
Tracking Quantiles of Network Data Streams with
Dynamic Operations

Jin Cao, Li Erran Li, Aiyou Chen and Tian Bu
{jincao, erranlli, aychen, tbu}@alcatel-lucent.com

Abstract— Quantiles are very useful in characterizing the data
distribution of an evolving dataset in the process of data mining
or network monitoring. The method of Stochastic Approxi-
mation (SA) tracks quantiles online by incrementally deriving
and updating local approximations of the underly distribution
function at the quantiles of interest. In this paper, we propose
a generalization of the SA method for quantile estimation that
allows not only data insertions, but also dynamic data operations
such as deletions and updates.

I. INTRODUCTION

In many network monitoring applications, fast quantile
tracking is very useful to detect any abnormal behaviour.
However this is no easy matter due to the extreme traffic
volume of today’s high speed network that often requires
algorithms to work in a stream setting, i.e., no data storage
and each record can only been seen once. Another difficulty
is that the arrived data may contain not only new records,
but also updates of the old data as they become obsolete.
For instance, there could be a complete removal of the old
record (a deletion), or a updated data value of an old record
(a updates). An example of this dynamic data is in network
flow monitoring where our task is tracking the size of active
flows. If there is a new packet arrival from an existing flow,
then the flow packet counts will be incremented by 1, or, if
there are no packet arrivals from an existing flow for a certain
period of time (say 64s), then the flow is subject to deletion.

Stochastic approximation (SA) methods, introduced in a
seminal paper by Robbins and Monro [7], are a family of
iterative stochastic optimization algorithms that attempts to
find zeroes or extrema of functions which cannot be com-
puted directly, but only estimated via noisy observations.
Applications of SA to the online quantile estimation problem
have been developed in several papers [7], [8], [3], [4],
and recently by [2] for simultaneous estimation of multiple
quantiles. By viewing the data as generated random from an
unknown distribution, the SA algorithm derives the quantile
estimate from a local linear approximation of the underlying
distribution function in the neighborhood of the quantile.

There are two main advantages of the SA algorithm for
quantile estimation that are especially amenable to today’s
large volume fast changing network data. First, it uses negligi-
ble memory. To compute K quantiles, it uses only a space of
at most 3K, no matter how long the streaming data lasts. This
memory saving is due to a very simple local approximation
that SA employs as compared to other online methods that
relies on a representative sample or summary information.
[5], [1], Another feature is that the quantiles are incrementally
updated using a weight assigned to the new data arrival. This

allows fast quantile updates and adaptation to non-stationary
data with an appropriate choice of weights. As demonstrated
by [4], with a constant weight, the SA method for quantile
estimation follows the trend of the data and works in a fashion
that is similar to Exponentially Weighted Moving Averages.

Unfortunately, the existing SA algorithm for quantile es-
timation is designed for data that are added one by one. It
cannot directly apply to the case when there is dynamic data
operations such as erroneous data to be deleted or out-of-date
data to be updated. The goal of this paper is to generalize the
SA method to allow not only data insertions, but also dynamic
data operations such as deletions and updates.

We consider four types of data operations: insertions, dele-
tions, corrections and updates. Both insertions and deletions
are self-explanatory. We make a distinction between correc-
tions and updates, where both represent adjustments to old
data. However, a corrected data record is still an old record,
but a updated record is a new record. This difference is
not important for stationary data where all data records are
considered equal, but important for time sensitive applications
where recent data receives more weight.

We also consider both cases when data are generated
randomly from the same distribution (stationary), or data has
a time varying distribution (non-stationary). We extensively
validate our algorithm using both synthetic and real data, and
demonstrate that for both stationary and non-stationary data
our algorithm gives accurate quantile estimates. For stationary
data, we also demonstrate empirically that our SA quantile
estimate converges to the true quantile, similar to the original
SA method for data with insertions only.

For the rest of the paper, we review the basic SA algorithm
in Section II. We formulate and present our solution in
Section III, and evaluate our algorithm in Section IV.

