
piStream: Physical Layer Informed Adaptive
Video Streaming Over LTE

Xiufeng Xie and Xinyu Zhang
University of Wisconsin-Madison

{xiufeng, xyzhang} @ece.wisc.edu

Swarun Kumar
MIT

swarun@mit.edu

Li Erran Li
Fudan University

erranlli@gmail.com

ABSTRACT
Adaptive HTTP video streaming over LTE has been gaining
popularity due to LTE’s high capacity. Quality of adap-
tive streaming depends highly on the accuracy of client’s
estimation of end-to-end network bandwidth, which is chal-
lenging due to LTE link dynamics. In this paper, we present
piStream, that allows a client to efficiently monitor the LTE
basestation’s PHY-layer resource allocation, and then map
such information to an estimation of available bandwidth.
Given the PHY-informed bandwidth estimation, piStream
uses a probabilistic algorithm to balance video quality and
the risk of stalling, taking into account the burstiness of
LTE downlink traffic loads. We conduct a real-time imple-
mentation of piStream on a software-radio tethered to an
LTE smartphone. Comparison with state-of-the-art adap-
tive streaming protocols demonstrates that piStream can ef-
fectively utilize the LTE bandwidth, achieving high video
quality with minimal stalling rate.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design—Wireless Communications

General Terms
Algorithms, Design, Theory, Performance

Keywords
LTE; Adaptive Streaming; MPEG-DASH; HTTP

1. INTRODUCTION
Mobile video streaming has witnessed a surge in the past

few years, accounting for 70% of the mobile Internet traf-
fic, with a compound annual growth rate of 78% [1]. The
LTE cellular services have been massively deployed to match
such growing traffic demand, with a peak downlink bitrate
of 300 Mbps, almost 10× over 3G. However, user-perceived
quality of experience (QoE) remains unsatisfactory. A re-
cent world-wide measurement survey [2] reveals that, even
in regions with wide LTE coverage, LTE only increases video
quality by 20% over 3G. On the other hand, the average
stalling time remains 7.5 to 12.3 seconds for each minute’s
mobile video playback [2].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
MobiCom’15, September 7–11, 2015, Paris, France.
c© 2015 ACM. ISBN 978-1-4503-3543-0/15/09 ...$15.00.

DOI: http://dx.doi.org/10.1145/2789168.2790118.

These two effects are seemingly contradictory: the video
streaming application seems to severely underutilize the LTE
bandwidth, yet stalling occurs due to bandwidth overestima-
tion. However, based on a microscopic measurement study
(Section 2), we identify a single root cause behind: the in-
ability of the streaming application to track the network
bandwidth which is affected by downlink traffic dynamics
at the basestation.

Our measurement focuses on the popular HTTP based
adaptive streaming protocols (collectively called DASH) [2].
A DASH client adaptively requests video segments of cer-
tain quality (size) from the server, to ensure the best-quality
segment can be downloaded in time for playback. Due to
high probing cost, a DASH client needs to infer the cur-
rent bandwidth implicitly from the throughput of its video
segments. However, the throughput value may largely un-
derestimate the bandwidth unless a video segment can satu-
rate the client’s end-to-end bandwidth. On the other hand,
DASH uses historical bandwidth records to predict future
bandwidth, which occasionally leads to overestimation, and
hence video stalling, as the LTE network condition fluctu-
ates. In either aspect, the DASH client is left to suffer from
the worst impact of both underestimation and overestima-
tion of the end-to-end network bandwidth.

To meet the above challenges, we dig for the network band-
width utilization from the LTE physical layer. The well
organized radio resource structure distinguishes LTE from
most other wireless communication systems like WiFi or
Bluetooth. Given a particular LTE cell and time duration,
the total amount of radio resources available for downlink
transmission is always known. Moreover, the end-to-end net-
work bandwidth is typically bottlenecked by the access link
bandwidth due to the architectural property of cellular net-
works [3, 4]. These unique features bring new opportunities
to remedy the bandwidth underutilization problem.

This paper presents piStream, which takes full advantage
of the aforementioned features to enhance adaptive video
streaming over LTE. piStream is a client-centric video adap-
tation framework, compatible with the MPEG-DASH stan-
dard [5], but tailored for LTE clients. From a high level,
piStream enables an LTE client to monitor the cell-wide
physical layer resource utilization status and instantaneously
map it to the potential network bandwidth.

piStream’s resource monitor scheme aims to be accurate,
efficient, and deployable on LTE user equipment (UE). A
straightforward way to obtain the resource allocation status
is to decode the basestation’s entire control channel1 [6, 7].
However, this approach falls short of efficiency and scala-

1In LTE, UEs within the same cell share frequency/time re-
sources allocated by the basestation in a centralized manner.
Per-UE resource assignment is conveyed to each target UE
over a dedicated control channel.

bility. It requires each UE to keep monitoring the control
channel and decoding the control messages to all other UEs,
for which the error detection mechanism specified in current
LTE standard cannot take effect (Section 3.1). piStream
addresses this challenge by taking advantage of the well or-
ganized LTE resource structure. Instead of decoding the
downlink control messages dedicated to all other UEs, a UE
only needs to inspect the signal energy on LTE radio re-
sources to assess their occupancy.

After acquiring the amount of surplus radio resources at
the physical layer, piStream scales up its measured through-
put accordingly to obtain an estimation of the potential net-
work bandwidth it can leverage, which is then exposed to
the application layer to facilitate video rate adaptation. In
this way, piStream overcomes a common limitation of a wide
range of DASH protocols that are slow at exploring unused
bandwidth [8–10].

From the DASH application perspective, to maximize band-
width utilization while minimizing video stalling rate, the
adaptation logic ideally needs to predict the future band-
width evolution [11,12], which is challenging for an LTE UE.
Instead of forecasting the elusive bandwidth value, piStream
takes advantage of the invariant burstiness of traffic pat-
terns in packet switching networks [13,14]. It estimates how
likely the aggregated downlink traffic (or resource usage),
and hence available bandwidth, is to remain at a similar
level as the current one. It then makes a probabilistic deci-
sion to maximize video quality while minimizing the risk of
stalling.

