology underlying the SBC approach is the
remote display protocol, which enables graphical displays to be served
across a network to a client device while applications and even win-
dow systems are executed at the server side. Because sending the
display information as raw pixels alone would be impractical due to
network bandwidth limitations, the display information is sent as en-
coded screen updates. A number of SBC encoding techniques have
been developed, ranging from using higher-level graphics primitives
to using lower-level pixel-based compression techniques. However,
existing SBC encoding techniques have been shown to not be effec-
tive in supporting the display demands of multimedia applications [6]
[7].

To improve support for multimedia applications in SBC environ-
ments, we have developed new encoding algorithms that can provide
screen updates with less data. In this paper, we focus on an optimal

linear interpolation (OLI) algorithm. The underlying idea in OLI is
to treat screen updates as linear pixel arrays and to take pixel values
at the server side as sample values of a curve. A re-sampling of this
curve is performed to capture as much essential information on the
original curve as possible. Pixel values chosen from this re-sampling
curve are transmitted from the server to the client to represent screen
updates. The client then employs piecewise linear interpolation to re-
cover the curve. The sampling rate can be varied to provide lossless
or lossy compression to trade-off different resource constraints, such
as network bandwidth and processing time.

In particular, we also present a 2-D lossless linear interpolation
(2DLI) algorithm based on OLI that provides good lossless compres-
sion of screen updates with low coding complexity. We have im-
plemented 2DLI and compared its performance against other screen
update encoding techniques on various display workloads, including
smooth-toned images, web pages, desktop screen dumps, and instruc-
tional video content. Our experimental results show that when com-
pared with other compression methods, 2DLI provides good data com-
pression ratio with modest computational overhead, for both servers
and clients.

This paper describes both OLI and 2DLI and is organized as fol-
lows. Section II describes related work on SBC coding techniques.
Section III discusses SBC coding requirements and formulates the
SBC coding problem in further detail. Section IV presents the OLI
algorithm. Section V presents the 2DLI algorithm based on OLI.
Section VI shows the results of our experimental measurements com-
paring 2DLI against other encoding algorithms for different display
workloads. Finally, we present some concluding remarks.

II. RELATED WORK

Previous approaches in encoding screen updates can be loosely
classified into two categories, graphics-based and pixel-based.
Graphics-based approaches employ a variety of higher-level graph-
ics primitives for representing screen updates in terms of fonts, lines,
bitmaps, etc. These approaches are used in systems such as X, Win-
dows Terminal Services [5], Citrix MetaFrame [4], and Tarantella [9].
Despite the range of available encoding primitives, the screen updates
associated with multimedia applications such as images and video
are typically encoded as raw pixel bitmaps. In some cases, an ad-
ditional run-length encoding step is applied. Because run-length en-
coding does not perform well on multimedia display workloads, little
compression is achieved on these screen updates. Furthermore, the
higher-level graphics-based encoding primitives require more client
complexity, potentially resulting in higher client decoding time.

Pixel-based approaches are simpler and treat a screen update as just
a region of pixels. These approaches are used in systems such as Sun
Ray [10] and Virtual Network Computing (VNC) [8] [11]. These ap-
proaches do not employ higher-level primitives such as fonts and lines,

thereby avoiding the client complexity associated with graphics-based
approaches. However, they employ similar bitmap encoding primi-
tives for multimedia display workloads, which limits the achievable
compression on screen updates for such applications.

More recently, some SBC pixel-based encoding techniques have
been developed that take advantage of the common image charac-
teristics of screen updates. A new mixed method calledPWC was
proposed in [1]. Based on characteristics of color of a pixel is statisti-
cally related to its surrounding colors for palette images, a piecewise-
constant image model was given to describe boundaries between do-
mains of palette images. Another method that has been proposed sepa-
rates background from foreground and usesPWC to encode the marks
in foreground as a codebook [2] [3]. Both of these methods achieve
improved compression ratios, but at the cost of higher encoding and
decoding complexity. These coding costs limit the utility of these tech-
niques for supporting multimedia applications in SBC environments.