II. STOCHASTIC APPROXIMATION: A PRELIMINARY
In this section, we present the basic form of the Stochastic

Approximation (SA) algorithm as it applies to quantile esti-
mation with insertion only.

1) Basic Algorithm: Let {xt} be an incoming data stream
with a distribution Ft. Let p be a probability whose quantile
is of interest, and let θt be the true quantile of Ft w.r.t. p.
It is important to understand that the SA quantile estimation
is essentially derived from a local linear approximation of the
Ft at θt (see [2] Section 2.1.1). Let the distribution (CDF)
approximation at time t−1 be F̂t−1. At time t, with a new data
insertion xt associated with weight wt, we obtain an adjusted
CDF approximation by the following weighted average

F̂t(x)← (1− wt)F̂t−1(x) + wtI(x ≥ xt). (1)

2
Evaluating this at the previous quantile St−1 gives

P (Xt ≤ St−1) ≈ (1− wt)p + wtI(xt ≤ St−1) = pt. (2)

Suppose ft = F ′
t(θt) > 0 is the density of Ft at the true quan-

tile (assumed known for now), we can further approximate Ft

locally at (St−1, pt) using a linear function with slope ft, i.e.,

F̂t(x) ≈ (1− wt)p + wtI(xt ≤ St−1)) + (x− St−1)ft. (3)

Setting the right side of the above to p, we obtained the SA
quantile estimate,

St = St−1 + f−1
t wt(p− I(xt ≤ St−1)). (4)

In practice, the derivative ft in (4) is unknown can only be
estimated from the data. Algorithm I summarize the basic SA
algorithm using estimates of ft ([8], [4]).

Algorithm 1 Basic SA Algorithm for Estimating the Quantile of
an Input Stream {xt} with Probability p.

1: At time 0, let the initial quantile estimate be S0, the initial
density estimate be f0.

2: for each incoming data xt do
3: Update the quantile probability of St−1: pt = (1 − wt)p +

wtI(St−1 ≤ xt);
4: Construct a local linear approximation F̂t of the distribution

function Ft at point (St−1, pt) using a line with slope ft;
5: Update the quantile estimate St by the solution to F̂t(St) =

p.
6: Update the density estimate ft: ft = (1 − wt)ft−1 +

wt(2c)−1I(|xt − St| ≤ c).

2) Choice of Weights and Convergence of SA: The SA
algorithm applies to both stationary data, i.e., Ft = F , and
non-stationary data. However, it is important to set wt, the
weight associated with new data arrival in (4), properly for
each case. When the data is stationary, two common choices
of the weights wt are wt = 1/t, or wt = w. However, when
Ft is non-stationary, as suggested by [6], [4], we will choose
a constant weight wt = w, as the choice of wt = 1/t is no
longer appropriate since it cannot adapt to changes in the data
distribution.

It is shown in ([7], [8], [6]) that for stationary data, quantile
estimates with 1/t weights converge to the true quantile with
a rate O(t−

1

2), but the estimates with constant weight only
weakly converge to a distribution with the true quantile as its
mean. However, the use of constant weights is still advocated
in [4] as their simulation results suggest that it gives a good
estimate and is less prone to bad initial values.

III. SA ALGORITHM WITH DYNAMIC DATA OPERATIONS

We present our solutions for quantile estimation for a
network data stream that allows dynamic updates. To simplify
the presentation, we shall index the data stream in such a way
that at time index t, there is always one and the only one data
point xt that gets inserted. At time t, in addition to insertion
of xt, the data stream is also subject to the following three
possible dynamic updates to previous data:

1) Deletion: an old data xt′ , t
′ < t is deleted, meaning that

xt′ is no longer considered a valid record at time t.

2) Correction: an old data xt′ , t
′ < t is corrected with a new

value x′, meaning that the value of xt′ is erroneous, and
should be replaced with the correct value x′.