We validate the piStream design by tethering a software-
radio that implements the PHY-informed bandwidth esti-
mation mechanisms, to an LTE smartphone that implements
the application-layer video adaptation scheme. Our piStream
client prototype can directly play video in real-time from any
server that follows the industrial MPEG-DASH standard [5].
We benchmark piStream’s performance against a standard
DASH player from GPAC2, and three state-of-the-art DASH
schemes that have demonstrated superior performance over
commercial DASH players. These schemes include buffer-
based adaptation (BBA [9]), optimization-based adaptation
using historical throughput (FESTIVE [10]), and TCP-like
bandwidth probing (PANDA [15]). Under a variety of ex-
perimental settings including time, location and mobility,
piStream outperforms all other DASH schemes by achiev-
ing higher video quality and lower/comparable video stalling
rate. Under typical static indoor environments, piStream
achieves around 1.6× video quality (bitrate) gain over the
runner-up (BBA) while maintaining a low video stalling rate
close to 0%.

To our knowledge, piStream represents the first proto-
col to facilitate LTE adaptive video streaming using PHY-
informed bandwidth estimation, which is evaluated via a
real-time implementation. The specific contributions of piStream
can be summarized as follows:

(i) We design a lightweight PHY-layer resource monitor
(Section 3.1) and rate scaling mechanism (Section 3.2) that
enables an LTE client to efficiently estimate available band-
width, and facilitate application-layer protocols;

(ii) We propose a video adaptation algorithm that har-
nesses the PHY-informed bandwidth estimation, while prob-

2GPAC [8] is a popular (over 3300000 homepage visits during
2014) open-source framework to generate and play DASH
video data sets following the MPEG-DASH standard [5].

abilistically balances video quality and stalling rate, taking
into account the LTE bandwidth variation (Section 3.3);

(iii) We conduct a real-time implementation of the piStream
framework on a software-radio platform tethered to a smart-
phone (Section 4), and demonstrate its significant perfor-
mance gains over four state-of-the-art protocols (Section 5).

piStream does not require any changes in existing cellular
infrastructure or video streaming servers. Its PHY modules
piggyback on the UEs’ existing communication hardware,
and can potentially be deployed via a firmware upgrade.

2. BACKGROUND AND MOTIVATION
In this section, we first provide a brief background of

DASH, and then conduct a measurement study of the chal-
lenges in running DASH over the highly dynamic LTE chan-
nel.

A primer on DASH. DASH refers to the class of pro-
tocols (MPEG-DASH [5], Microsoft Smooth Streaming [16],
Apple HLS [17], Adobe HDS [18], etc.) that adopt HTTP
based adaptive video streaming. A DASH server splits a
video into multiple segments with uniform playback time
(typically 1 to 10 seconds). Each segment is encoded into
multiple copies with discrete encoding bitrate levels and thus
different sizes. Before a DASH video session starts, a client
obtains an available bitrate map from the server. To down-
load each segment, the client needs to send an HTTP request
to the server, and specify the bitrate level it prefers for that
segment.

DASH has gained broad interest owing to several salient
advantages over the traditional server-controlled video trans-
port protocols [19]. It eases deployment as HTTP video traf-
fic can easily bypass middleboxes and firewalls, and can be
supported by commodity web servers and CDNs. The use of
stateless servers also simplifies load balancing and fault tol-
erance. Therefore, DASH is becoming the dominant Internet
video streaming technology [2].

The client is fully responsible for executing DASH’s adap-
tation logic, which should choose the video bitrate on a per-
segment basis to maximize the Quality of Experience (QoE).
An optimal bitrate choice can be made only if the current
and future network bandwidth are known. Many existing
DASH algorithms attempt to approximate this objective by
estimating/predicting available bandwidth [10,12,15], or by
balancing the buffer occupancy at a desired level [9]. How-
ever, these solutions render unsatisfactory performance in
LTE networks as detailed in the following section.

Challenges in estimating the current network band-
width. Typical DASH protocols [5,8,10] use the throughput
observed from each video segment to estimate the available
end-to-end network bandwidth. However, such estimations
stay blow the bandwidth unless the segment size (and equiv-
alently the video bitrate) is large enough to saturate the net-
work pipeline. This is rarely the case in LTE, which bears
large in-network buffers with hundred-millisecond scale end-
to-end latency [20]. Therefore using throughput to guide
video adaptation often underutilizes the network bandwidth.

To validate this problem in existing DASH protocols, we
conduct DASH video streaming tests over Verizon LTE net-
work (more details about our set up are available in Sec-
tion 4). The DASH server is hosted by Akamai3 and our

3http://dash.edgesuite.net/akamai/streamroot/050714/
Spring 4Ktest.mpd

0

2000

4000

6000

8000

10000

0 5000 10000 15000 20000

T
hr

ou
gh

pu
t (

K
bp

s)

Video bitrate (Kbps)

Figure 1: Throughput
measurement depends
on the traffic demand.

0

2000

4000

6000

8000

10000

0 10 20 30 40 50

B
itr

at
e

(K
bp

s)

Time (s)

Throughput
Video bitrate

Bandwidth

Figure 2: Throughput-
based DASH adaptation
converges slowly to
bandwidth.

client is the GPAC player [8]. We run the tests in static
environment during late night to ensure a relatively stable
bandwidth.

We first disable the DASH adaptation by forcing the client
to keep selecting a fixed video bitrate and repeat the tests
for all bitrate levels in the server’s DASH data set. Fig-
ure 1 plots the mean per-segment throughput under each
video bitrate level. Error bars represent the standard de-
viation across all segments. As bitrate increases, measured
throughput grows until a saturation point where it matches
the available bandwidth. As a natural consequence, if the
DASH client selects a video segment with low bitrate, it
may experience a throughput far below the bandwidth. Us-
ing this throughput as bandwidth estimation, it proceeds to
select a low video bitrate for next segment. This vicious
cycle remains until the client opportunistically experiences
a higher throughput owing to end-to-end throughput varia-
tion, but it will take a long time to eventually converge to
the available bandwidth.