III. PROBLEM FORMULATION

A. Coding Requirements

We summarize the coding requirements for SBC model as follows:
1. Low complexity: As encoding and decoding processing must oc-

cur on frequent screen updates, it is important for a coding algo-
rithm to have low enough coding complexity to operate in real-
time on current hardware. For example, to guarantee showing
video with size of352 × 240 at the rate of25 frames/second,
more than 2M true color pixels should be processed per second.

2. Good compression: Given the limited availability of bandwidth
in current broadband environments, it is important for a coding
algorithm to provide effective compression of screen updates for
multimedia applications. For example, existing SBC encoding
techniques begin to perform poorly in deliver 320× 240 resolu-
tion multimedia video when available bandwidth drops below 10
Mbps [6].

3. Universal suitability: Given that a wide range of applications
may be used in an SBC environment, it is desirable for a coding
algorithm to provide good performance across different display
workloads, including both smooth-toned and discrete-toned im-
ages.

B. Problem Formulation

In SBC, a region to be updated at the client side is represented by
a sequence of rectangles of pixels. Each pixel is typically represented
by 8-bit or 24-bit data forRGB color values as supported and agreed to
by both server and clients. We can regard a rectangle of sizew × h as
a 2-dimensional plane. The x-coordinates range from0 to w (h), and
are made up by the cardinal number of pixels in the rectangle traversed
left-right (top-down) for any pixel. The y-coordinates represent theR,
G, or B value of the corresponding pixel. Hence,R/G/B values for
the rectangle can be treated as samples from 3 individual curves in
this 2-dimension space. Fig. 1 shows theB values of the first1, 000
pixels from a typical update rectangle of752 × 420 pixels using the
xy-coordinate system as described above.

As we can see from Fig. 1, standard desktop update rectangles are
very amenable to piece-wise linear interpolation. From the 2D space
representation of an update rectangle, aK-segment piece-wise linear
interpolation functionf(x) as given in Equation 1 can be used to cap-
ture the update rectangle:

0

50

100

150

200

250

0 200 400 600 800 1000

P
ix

el
 v

al
ue

 (
R

, G
, B

)

Pixel position

Sample desktop with pixel value shown in scan-line manner

’1.txt’

Fig. 1. Sample desktop with blue value shown in scan-line manner

f(x) =

K
∑

i=1

ψi(aix + bi) (1)

whereai andbi areslope andy-intercept for the ith segment respec-
tively, andψi is thesign function defined as:

ψi =

{

0; if xi ≤ x < xi+1

1; else.

While pixel values can be linear interpolated horizontally or verti-
cally, we consider the horizontal case to formalize the problem; verti-
cal interpolating pixel values can be done in the same way. With mini-
mal overhead, the client can usef(x) to reconstruct the update region.
The reconstructed curve is defined withK (value, position)
pairs of pixels transmitted from the server, where the value ofK de-
pends on the bandwidth available. If we use setS to denote the data
set from server to client, for aK segment piece-wise curve, we have:

S =

K
⋃

i=1

{vi, pi} (2)

wherevi is pixel value andpi is the relative offset for thevi. Our goal
is to minimize the size ofS while maintaining the same visual quality
or maximize the visual quality under the same bandwidth limitation.

Desktop applications in server-based computing are different from
multimedia-only applications, as they tend to have more console-like
applications. Exact values for images of console applications are more
preferred than interpolation with approximate value. Because we use
a piecewise curve to reconstruct the pixel values, a curve covering
as many original pixels as possible is preferred. Therefore, metrics
such asleast square cannot be used to govern the selection criteria for
interpolation methods in that they do not reflect any resulting client
image quality with respect to non-multimedia applications.

Problem 1: Given rectangleR of dimensionsw × h with origi-
nal pixel valuepi, (0 ≤ i < w × h), an interpolation method re-
sulting in K segments will have reconstructed pixel valueci. Sup-
poseS contains the(value, position) pairs to represent aK-
segment piece-wise linear interpolation function, then there will be
CK

w×h many ofS.