3) Update: the inserted record xt is in fact a replacement
of an old data xt′ , t

′ < t, meaning that the value of xt′

at time t′ should be deleted.
It is obvious that from the definition 3) above, an data
update at index t is equivalent to a deletion of an old data
and an insertion of a new data record, and thus does not
need special consideration. It is important to note however,
that while both correction and update are adjustments to an
old data, a corrected data record is still an old record but
is considered anew for a updated record. Although such a
distinction between a correction and a update is not important
for the case when all valid data records at time t are considered
equivalent, it matters a lot for time sensitive applications where
the most recent data are considered more important. As far as
we know, no earlier work has addressed this difference.

Let Ft be the distribution of {xt} subject to these dynamic
adjustments. Our goal is to track the quantile of Ft w.r.t. a
probability p via an online algorithm. To prevent technical
difficulties, we shall assume that Ft(·) is a strictly monotone,
and has positive derivatives on its domain. This constraint
can be alleviated for discrete distributions by adding a small
random noise to data. We present our solution in the following.

A. Basic Idea

We illustrate the basic idea of our algorithm using data with
insertions and deletions only. The main difficulty here is how
to reverse the effect of insertion at the later time of deletion.

Suppose prior to time t there is no deletion, and at time
t, xt is deleted immediately after its insertion. Assume that
there is no local line approximation (Eq. 3) in the basic SA
algorithm (Algorithm I), then the effect of insertion of xt can
be simply reversed by the following

F̂t(x)← (1− wt)
−1

(

F̂t(x) − wtI(x ≥ xt)
)

, (5)

where F̂t(x) is the updated CDF approximation in (1). After
this, we obtain F̂t(x) = F̂t−1(x), which gives the desired
result. Of cause, in reality, the above only holds approximately
true due to the local line approximation.

Suppose now instead at time t, we need to delete a data
xt0 , t0 < t. It is easy to see from (1) that the original weight
wt0 of xt0 at time t0 diminishes after each insertion of sub-
sequent data, xt0+1, . . . , xt. In fact, at time t its weight is
reduced to wnew

t = wt0Π
t
s=t0+1(1 − ws). To delete xt0 at

time t, we can use a similar method as in (5)

F̂t(x)← (1− wnew
t)−1

(

F̂t(x)− wnew
t I(x ≥ xt)

)

. (6)

B. Algorithm

Let {wt} be the weight associated with xt at the time of
insertion. The weight associated with xt after its insertion at
a later time will decay due to later insertions. For an old data
xt0 , its weight at time t, t > t0, denoted by dt0(t) is in fact,

dt0(t) = wt0Π
t
s=t0+1(1− ws). (7)

3
Suppose at time t− 1, our CDF approximation is F̂t−1. At

time t, suppose there is a deletion of an earlier data xt0 , and
a correction of an earlier data xt1 with value x′

t1
. To remove

the contribution of deleted data to the CDF approximation, we
need to track a value Dt, 0 ≤ Dt < 1 which represents the
total weights of deleted data at time t. Due to deletion, the
total weights of data that contributed to F̂t at time t is not 1,
but 1−Dt.

Define D0 = 0. At time t, with the new data arrival xt, we
update CDF approximation F̂t−1 by

Insert:
{

F̂t(x) ← (1−wt)(1−Dt−1)F̂t−1(x)+wtI(x≥xt)
1−Dt−1(1−wt)

,

Dt ← (1− wt)Dt−1.
(8)

If there is a deletion of xt0 at time t, then we further update
the distribution approximation at t by

Delete:
{

F̂t(x) ←
(1−Dt)F̂t(x)−dt0

(t)I(x≥xt0
)

1−Dt−dt0
(t) ,

Dt ← Dt + dt0(t),
(9)

where dt0(t) is defined in (7). Or if there is an correction of
xt1 at time t with a new value x′

t1
, then we further update F̂t

by

Correction:
{

F̂t(x) ←
(1−Dt)F̂t(x)+dt1

(t)(I(x≥xt1
)−I(x≥x′

t1
))

1−Dt

,

Dt remains unchanged,
(10)