Then we enable the client’s DASH adaptation under the
same setting. Figure 2 illustrates the slow converging process
as discussed above, where the blue curve shows the client’s
per-segment bitrate decisions and the red curve plots the
resulting throughput. Consequently, the client takes around
25 seconds to converge to the bandwidth. Notably, a similar
phenomenon has been observed in existing work [12] through
trace-driven simulation.

It is worth noting that (i) The slow convergence is not
caused by TCP. In one test, we manually switch the video
bitrate from 1 Mbps to 8 Mbps and TCP (Cubic) only takes
a few hundred milliseconds to ramp up; (ii) DASH clients
usually pick a small initial segment size (video bitrate) to
reduce the video loading time and build a sufficiently large
buffer level to avoid future stalling [21], which exacerbates
the slow convergence; (iii) LTE bandwidth of a client typ-
ically fluctuates more than shown in Figure 2 due to the
competing traffic and mobility. In such cases, the slow con-
vergence causes the throughput estimation to keep lagging
behind bandwidth, which severely compromises the perfor-
mance.

One may consider using TCP-like probing mechanism to
explore available bandwidth [15]. However, video adaptation
runs at segment-level (second-level) in contrast to TCP’s
packet-level (millisecond) adaptation. DASH cannot afford
the frequent probing that pushes the throughput to the limit
but causes frequent video stalling, especially for the highly
dynamic LTE link. Besides, using very small video segments
seems helpful but eventually causes more problems: Due to
the large RTT of LTE networks (100 to 300 ms according
to [20] and our measurements), the request delay from client
to server will incur formidable overhead unless amortized by
large segments [10].

-30

-20

-10

0

10

20

0 20 40 60 80 100E
st

im
at

io
n

E
rr

or
 (

M
bp

s)

Time (s)

GPAC(latest throughput)
FESTIVE(harmonic mean)

Overshoot

Undershoot

Figure 3: Existing DASH
adaptation cannot follow
the bandwidth variation.

0

3000

6000

9000

12000

0 20 40 60 80 100

B
uf

fe
r

Le
ve

l (
m

s)

Time (s)

GPAC(latest throughput)
FESTIVE(harmonic mean)

Figure 4: Poor band-
width predictions drain
out client’s buffer and
cause video stalls.

Challenges in predicting future bandwidth. An es-
timation of current available bandwidth helps a client choose
the best video quality if the bandwidth is relatively stable.
Yet clients suffering from link dynamics, e.g., cellular net-
work clients, ideally needs to look ahead to predict future
bandwidth [12]. To approximate the future bandwidth, most
existing DASH protocols can be classified as two categories:
(i) those using the bandwidth estimation of the latest video
segment as the bandwidth prediction for the next segment,
e.g., GPAC’s player [8]; (ii) those using smoothed histor-
ical bandwidth (for example, harmonic mean over a time
window) as the prediction, e.g., FESTIVE [10]. Such strate-
gies have proven effective in wireline networks, but perform
poorly in LTE networks due to frequent bandwidth varia-
tions.

We then inspect these two widely used strategies to reveal
their ineffectiveness. To isolate the aforementioned band-
width underestimation problem, we assume current and his-
torical (but not future) bandwidths are known exactly. Specif-
ically, we collect a time series of available LTE bandwidth by
measuring a saturated Iperf [22] session, and then perform
trace-driven emulation for the above two strategies.

Figure 3 plots the time series of bandwidth prediction er-
ror at segment-level granularity. The error falls between -20
Mbps to 10 Mbps, and thus the selected video quality can
deviate wildly from the optimal one. When a severe overes-
timation occurs, even though infrequently, the accumulated
video buffer can quickly drain off (Figure 4), resulting in
video stalls. The harmonic-mean based prediction causes
less video stalling, but at the cost of severe bandwidth un-
derutilization and thus video quality degradation.

3. piStream DESIGN
piStream is a cross-layer framework to address the above

challenges for adaptive video streaming over LTE. It incor-
porates several client-side innovations and remains compat-
ible with any MPEG-DASH servers [5]. piStream consists
of three main design components (Figure 5). A radio re-
source monitor (RMon) estimates the amount of unused ra-
dio resources by sensing the LTE downlink channel. A PHY-
informed rate scaling (PIRS) scheme translates the utiliza-
tion statistics into the current available network bandwidth
that can be legitimately exploited. Finally, an LRD-based
video adaptation (LVA) algorithm estimates how long the
current available bandwidth is likely to last, and accordingly
selects the bitrate for the next video segment to maximize
the QoE.

3.1 Radio Resource Monitor (RMon)
The radio resource monitor (RMon) acts as a PHY-layer

daemon in each UE that monitors cell-wide utilization of

DASH client

Resource
utilization

Potential
bandwidth

DASH server

Select video
bitrate

Throughput

Sniff downlink
channel

LVA

RMon

PIRS

Figure 5: piStream sys-
tem architecture.

1
2

 s
u

b
ca

rr
ie

rs

{

OFDM Symbol

Resource element

slot (0.5ms) slot (0.5ms)

Reference signal
(antenna 1)

Reference signal
(antenna 2)

Control channel

Resource Block (PRB)

Figure 6: LTE resource
allocation example for a
two antenna basestation.

radio resources (referred to as Physical Resource Blocks, or
PRBs). RMon needs to be highly reliable, yet simple enough
to be executable in real-time and easily compatible with cur-
rent UE’s hardware. Below we present the background, chal-
lenges and our design to meet these goals.

3.1.1 A Primer on LTE Resource Allocation
LTE downlink channel is divided into fixed time frames,

each spanning 10 ms. Each frame is further divided into
10 sub-frames, each spanning 1 ms and containing two slots
(Figure 6). The basestation transmits each subframe using
OFDM (Orthogonal frequency-division multiplexing), which
divides available radio resources into grids in both time and
frequency domain. Each grid cell (spanning 15 kHz × 66.7
µs) is called a resource element (RE). A basestation awards
radio resources at the granularity of physical resource block
(PRB) comprising multiple resource elements. Each PRB
spans half-a-subframe (i.e., 0.5 ms) in time and 12 OFDM
subcarriers (i.e., 180 kHz) in frequency domain.