In each setS, for each pixel value,pi, we have a sign function:

si =

{

1; if |pi − ci| ≤ T

0; else.

whereT is the threshold to guarantee that satisfactory image quality is
reconstructed by the client.‖S‖ is used to denote the number of pixel
values reconstructed under thresholdT :

‖S‖ =

w×h
∑

i=1

si (3)

Now we have formulated the problem into choosingS with the
maximum‖S‖ as the re-sampled pixel set to be transmitted to the
client.

IV. OPTIMAL L INEAR INTERPOLATION ALGORITHM – OLI

We illustrate OLI algorithm according to the problem formulation
to reflect the idea of optimal interpolation. For a given bandwidth
availableB, OLI finds an optimal piece-wise linear interpolation func-
tion of S with K ∝ B pixels in that‖S‖ is maximal.

A. Algorithm

OLI recursively iterates through all combinations of pixels in search
of an optimal set for piece-wise linear interpolation. For each iteration
with k pixels to be chosen from remaining pixels, if thejth pixel is
chosen to be in the resultingS, k − 1 pixels are to be chosen from the
(j +1)th pixel to the(w×h−1)th pixel. We usev[0, · · · , w×h−1]
to contain the pixel values in scan-line manner.
Algorithm 1 : OLI(begin, end, K)

1: if K = 1 then
2: for any pixel pair(i, j) betweenbegin andend do
3: slope = v[j]−v[i]

j−i
;

4: intercept = v[i]×j−v[j]×i

j−i
;

5: calculate‖Si,j‖;
6: end for
7: ‖S‖ = max(‖Si,j‖);
8: /* a, b are subscriptsSi,j chosen as‖S‖ */
9: Puta andb into S;

10: return(S);
11: else
12: for begin ≤ i ≤ end do
13: Si = OLI(begin, i, 1);
14: end for
15: ‖S‖ = max(‖Si‖ + OLI(i, end, K − 1));
16: S = Si

⋃

OLI(i, end, K − 1);
17: return(S);
18: end if

B. Analysis

The OLI algorithm computes the optimal pixel set under bandwidth
limitation B. Although ways can be devised to improve OLI, it is
still too expensive to be useful because of its intrinsic computational
complexity. If we haveA pixel values (A = w × h) and denote
computational complexityF (A, K) under the bandwidth limitation
K, we have:

F (A, K) =

A
∑

m=2

(m × C
2
m + F (A − m, K − 1)). (4)

Therefore, we know OLI has an exponential computational com-
plexity on encoding, which makes it inappropriate for SBC applica-
tions. The exponential complexity is due to the selecting of re-sampled
pixels under threshold. This may result in a linear algorithm if the
threshold is0, which is a special case for lossless compression. Based
on this idea, we give a 2-D lossless solution for local interpolation in
the following section.

V. 2-D LOSSLESSL INEAR INTERPOLATION ALGORITHM – 2DLI

To be practical for SBC applications, an algorithm to select pixel
values for interpolation usage by the client should have linear running
time with respect to the number of pixels in the screen update rect-
angle. In this section, we propose a greedy algorithm, which does
2D interpolation (2D lossless linear interpolation – 2DLI). It tries to
minimize the number of pixels that can not be interpolated by gradi-
ents with a constantδ through its neighboring pixels in the rectangu-
lar region. Those pixel values that cannot be interpolated are deliv-
ered to the clients for recovery of the rectangular region through 2-
dimensional linear interpolation. This solution give a low-complexity
encoding algorithm for SBC.

A. Algorithm

Given a rectangle of dimensionsw × h with original pixel value
pi, (0 ≤ i < w × h), an interpolation method results inS 3-element
pair (pi, δx, δy). For those pixels with value ofpi, we call themiso-
lated pixels. Pixel values that can be horizontally interpolated or ver-
tically interpolated by going frompi are calleddependent pixels. For
isolated pixelpi, its dependent pixel values can be calculated through,

pj = pi + δx × (xj − xi) + b (5)

and
pk = pi + δy × (yk − yi) + c (6)

whereb andc are horizontal and vertical intercepts respectively,pj and
pk are pixel values recovered horizontally and vertically,1 ≤ j ≤ w

and1 ≤ k ≤ h.
The algorithm goes as follows. Beginning from an image with all

pixel direction value ofI (isolated), we find as many as dependent
pixel values that can be recovered through itsδx andδy. After de-
notingdirection values for those dependent pixel values asV (ver-
tically interpolated) orH (horizontally interpolated), we search the
nextI pixel and find its dependent pixel values until all the pixel are
traversed. 2DLI results in a minimalisolated pixel values set to be
delivered to clients. Hence, we have:
Algorithm 2 : 2DLI(pixel, index, pair)