The Insertion equation (8) essentially states that with the
arrival of new data xt, F̂t is the weighted sum of I(x ≥ xt)
from xt with weight wt, and F̂t−1 with weight (1−wt)(1−
Dt−1), normalized to have a total weight of 1. Therefore
the actual weight for xt is wt/(1 − Dt−1(1 − wt)), which
is larger than wt due to deletion. After this, the weights of
the deleted data in F̂t, Dt, is now updated by a factor of
(1 − wt). Similarly, what the delete equation (9) does is to
simply remove the influence of xt0 at time t as the weight
of xt0 now reduces to dt0(t). Finally, the correction equation
(10) is a result of deletion and re-insertion for the record value
at time t1.

To extend the basic SA algorithm (Algorithm 1) to allow
dynamic data operations, we simply need to replace the
probability update in line 3 by evaluating the updated F̂t(x)
in (8), (9) and (10) (depending on the situation), at previous
quantile estimate St−1 (similar to (??)). Denote this value by
pt. With D0 = 0, this implies the following probability update
equations. At time t, in the case of an data insertion of xt, we
update pt and Dt by

Insert:







pt ← (1−Dt−1(1− wt))
−1

((1− wt)(1−Dt−1)p + wtI(St−1 ≥ xt)),
Dt ← (1− wt)Dt−1.

(11)
If there is a deletion of xt0 at time t, then we further update
pt and Dt by

Delete:







pt ← (1−Dt − dt0(t))
−1

((1−Dt)p− dt0(t)I(St−1 ≥ xt0)),
Dt ← Dt + dt0(t),

(12)

where dt0(t) is defined in (7). Or if there is an update of xt1

at time t with a new value x′
t1

, then we further update pt and
Dt by

Correction: pt ← (dt1(t)(I(St−1(i) ≥ xt1)− I(St−1 ≥ x′
t1

))

+(1−Dt)p)(1−Dt)
−1. (13)

After the probability update step, we can use the same local
linear approximation method in Algorithm 1 to derive the
updated quantile estimate. We summarize our algorithm in
Algorithm 2. As for the density estimate step (line 6), it
is similar to that in Algorithm 1 by ignoring all deleted
data. Although this is not a crucial step, one do need to be
careful especially with a small density estimate as it affects
the stability of the algorithm.
Algorithm 2 SA Algorithm for Estimating the Quantile of an Input
Stream with Dynamic Data Operations for a Probability p.

1: At time 0, let the initial quantile estimate be S0, the initial
density estimate be f0, and set D0 = 0.

2: for each time t do
3: Update the quantile probability pt of St−1 and Dt according

to (11), (12) and (13) if appropriate;
4: Construct a local linear approximation F̂t of the distribution

function Ft at point (St−1, pt) using a line with slope ft;
5: Update the quantile estimate St by the solution to F̂t(St) =

p.
6: Update the density estimate ft: ft = (1 − wt)ft−1 +

wt(2c)−1I(|xt − St| ≤ c).

C. Weight Examples

Let us now consider how our algorithm applies to the case
of diminishing 1/t weights and constant weights.

1) 1/t Weights: This choice of weight is used for stationary
data as all data values have equal weights in the CDF approxi-
mation. For this choice of weight, we will show that Dt is the
proportion of deletes in the data by induction. Suppose that
this is true for t− 1, and there are k deletes up to time t− 1.
With the arrival of xt, by (8), we have

Dt = Dt−1(1− 1/t) = k/(t− 1)(t− 1)/t = k/t,

which is actually the ratio of deletes in the data up to t. If
there is deletion at t of an earlier record, then it is easy to see
from (7) that dt0(t) = 1/t. Therefore, Dt = (k + 1)/t which
is again the proportion of deletes. For correction, there is no
change in Dt, so Dt remains to be the proportion of deletes. In
fact, in this case, for the insertion of xt, we can easily see that
F̂t(x) is the weighted sum of F̂t−1(x) and I(x ≥ xt) with
weights (1−(t−k)−1) and (t−k)−1, respectively. Therefore,
the actual weight given to xt is in fact 1/(t−k) not the initial
weight 1/t. This change is due the deletion of k points.