The basestation dynamically allocates non-overlapping sets
of PRBs to different UEs, depending on their channel condi-
tions and traffic demands. The allocation strategy is vendor-
specific. However, typical basestations enforce some form of
proportional fairness, which ensures a balance between UEs
with the best channel quality and those consuming the most
resources. The per-UE resource assignment is conveyed to
its target UE over a dedicated downlink control channel.

3.1.2 Why Existing LTE Sniffers are Insufficient?
piStream calls for a highly efficient radio resource monitor

that is compatible with the UE’s hardware. There exist a
few platforms that sense the resource allocation by decoding
LTE’s downlink control channel (Section 3.1.1). Yet none of
them meet piStream’s design goal.

(i) QXDM [23], a monitor available for UEs with a Qual-
comm LTE modem, can only analyze the radio resource uti-
lization of a single UE rather than cell-wide information.

(ii) LTEye [6] can provide cell-wide resource utilization
by decoding the downlink control information for all UEs.
However, it requires a UE to keep monitoring the downlink
control information to all other UEs, which is unspecified
in LTE standard and incurs significant modifications to the
UE’s PHY layer. Besides, the decoding overhead increases
with the total number of UEs, hence it is unscalable. Fi-
nally, the LTE error detection mechanism4 does not work

4Since the CRC of downlink control information (DCI) is
scrambled by each UE’s physical layer ID [24] which is trans-
mitted via encrypted upper layer channels and only available

Weak data
energy

0

10

20

30

40

50

-300 -200 -100 0 100 200 300

R
el

at
iv

e
E

ne
rg

y
(d

B
)

Subcarrier Index

LTE signal spectrum
Allocated data spectrum

Figure 7: Energy-based
resource utilization mon-
itor is feasible but chal-
lenging.

weak CRS

0

10

20

30

40

50

-300 -200 -100 0 100 200 300R
el

at
iv

e
E

ne
rg

y
(d

B
)

Subcarrier Index

even-indexed CRS (antenna 1)
odd-indexed CRS (antenna 2)

Figure 8: Reference sig-
nals can capture fre-
quency selectivity and
antenna diversity.

for LTEye since LTE design never considered that a UE will
attempt to decode other UE’s downlink control information.
Thus, LTEye works well only when the wireless channel in-
duces almost zero bit errors and hence the resource allocation
can be deciphered without CRC.

(iii) OpenLTE [7] provides a software-radio based LTE
downlink demodulator, which has the same problem as LT-
Eye when decoding the resource allocation information.

In summary, to obtain cell-wide resource (PRB) alloca-
tion status, decoding the downlink control channels is not
a deployable solution as it seems. It is unscalable, entails
significant hardware modifications, and its results are unre-
liable.

3.1.3 Energy-based Radio Resource Monitor
piStream adopts an energy-based spectrum monitor called

RMon to assess cell-wide PRB allocation status without de-
coding the control channel. RMon offers a robust, energy-
efficient and readily-deployable solution to expose the PHY-
layer downlink resource assignment to a UE.

Despite its conceptual simplicity, the unique features of
LTE PHY layer bring several challenges to RMon’s design.
In particular, frequency selectivity makes it difficult to set
up a threshold to examine whether an LTE resource element
is allocated. Besides, wide adoption of multi-antenna bases-
tations exacerbates the variation of energy levels across fre-
quency/time, since the antennas may have diverse channel
gains to the UE.

Figure 7 showcases these challenges through one OFDM
data symbol over a 10MHz LTE downlink channel with 600
usable subcarriers (resource elements). We obtain the ground
truth of subcarrier allocation by running the LTEye snif-
fer [6] intentionally close to the basestation to ensure almost
zero bit error in decoding. We see that the energy on al-
located subcarriers is generally 20dB higher than the noise
floor. However, the energy levels of different subcarriers vary
by up to 33 dB, some even falling below the noise floor. Ac-
cording to LTEye’s decoded control information, the bases-
tation enforces transmit diversity using 2 antennas around
subcarrier index −300 and 0, which causes a wild energy
variation (about 15dB).

In the rest of this section, we detail the design of our
resource monitor RMon to meet such challenges.

Obtaining per-subcarrier energy-level statistics. The
resource monitor RMon can be considered as a simple in-
tercepting module to a standard LTE UE which already
performs frequency-time synchronization to the basestation,
and runs an FFT on each OFDM symbol to obtain the en-
ergy levels across subcarriers. RMon only requires the UE

to the UE itself, a UE cannot legitimately obtain the CRC
of other UE’s DCI.

to expose such per-subcarrier energy-level statistics. Thus,
it does not require any additional communication hardware.
Although this is not yet feasible in most current LTE hard-
ware (which usually only exposes total energy as signal strength
indicator), we believe the potential of cross-layer design pro-
vides compelling reason to enable it. In fact, the Qualcomm
QXDM already exposes to each UE its per-subcarrier en-
ergy level [23]. In many recent WiFi chipsets, per-subcarrier
statistics are already available to higher layers [25,26].

Locating resource elements available for downlink
data. When monitoring the resource assigned to downlink
data, the control signals and reference signals from the bases-
tation should be excluded. Such signals are scattered across
the resource grid (Figure 6). Fortunately, they can be lo-
cated and then isolated owing to LTE’s well defined resource
structure.

Specifically, RMon first senses the physical channel width
based on the frequency domain spectrum, which can be con-
verted to NDL

rb , the total number of physical resource blocks
(PRBs) available in one LTE time slot. It then locates
the OFDM symbols assigned to control signals based on
the control format indicator (CFI) field specifying the loca-
tion of control symbols. Finally, RMon locates the resource
elements allocated to reference signals, which are mapped
from the physical cell ID (PCI) following the LTE specifi-
cation [24]. The PCI is in turn obtained during the UE-to-
basestation synchronization procedure.

RMon is designed to operate well in cases where LTEye
fails (Section 3.1.2). It only relies on robust control infor-
mations: CFI and PCI are available to all UEs, and are
designed to be very robust by using 32 bit code to carry 2
bit information (CFI) or signal correlation techniques (PCI).