1: For eachR, G, B value, do
2: for i in (1, height) do
3: for j in (1, width) do
4: if index[i][j] = I then
5: δx = pixel[i][j + 1] − pixel[i][j];
6: δy = pixel[i + 1][j] − pixel[i][j];
7: for k in (j + 1, width) do
8: A = pixel[i][k] − pixel[i][j] − (k − j) × δx

9: if A = 0 then
10: Mark index[i][k] = V ;
11: end if
12: end for
13: for l in (i + 1, height) do
14: B = pixel[l][j] − pixel[i][j] − (l − i) × δy

15: if B = 0 then
16: Mark index[l][j] = H;
17: end if
18: end for
19: end if
20: end for
21: end for
22: for i in (0, height) andj in (0, width) do
23: if index[i][j] = I then
24: S = S

⋃

(pixel[i][j], δx, δy)
25: end if
26: end for
27: Using universal data compression forindex andS;

B. Analysis

2DLI algorithm has a running complexity ofO(n) for both encod-
ing and decoding, wheren is the number of pixels. Also, it could
be lossy once the difference between the interpolated pixel value and
original image pixel value is under some threshold. We employindex

because this extracted information could provide more information on
spatial image transformation.

VI. EXPERIMENTS

As an initial step in evaluating the effectiveness of linear interpo-
lation algorithms for SBC, we implemented 2DLI and compared its
performance with several popular coding methods on various display
workloads. The coding methods we used for comparison with 2DLI
were JPEG [13] in lossless compression mode, Lempel-Ziv coding
[12] as implemented in Gzip [14], and the hextile coding method
used in VNC [11]. We compared these methods on four different
types of display workloads: 11 smooth-toned images from [15], 5 web
pages with different combinations of image and text content, 7 desk-
top screen dumps from [16], and content from an instructional video.
Figures 2 to 5 show example display content from each of the four
respective workloads.

For each coding method, we measured the compression ratios
achieved for each class of display workload versus using raw pixels
to represent the respective display content. For each coding method,
we also measured the encoding and decoding performance for each
class of display workload. These measurements were performed on
an IBM NetVista PC with a 1 GHz AMD Athlon CPU and 256 MB
RAM, running RedHat Linux 7.1. Due to space limitations, we only
report averages of our measurements here. Table I shows the aver-
age compression ratio for each coding method and Table II shows the
encoding and decoding performance for each coding method as mea-
sured in the average number of pixels processed per second.

Our results show that 2DLI algorithm performs very well across
different display workloads that appear in multimedia SBC environ-
ments. Table I shows that 2DLI provides better lossless display com-
pression than any of the other approaches for discrete-toned images
such as web pages, desktop screen dumps, and instructional video
content. For smooth-toned images, 2DLI performs only second to

JPEG. Although JPEG has slightly better compression performance
on smooth-toned images, Table II shows that JPEG takes almost three
times as much processing time to encoding the display data as 2DLI.
Overall, 2DLI encodes on average 2.41 times faster than JPEG and
decodes on average 1.75 times faster than JPEG. While 2DLI is not as
fast as Gzip and VNC hextile, it provides superior compression than
both techniques across all four different display workloads.

VII. C ONCLUSION

In this paper, we have developed a family of linear interpolation
algorithms for encoding SBC screen updates. We developed an OLI
algorithm and 2DLI with linear encoding and decoding computational
complexity. These algorithms represent a region of pixels as a piece-
wise linear function of a small number of values, and can be used to
provide lossless or lossy compression. We have implemented our lin-
ear interpolation algorithm and compared its performance with other
approaches on discrete-toned and smoothed-toned images. Our results
show that 2DLI provides much better compression than JPEG, gzip or
VNC on web pages, screen dumps, and instructional videos, and per-
forms second only to JPEG on smooth-toned images, but with much
lower coding time. This combination of low coding complexity and
good compression performance across a wide range of images makes
the linear interpolation method a viable universal technique for effec-
tive encoding of SBC screen updates for multimedia applications.