2) Constant Weights: This choice of weight is good for both
stationary data or non-stationary data. For non-stationary data,
it can track changes in data distributions and works in a similar
fashion as the Exponentially Weighted Moving Averages of
empirical CDFs. Let wt = w for a positive w. Let s1 < s2 <
. . . < sk be the set of index of deleted data until time t, where
k is the total number of deletes before time t. With the arrival
of xt, it is easy to show that

Dt = (1−w)t−s1−1w+(1−w)t−s2−1w+. . .+(1−w)t−sk−1w.

4
This is because from (7), dt0(t) = w(1 − w)t−t0+1, and also
from (8), every insertion will reduce Dt by a factor of (1−w).
Notice that Dt is the sum of weights of deleted data, hence
the result.

Our probability update equations (11), (12) and (13) are
carefully designed to remove the effect of deleted data in
the CDF approximations of of Ft. In the case of stationary
Ft where both the inserted data and its deletion/correction
mechanism result an equilibrium, (for example, when the
deletes occur with a stationary lag distribution), the quantile
estimates given by Algorithm 2 with 1/t and constant weights
should converge around the right quantile. We don’t have a
formal proof as it is technically very challenging. (The proof
for the convergence of the basic SA algorithm (Algorithm
I) involves very technical arguments). However, in Section
IV, we shall present simulation results that strongly suggest
that similar convergence results for Algorithm 1 holds for
Algorithm 2.

IV. SIMULATION STUDIES AND APPLICATIONS

We evaluate our algorithm using simulation studies with
stationary data and a real application with non-stationary data.
A. Simulation Studies

We investigate various issues of the proposed algorithm
for quantile estimation: convergence, choice of weights and
accuracy. We demonstrate that our estimates converge to the
true quantile, similar to the basic algorithm for data with
insertions only ([7], [8], [6]). Due to space limitation, we only
present results for data with deletions, as both corrections and
updates can be viewed as a sort of combination of insertions
and deletions.

1) Data Distributions and Weights: For comprehensive-
ness, we evaluate our algorithms using data generated from
four distributions: a uniform distribution on [0, 1] (Unif), a
normal (Gaussian) distribution’s with mean 0 and variance 1
(norm), standard exponential with variance 1(exp), and heavy
tailed Pareto distribution with index 2 (pareto2). (A random
variable X, X ≥ 1 with a Pareto distribution with an index
α is defined by P (X > x) = x−k.) The Pareto distribution
with a index 2 has a finite mean, but infinite variance. We
consider two choices of weights: diminishing 1/t weights and
fixed weights.

2) Evaluation Methods: For each simulation setup (speci-
fied by data generation and weight choice for quantile estima-
tion), we run the experiment 100 times. For a probability p, let
q be its true quantile and S

(j)
t be the quantile estimates based

on observations up to t in the jth run. The accuracy of the
quantiles estimates St is measured primary by the empirical
median absolute deviation defined by

MAD(St) = median|S
(j)
t − q|, (14)

which is more robust than the mean square error.
3) Results for Stationary Data with Deletions: The mech-

anism for generating data with deletion is as follows. First,
we generate a stream of 2000 data points according to one
of the four distribution type specified in Section IV-A1). For
each distribution, we also compute a threshold thre which is
the nominal 80% quantile of the distribution. If xt exceeds the

threshold, we shall delete the data after a certain lag time lt,
generated from a uniform distribution between 10 and 50. It
can be easily seen the stationary data distribution after deletion
is the conditional distribution of Xt given that Xt ≤ thre,
irrespective of the specified lag distribution. Let q be the
quantile of the stationary distribution G of inserted data, and
qnew be the quantile after deletion. This implies qnew = q0.8p.
It is also worthwhile to point out that although 2000 is not
a large number, it is enough to evaluate our algorithm as it
does not need a lot of data to reach convergence. In fact, the
evaluation results hardly change whether there are 2000 or 2
million data points.