Evaluting resource element occupancy. Since not all
available resource elements are occupied by actual transmis-
sion. RMon employs an energy detector to single out active
resource elements. Since the resource elements’ energy lev-
els depend on link distance, frequency selectivity, and multi-
antenna diversity, it is infeasible to use a constant energy
threshold to examine resource element occupancy. To rem-
edy this problem, RMon adopts a dynamic threshold cus-
tomized for each LTE resource element.

Specifically, to combat the signal variation caused by pathloss
and frequency selective fading, we note that for each resource
element on subcarrier k and OFDM symbol t, there exist
two persistent reference signals within the subcarrier range
[k − 2, k + 2] and symbol range [t − 2, t + 2]. When active,
the resource element should have similar energy level as the
nearby reference signals owing to channel coherence. As an
example, Figure 8 depicts the reference signal energy corre-
sponding to the data signals in Figure 7. We let resource
elements in the first half of a subframe refer to the refer-
ence signals inside the 1st symbol of this subframe and the
2nd half refer to the 4th symbol. We use tr to denote the
global index of the nearest symbol containing reference sig-
nals. Suppose k+ is the nearest reference signal subcarrier
indexed higher than k, and k− the one indexed lower than k.
If k is an even number, we have k+ = k+ 1 and k− = k− 2.
Otherwise k+ = k + 2 and k− = k − 1 [24].

Moreover, for a multi-antenna basestation, the reference
signals from different antennas are perfectly separated in
frequency domain (Figure 8). Regardless of the basesta-

tion’s transmission mode5 (e.g., SISO, transmit diversity,
and open-loop MIMO), a subcarrier’s energy should be no
less than the energy from the transmit antenna with the
worst channel gain, which can be approximated by the small-
est energy on the two close-by reference signal subcarriers.

Consequently, for each subframe, RMon specifies the energy-
detection threshold τ(k, t) for an LTE resource element (RE)
on subcarrier k and in the symbol at time t as:

τ(k, t) = αmin(e(k+, tr), e(k
−, tr)) (1)

where e(k, t) is the measured energy of the RE on subcarrier
k in the symbol at time t. Since the RE to inspect at (k, t)
and its nearest reference signal REs at (k+, tr) and (k−, tr)
are very close to each other in both time and frequency do-
main, there will only be slight channel diversity between
them, and hence we can use a constant factor α = 0.8 in
Eq. (1) to safely accommodate such slight channel diverstiy.

Sanity check based on PRB resolution. The OFDM
PHY layer naturally allows energy monitoring on each re-
source element. However, the smallest resource allocation
unit in LTE is one PRB, which spans 12 consecutive sub-
carriers. RMon leverages this structure to further combat
variation of subcarrier energy due to narrow band inter-
ference, noise, or deep fading. It computes the harmonic
mean energy-level within each 12-subcarrier window, and
then compares it with the threshold τ(k, t) to decide whether
the PRB is allocated, thus filtering out outlier subcarriers.
In this way, we obtain the total number of allocated PRBs.

Output the resource utilization ratio. After all steps
above, RMon is ready to compute its output, the resource
(PRB) utilization ratio u over a time duration of M sub-
frames, i.e., M ms, by comparing the number of allocated
resource elements to the total number of resource elements
available for downlink data:

u =
Nalloc

2NDL
rb M

(2)

where Nalloc is the number of allocated PRBs over dura-
tion M , NDL

rb is the number of PRBs in each 0.5ms time
slot. Note that a subframe has 2 time slots. Intuitively,
M should be small enough to enable responsive online adap-
tation algorithm. However, a too small M leads to very
unstable average PRB utilization since the traffic load and
per-subframe resource allocation are sporadic at a small time
scale. In piStream, M is default to 200 ms, which can effec-
tively capture the relationship between PRB utilization and
traffic load, while remaining responsive to traffic variation.

The PRB utilization output of RMon is then leveraged
to enable the PHY-informed rate scaling (PIRS), which is
detailed in the following section.

3.2 PHY-Informed Rate Scaling (PIRS)
Given the PRB utilization, instead of using the throughput-

based adaptation to underutilize the bandwidth (Section 2),
a piStream client can scale up its measured throughput to
obtain an estimation of its potential bandwidth at this time.

5Closed-loop MU-MIMO beamforming is not supported in
typical commerical LTE networks yet, and hence we leave
the design to handle this particular transmission mode to
future work. Even if MU-MIMO frames are used, current
piStream UE can at least detect this based on the length
of Downlink Control Information (DCI) and then revert to
conventional DASH mode.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1P
R

B
 U

til
iz

at
io

n
R

at
io

 (
u)

Throughput to Bandwidth Ratio (R/B)

Single-UE
Multi-UE

Figure 9: PRB utiliza-
tion versus bandwidth
utilization.

Rate scaling

Unallocated

PRBs PRBs

Unallocated

(a) Only piStream clients

(b) Coexisting with legacy client (the 3rd)
Unallocated

Figure 10: PHY-
informed rate scaling
example.

In this section, we detail the rationale and operations of such
a PHY-informed rate scaling (PIRS) mechanism.

Relation between PRB and bandwidth utilization.
PIRS builds on a hypothesis that the PRB utilization of a
client grows linearly proportional with throughput until it sat-
urates network bandwidth. Behind this hypothesis are two
observations: (i) The end-to-end network bandwidth is bot-
tlenecked by the LTE access link, which has been validated
in existing measurement [4]; (ii) The access link capacity is
determined by the bit-rate and the cell-wide PRB utilization.
However, since the basestation already performs rate adapta-
tion to maximize the link bit-rate, the additional bandwidth
available should only depends on the available PRBs. Below
we validate this observation through experiments.

Our experiment is conducted in late night with relatively
stable network condition. We first measure the end-to-end
bandwidth (B) similarly to Sec. 2, and then initiate a fixed-
rate TCP stream from the server to one UE and record its
throughput (R). Meanwhile, we use RMon to measure the
cell-wide PRB utilization (u) per 200ms, and compute the
harmonic mean over an entire 300s Iperf session. We also
inspect a multi-UE test case, where the measurements are
collected during busy hours so that our UE coexists with
multiple UEs in this commercial LTE network.