REFERENCES

[1] P. J. Ausbeck,Context Models for Palette Images Proceedings of Data
Compression Conference, March 1998.

[2] B. O. Christiansen, K. E. Schauser and M. Munke,A Novel Codec for
Thin-client Computing Proceedings of Data Compression Conference,
March 2000.

[3] B. O. Christiansen, K. E. Schauser and M. Munke,Streaming Thin Client
Compression Proceedings of Data Compression Conference, March 2001.

[4] Citrix Systems,Citrix MetaFrame 1.8 Backgrounder Citrix While Paper,
June 1998.

[5] B. C. Cumberland and G. Carius,Microsoft Windows NT Server 4.0, Ter-
minal Server Edition: Technical Reference Microsoft Press, Redmond,
WA, August 1999.

[6] J. Nieh and S. J. Yang,Measuring the Multimedia Performance of Server-
Based Computing Proceedings of the Tenth International Workshop on
Network and Operating System Support for Digital Audio and Video,
Chapel Hill, NC, June 2000.

[7] J. Nieh, S. J. Yang and N. Novik,A Comparison of Thin-Client Com-
puting Architecture Technical Report CUCS-022-00, Network Computing
Laboratory, Columbia University, November 2000.

[8] T. Richardson, Q. Stafford-Fraser, K. R. Wood and A. Hopper, Vir-
tual Network Computing IEEE Internet Computing, Vol. 2, No. 1, Jan-
uary/February 1998.

[9] The Santa Cruz Operation,Tarantella Web-Enabling Software: The Adap-
tive Internet Protocol A SCO Technical While Paper, December 1998.

[10] Sun Ray 1 Enterprise Appliance, Sun Microsystems
http://www.sun.com/products/sunray1

[11] T. Richardson and K. R. Wood,The RFB Protocol ORL, Cambridge,
January 1998.

[12] J. Ziv and A. Lempel,Compression of Individual Sequences Via Variable-
Rate Coding IEEE Transactions on Information Theory, Vol. 24, pp. 530 -
536, 1978.

[13] Lossless JPEG Software,
ftp.cs.cornell.edu in /pub/multimed/ljpg.tar.Z

[14] Gzip Home Page,
http://www.gzip.org/

[15] Standard Test Images,
http://www.geocities.com/SiliconValley/Lakes/6686/test-images/

[16] VNC Screenshots,
http://www.uk.research.att.com/vnc/screenshots.html

Fig. 2. Smooth-toned image Fig. 3. Web page

Fig. 4. Desktop screen dump Fig. 5. Instructional video

TABLE I
COMPARISON ON AVERAGE COMPRESSION RATIO AMONG2DLI, JPEG,GZIP AND HEXTILE

Compression Ratio vs. Images Smooth-toned Web page Screen dump Instructional video
JPEG 1.67 2.49 1.58 1.61
Gzip 1.16 16.38 19.32 1.14

Hextile 1.08 6.14 17.93 1.00
2DLI 1.40 20.04 23.14 2.15

2DLI Compression Ratio Range 1.04 - 2.70 9.72 - 33.32 7.20 - 65.73 2.15

TABLE II
COMPARISON ON CODING COMPLEXITY(Mpixels/sec) AMONG 2DLI, JPEG,GZIP AND HEXTILE

Coding Time vs. Images Smooth-toned Web page Screen dump Instructional video
Encoding JPEG 1.00 1.16 1.03 1.05

Gzip 8.94 9.72 8.99 8.64
Hextile 6.12 7.74 9.57 5.31
2DLI 2.77 1.98 1.96 3.52

Decoding JPEG 1.91 1.96 2.00 1.96
Gunzip 9.04 12.75 12.28 9.34
Hextile 5.12 9.77 11.12 11.55
2DLI 2.52 4.31 3.09 3.80