Index

M
ed

ia
n

A
bs

ol
ut

e
D

ev
ia

tio
n

0.
02

0.
06

0.
10

0 500 1000 2000

unif:0.5
0.

1
0.

2
0.

3
norm:0.5

0.
05

0.
15

0.
25

0 500 1000 2000

exp:0.5

0.
05

0.
15

pareto2:0.5

0.
02

0.
06

0.
10

unif:0.7

0.
1

0.
2

0.
3

norm:0.7

0.
05

0.
15

0.
25

exp:0.7

0.
05

0.
15

pareto2:0.7

0.
02

0.
06

0.
10

unif:0.9

0.
1

0.
2

0.
3

norm:0.9

0.
05

0.
15

0.
25

exp:0.9

0.
05

0.
15

pareto2:0.9

0.
02

0.
06

0.
10

unif:0.95

0.
1

0.
2

0.
3

norm:0.95

0.
05

0.
15

0.
25

exp:0.95

0.
05

0.
15

pareto2:0.95

0.
02

0.
06

0.
10

unif:0.99

0 500 1000 2000

0.
1

0.
2

0.
3

norm:0.99

0.
05

0.
15

0.
25

exp:0.99

0 500 1000 2000

0.
05

0.
15

pareto2:0.99

SA SA (weight=0.01)

Fig. 1. Median absolute deviation of SA quantile estimates with 1/t weights
(black) and a constant weight w = 0.01 (gray), where the streaming data are
generated randomly from a unif , norm, exp, or pareto2 distribution with
deletions.

Index

E
st

im
at

io
n

E
rr

or

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

0 500 1000 1500 2000

0.5

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

0.7

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

0 500 1000 1500 2000

0.9

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

0.95

0 500 1000 1500 2000

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5

0.99

SA SA (weight=0.01)

Fig. 2. Quantile estimation error for a sample run in Figure 1 with data
generated using norm distribution with deletion (1/t weights: black; constant
weights: gray). The dotted line indicates the adjustment of the quantiles from
the original data to those of the data after deletion.

The probabilities whose quantiles we are interested in are:
p = 0.5, 0.75, 0.9, 0.99. Figure 1 shows MAD of SA quantile
estimates with data deletions, for two choices of weights, 1/t
weights (black) and constant weights w = 0.01 (gray) for 30

5
combinations of data distributions and quantile probabilities.
Irrespective of the data distribution and the quantile proba-
bilities, the MAD for estimates with 1/t weights converges
to 0, and the MAD for our SA with constant weight 0.01
stabilizes very early on in iterations. For a closer examination,
in Figure 2, we also took one sample run for the normal
distribution and plotted the estimation errors for both estimates
as a function of iterations. We also added a dotted line that
indicates the adjustment of the true quantiles from the original
data to that of the data after deletion, i.e., qnew− q. Since our
deletion occurs at the tail portion (20%), the adjustments to
the tail quantiles are quite significant.

Results from both Figures 1 and 2 support our theoretical
conjecture that our algorithm converges fast for the stationary
case in a fashion similar to the well known convergence
result for data with insertions only, for both kinds of weights,
irrespective of the distributions. We observe similar behavior
for stationary data with corrections and updates.

B. An Application

We demonstrate our proposed algorithm using a data exam-
ple from one real operational 3G wireless network of a US
national-wide provider. We collect a one-day packet trace at
the home agent of one provider on August 11, 2008. All traffic
to and from the Internet of subscribers within a region go
through the home agent. We would like to track the quantiles
of active flow sizes over time.

Time in Seconds

Lo
g

B
as

e
2

Q
ua

nt
ile

s

12

14

16

18

20

20 40 60 80 100 120

0.5 0.7

0.9

20 40 60 80 100 120

12

14

16

18

20

0.95

SA Empirical

Fig. 3. Quantile estimates for wireless network flow sizes, with flow deletions
and updates. Different panel represent estimates for different probabilities 0.5,
0.7, 0.9, 0.95. The black curve represents the estimate based on SA with
weight 0.001, and the red curve represents the empirical estimate by tracking
the set of most recent 500 active flows.