Figure 9 shows that the bandwidth utilization R/B al-
most equals the PRB utilization u for the singe-UE test case.
Therefore, when the downlink is dominated by a single UE,
the cell-wide PRB utilization directly reflects the UE’s band-
width utilization. For the multi-UE case, we see that u tends
to be higher than R/B. This is because the PRB utilization
comprises the traffic load of not only our target UE, but also
other UEs within the same cell. Meanwhile, the target UE’s
B decreases due to downlink resource sharing. However, a
linear relation still holds before u saturates, i.e., cell-wide
PRB utilization increases linearly with a UE’s throughput to
bandwidth ratio until the utilization approaches 100%. This
essentially validates our hypothesis.

Rate scaling based on PRB utilization. Based on
the above observations, we derive the following principle for
a UE to scale up its measured throughput to obtain an esti-
mation of its current bandwidth6: Suppose current cell-wide
PRB utilization ratio is u, and the UE’s current through-
put is R, then at least a throughput of R/u can be supported
without over-utilizing PRB. Below we conduct a case-by-case
analysis of this principle.

(i) piStream client only (no legacy clients). First, suppose
the basestation serves only one client who can thus enjoy
all surplus PRBs. Given that the current PRB utilization
u supports the client’s current throughput R, the maximum

6This paper focuses on the general cases where the LTE link
bottlenecks the end-to-end network bandwidth [4]. We leave
other corner cases to future work.

achievable throughput when the client is granted all PRBs
should equal:

B = R/u (3)

Now, consider the more complicated cases when there are
multiple piStream clients in the network, they will detect
the same cell-wide PRB utilization u. Suppose client i is al-
located an actual fraction ui of the total PRBs, then it will
scale ui by 1/u accordingly. Even if they happen to scale
up their rates at the same time, as shown in Figure 10(a),
the resulting PRB utilization will not exceed 100% since
ui/u + (u − ui)/u = 1. Therefore, all piStream clients can
improve their rates without overshooting the bandwidth, as
illustrated in Figure 10(a).

(ii) piStream client(s) coexisting with conventional client(s).
In this case, Figure 9 has shown that the PRB utilization
stays above the bandwidth utilization. Hence, a client can
still scale up its throughput following Eq. (3) without over-
shooting its bandwidth. More specifically, suppose piStream
client i is allocated a fraction ui of the total PRBs. After rate
scaling, the cell-wide PRB utilization becomes

∑
i ui/u +

(u−
∑
i ui) ≤

∑
i ui/u+(u−

∑
i ui)/u = 1. A simple exam-

ple is illustrated in Figure 10(b). Although in this case the
total PRB utilization may be less than 100% after a single
rate scaling, it can quickly ramp up to 100% after several
successive rate scalings.

For the legacy clients in this scenario, firstly, if their traf-
fic demands do not increase, they will not be affected by
piStream at all because piStream clients only attempt to
leverage the unused PRBs. Second, if the traffic demand of
any legacy client increases after the PRB utilization reaches
100%, the LTE basestation will invoke its proportional fair-
ness scheduler to arbitrate the resource contention. Note
that the same problem will happen even in a network with
only legacy clients, and hence this is a general issue, not the
limitation of our design.

(iii) New client joining after full PRB utilization. If a
new client joins the network when the existing ones have ex-
hausted the PRBs, the LTE basestation’s proportional fair-
ness scheduler will take effect so that the new client gradually
gains more PRBs. When the basestation transfers PRBs to
the new client, the cell-wide PRB utilization stays at 100%.
Therefore, existing piStream clients will not scale up their
rates any more. Furthermore, with a proportionally fair
scheduler, the basestation will allocate less resource to them,
so the DASH senders serving existing piStream clients will
slow down and the saved resources are gradually“transfered”
to the new client.

Ultimately, when PRB is fully utilized, the basestation’s
scheduler will be responsible for ensuring fairness among
clients based on their link condition. As a client-side mech-
anism, piStream’s rate scaling does not affect the basesta-
tion’s fair scheduler. However, it does help the clients to
quickly reach the full PRB utilization state to use the net-
work resource more effectively.

3.3 LRD-based Video Adaptation (LVA)
Given an estimation of current available bandwidth (the

output of PIRS module), a piStream client runs a probabilis-
tic LRD-based video adaptation (LVA) algorithm to select
the rate for each next video segment, and balance the trade-
off between video quality and stalling risk.

Theoretical work [12] has shown that DASH performance
can improve significantly if future bandwidth is known. How-

Sojourn time
B

an
dw

id
th

Time

Bitrate level n

Bitrate level n+1

Figure 11: A simple ex-
ample for the bandwidth
sojourn time.

-3

-2.4

-1.8

-1.2

-0.6

0

0 0.5 1 1.5 2 2.5Lo
g

of
 A

bs
ol

ut
e

M
om

en
t

Log of Aggregate Level

Raw Samples
Fitted Line (Slope -0.25)

Figure 12: A Hurst pa-
rameter 0.75 indicates
the long range depen-
dency.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

C
D

F

Sojourn time (seconds)

Empirical CDF
Fitted Pareto CDF

Figure 13: Sojourn time
distribution fits a Pareto
distribution.

0

0.1

0.2

0.3

0.4

0.5

0 40 80 120 160 200

K
-S

 te
st

 s
ta

tis
tic

Window start time (s)

Static
Slow mobility

Figure 14: K-S test
statistic. (difference be-
tween the empirical and
the fitted CDF)

ever, the wireless channel fading and random traffic demand
make bandwidth prediction very challenging in LTE.

Instead of attempting to predict the exact value of future
bandwidth, the piStream client takes advantage of the in-
variant burstiness, or long-range dependency (LRD) of LTE
downlink traffic. Based on a model of its LRD profile, it
estimates how long its current bandwidth-level is likely to
remain consistent, and then chooses the per-segment video
bitrate in a probabilistic way.

Modeling sojourn time of network bandwidth. The
LRD property of Internet and local-area network traffic has
been well established [13, 14]. The downlink resource shar-
ing and large buffers in LTE intensifies such traffic patterns,
which naturally causes the available bandwidth to exhibit
LRD. To model LRD, we first define the sojourn time Ts
as the period between two consecutive bandwidth jumping
events, as illustrated in Figure 11. The bandwidth (esti-
mated by the PIRS component) is considered to jump to
another level when the highest video bitrate below the band-
width (i.e., the quantized bandwidth) changes.

The arrival of a sequence of bandwidth variations can be
considered as a renewal process, with sojourn time equal
to the inter-arrival time. As verified later in this section,
the sojourn time distribution is relatively stable and follows
a long tail or power law distribution. We use the widely
adopted Pareto distribution to model such behavior:

P{Ts > t} =

{
(α
t
)β , t ≥ α

1, otherwise
(4)

where α and β are referred to as the scale and shape param-
eter for the Pareto model.

Based on the Pareto model, the piStream client estimates
the probability p(t) that its bandwidth will sojourn at cur-
rent level for one more video segment of duration ∆t, con-
ditioned on the observation that it has already been staying
at this level for a duration t:

ps(t) = P(Ts > t+ ∆t|Ts > t) = (
t

t+ ∆t
)β (5)

We define ps(t) as the sojourn probability. Eq. (5) implies
that ps(t) increases with t. In other words, the UE’s band-
width is more likely to sojourn at its current level if it has
been staying there for a longer duration. Note that α dis-
appears in this equation since typical video segment length
∆t > α, and thus we only use the first case in Eq. (4) to
compute the conditional probability.

LRD model validation. We first use experiments to
verify the LRD pattern of the LTE downlink bandwidth.
We collect 5 time series of bandwidth values by running satu-
rated Iperf sessions, each lasting 300 seconds. We use the ab-
solute moment method [27] to estimate the Hurst parameter
H for the time sequence of bandwidth. When 0.5 < H < 1,
the sequence has long range dependency, and the degree of
long range dependency increases as H gets closer to 1. Fig-
ure 12 gives the log-log plot of the absolute moment. The
slope of the regression line is k = −0.25, and accordingly the
Hurst parameter H = 1 + k = 0.75 [27], indicating strong
long range dependency of the LTE bandwidth.

We further verify the goodness-of-fit for the Pareto model
using the same bandwidth time series. To incorporate the
impact of mobility, we collect an additional set of bandwidth
trace in a car during slow driving with constant speed and
direction. To process the time samples of bandwidth, we run
a sliding window with size of 60s across all the samples and
compute the Pareto fit of the samples in the window. The
empirical CDF of bandwidth sojourn time and its Pareto fit
in a particular time window under static environment are
plotted in Figure 13. We see that more than 40% of the
bandwidth level lasts longer than 5 seconds, which leaves
enough room for the LVA design to take effect. Moreover,
90% of the bandwidth levels last no more than 10s. Hence,
existing DASH design (e.g., FESTIVE [10]) that uses a long
smoothing window (typically 20s) may not adapt fast enough
to follow this bandwidth variation.

Besides, in Figure 14, we report the Kolmogorov-Smirnov
Test (K-S test) statistic D = supx |Fn(x) − F (x)| in each
sliding time window, which uses the difference between the
empirical CDF Fn(x) and the fitted CDF F (x) to charac-
terize the goodness-of-fit. It is worth noting that a high
mobility level may reduce the goodness-of-fit of our model.
We will discuss the corresponding design to handle this issue
in the end of this section.

From the results we can observe that: (i) The K-S test
statistics are small, indicating small difference between em-
pirical CDF and fitted CDF. (ii) The K-S test statistics are
stable in time domain, which suggests the stability of the
Pareto model parameters. (iii) The goodness-of-fit in high
mobile environment is worse than that in static environment
due to the bandwidth variations caused by channel fluctua-
tion which are not captured by the Pareto model.

It should be noted that prior work [28] reported Poisson
(memoryless) distribution of LTE downlink traffic. How-
ever, the experiments only examines short-term, packet-level
inter-arrival time distribution, which does not conflict with
the bursty traffic pattern at larger time scale observed here7.

LRD-based adaptation design. The LVA algorithm
proceeds as summarized in Algorithm 1 and detailed below.

(i) First, the client periodically (empirically set to 60s)
applies a maximum-likelihood regression [29] to recent band-
width samples to estimate the Pareto parameter β in Eq. (4).

7Based on our private correspondence with the authors.

Algorithm 1 LRD-based video adaptation (LVA).

Input: Bn: Bandwidth estimation of the n-th segment
Lnew: Bitrate level after bandwidth variation
Lold: Bitrate level before bandwidth variation
t0: When last bandwidth variation happened
Q(·): Quantize bandwidth to video bitrate

Output: Vn+1: Video bitrate for the next video segment
1: /*Finish downloading the n-th segment at t*/
2: Update Pareto parameter β using historical bandwidth
3: if Q(Bn) == Lnew then /*Check bandwidth varia-

tion*/
4: Ts = t− t0; /*update the sojourn time Ts*/
5: else
6: Ts = 0; t0 = t; /*reset the sojourn time*/
7: /*update the bitrate levels*/
8: Lold = Lnew; Lnew = Q(Bn);

9: Update bandwidth sojourn probability following Eq. (5)
10: if rand < ps then /*Stochastic video bitrate selection*/
11: Vn+1 = Lnew; /*switch to the new bitrate level*/
12: else
13: Vn+1 = Lold; /*stay at the old bitrate level*/

(ii) Meanwhile, the rate scaling module continuously re-
ports current bandwidth estimation to the adaptation logic.
When the bandwidth (quantized to match the video bitrate
levels) experiences a jump from Lold to Lnew at time t0, the
client starts to count the sojourn time Ts, the time that the
bandwidth has been staying at the new level Lnew. Based
on Eq. (5), the client then computes the bandwidth sojourn
probability ps(t): For the next video segment the network
bandwidth will stay at the new level Lnew with probability
ps(t) or go to any other level with probability 1− ps(t).