1) Quantiles of Network Flow Sizes: We insert, delete,
and update our flow record in following manner. New flows
continuously arrive. Active flow records are updated every 10
seconds. When the TCP FIN packet of a flow is received, the
flow is deleted. A flow without receiving TCP FIN is timed
out in one minute. This introduces a big variation in terms
of flow deletions as some are deleted right away (small flows
with FIN), and some are deleted until very late (flows without
a FIN or large flows). These and the heavy tailed nature of
flow sizes create significant challenges for finding quantiles.

We demonstrate our quantile estimation algorithm using a
two minute interval of this flow record data. In this two minute
interval, there are about 270K flow records, with 113K new

flow insertions, 86K flow deletions, and 71K flow updates.
The probabilities whose quantiles are of interest here are: 0.5,
0.7, 0.9, 0.95. To validate our algorithm, at every second, we
extract the set of most recent active flows, and compute its
empirical quantiles. The flow sizes here have a heavy tailed
distribution. For example, the empirical size quantiles at 60sec
are: 1.1K, 9.7K, 100K, 258K and 1337K bytes.

Quantile estimates (black) using our algorithm with dele-
tions and updates are shown in log based 2 scale in Figure 3,
with a constant weight 0.001. For comparison, we also draw
the empirical quantiles computed from the most recent 500
active flows (gray). The window size 500 is chosen to match
with the weight 0.001. Since we update active flows in 10
second interval, we see some periodic behaviour every 10
seconds. Despite that, our quantile estimates match very well
with the empirical estimates for four probabilities, 0.5, 0.7,
0.9, 0.95.

20 40 60 80 100 120

11
12

13
14

15
16

Time in Seconds

Lo
g

B
as

e
2

Q
ua

nt
ile

s

Fig. 4. Quantile estimates for wireless network flow sizes, for probability
p = 0.7. Both the SA estimates (black) and the closely matched empirical
estimates (gray) are shown in Figure 4. However, the SA estimates (bottom
gray) by treating flow size updates as erroneous records are far from the truth.

2) Updates vs. Corrections: We illustrate the distinction of
updates vs corrections here. In this example, we only have flow
updates but not corrections. However, if we treat flow updates
as corrections hypothetically, then the quantile estimates are
far from the empirical estimates as seen in Figure 4.

REFERENCES

[1] A. Arasu and G. S. Manku. Approximate counts and quantiles over sliding
windows. In PODS ’04: Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages
286–296, New York, NY, USA, 2004. ACM.

[2] J. Cao, L. E. Li, A. Chen, and T. Bu. Incremental tracking of multiple
quantiles for network monitoring in cellular networks. In The ACM
International Workshop on Mobile Internet Through Cellular Networks
(MICNET), 2009.

[3] J. M. Chambers, D. A. James, D. Lambert, and S. V. Wiel. Monitoring
networked applications with incremental quantile estimation. Statistical
Science, 21:463–475, 2006.

[4] F. Chen, D. Lambert, and J. C. Pinheiro. Incremental quantile estimation
for massive tracking. In KDD ’00: Proceedings of the sixth ACM SIGKDD
international conference on Knowledge discovery and data mining, 2000.

[5] A. C. Gilbert, S. Guha, P. Indyk, Y. Kotidis, S. Muthukrishnan, and
M. J. Strauss. Fast, small-space algorithms for approximate histogram
maintenance. In STOC ’02: Proceedings of the thiry-fourth annual ACM
symposium on Theory of computing, pages 389–398, 2002.

[6] H. J. Kushner and G. G. Yin. Stochastic Approximation Algorithms and
Applications. Springer-Verlag, 1997.

[7] H. Robbins and S. Monro. A stochastic approximation method. The
Annals of Mathematical Statistics, 22(3):400–407, 1951.

[8] L. Tierney. A space-efficient recursive procedure for estimating a quantile
of an unknown distribution. SIAM Jounal of Scientific and Statistical
Computing, 4(4), 1983.