(iii) Finally, the client performs stochastic video bitrate
selection based on the sojourn probability ps(t). With lower
sojourn probability, the new bandwidth is less likely to last
for the next video segment, hence the client is reluctant to
switch to the bitrate matching the new bandwidth. In con-
trast, higher ps(t) indicates a possibly more stable bitrate
level thus the client is more inclined to switch.

To reduce the impact of a probabilistically wrong decision,
LVA performs a sanity check based on the client’s current
buffer level. When the buffer level is low (we empirically
set the threshold to 2000ms), even if a rare mistake can
incur intolerable buffer underrun. Thus, the client acts more
conservatively and reduces the video bit rate upon every
bandwidth decrease it experiences.

Handling mobility. The bandwidth variations caused
by channel fluctuations in mobility are unpredictable and not
captured in our bandwidth sojourn time model. This leads
to reduced goodness-of-fit in mobile environment and thus
less accurate adaptation. To handle mobility, we use the ac-
curacy of our model to guide the aggressiveness of the adap-
tation. More specifically, the client proactively evaluates the
level of mobility based on the goodness-of-fit of bandwidth
samples in current sliding window. A worse goodness-of-fit
indicates higher mobility, which then forces the client to act
more conservatively, i.e., the client becomes more likely to
reduce the video bitrate upon bandwidth decrease even when
the sojourn time model suggests this decrease is temporary.

4. IMPLEMENTATION
We prototype piStream on a cross-layer testbed comprised

of a PHY-layer resource monitor and a PHY-aware DASH

LVA

PHY layer
Application layer

RMon

piStream client

BS

Select video
bitrate

Throughput

Resource
utilization

Potential
bandwidth

Sniff
wireless
channel

Frame
boundary

PCI

Energy detector

PIRSDASH
server

Synchronization

(a) Implemention architecture (b) piStream testbed
Smartphone (LVA)

USRP

Laptop (RMon and PIRS)

Figure 15: piStream implementation.

layer. Figure 15(a) and (b) illustrate the implemented sys-
tem architecture and the prototype testbed, respectively.
Since the Android phone lacks native support for many of
the libraries essentially needed to implement piStream and
also cannot be directly connected to the USRP, we imple-
ment most piStream components on the laptop as shown in
Figure 15(b). Note that this does not affect the fidelity of
our evaluation because the phone is still the LTE client and
all traffic goes through the LTE network.

Real-time LTE radio resource monitor (RMon).
We implement piStream’s real-time resource monitor over
the USRP N210 software equipped with WBX daughter-
board and an antenna covering the 690-960/1710-2620 MHz
LTE band. The resource monitor is executed on USRP’s PC
host as a C module. It processes the LTE downlink signal
samples captured by the USRP, and extracts the cell-wide
PHY resource allocation information, following the frequency-
domain energy-detection algorithm in Section 3.1. The re-
source (i.e., PRB) allocation statistics are computed over a
moving window of 200 ms, and passed on to the upper layers
online. Since this 200ms time granularity for PRB utilization
output is much smaller than typical video segment length in
DASH (2000 ms in our experiments), our implementation
can perform DASH adaptation in real time. We average the
PRB utilization statistics in each segment duration before
performing rate-scaling to its throughput.

Our resource monitor RMon essentially implements major
PHY-layer primitives that exist in every UE, plus the cus-
tomized energy detector in piStream. Specifically, we have
implemented the following crucial sub-components following
the LTE standard [24]:

(i) Synchronization. The synchronization block enables a
UE to read the physical cell ID (PCI) of the current cell and
identify the downlink frame boundaries.

(ii) Signal energy detection. The energy-based data sig-
nal detector in RMon realizes fast and robust monitoring of
PRB allocation. The frame boundaries provided by the syn-
chronization block are used to determine the starting points
of data symbols, so that we can perform FFT to estimate
the frequency-domain resource allocation. Meanwhile, as de-
tailed in Section 3.1, the PCI is used to locate the cell-specific
reference signals (CRS) and determine the energy detection
threshold, which varies following the CRS energy for differ-
ent PRBs to accommodate the frequency selectivity.

PHY-aware DASH client. We implement piStream’s
adaptation logic by extending the DASH player from the
GPAC [8] project. To interface the extended DASH layer
with the RMon module, we tether an LTE smartphone (via
USB) and a USRP radio (via Ethernet) to the same lap-
top PC host. Then we expose the PHY resource utilization
statistics to the DASH player by setting up a named pipe be-
tween the resource monitor RMon and the DASH player. To

Algorithm name BBA FESTIVE PANDA GPAC piStream

Bandwidth estimation N/A
Harmonic mean

throughput
N/A

Latest
throughput

PIRS
& LVA

Buffer knowledge Yes No No No Yes
PHY information No No No No Yes

Table 1: Implemented DASH algorithms.

leverage the PHY resource utilization statistics, we replace
the default DASH adaptation logic in GPAC’s DASH player
with our implementation of the PHY-informed rate scaling
(PIRS) and LRD-based video adaptation (LVA) algorithms
in piStream.

DASH server. We set up an MPEG-DASH server with
high bandwidth (66 Mbps measured with Iperf over a wire-
line network) on Amazon EC2 using Apache 2. This follows
typical scenarios where the LTE downlink, instead of the
wireline backbone, acts as the bottleneck for video stream-
ing. The server hosts multiple DASH video data sets with
typical 2s video segment length.

Benchmark protocols for comparison. To bench-
mark piStream’s performance, we implement state-of-the-art
DASH adaptation protocols including BBA [9], FESTIVE
[10], and PANDA [15] in the GPAC’s DASH player [8] by
replacing its default video rate adaptation algorithm which
quantizes throughput of the latest segment as the bitrate
selection. All implemented algorithms are summarized in
Table 1.

(i) BBA denotes a broad class of buffer-based algorithms
proposed in [9]. Among these variants, we implement BBA-
2, a hybrid algorithm which uses throughput to control video
bitrate in the startup phase. After reaching the steady state,
the client then maps its current buffer level to the video
bitrate selection using a linear function.

(ii) FESTIVE algorithm selects video bitrate based on the
harmonic mean of historical throughput measurements. As
recommended in [10], our implementation adopts the aver-
aging window over 20 segments and 30 seconds target buffer
size. We also implement FESTIVE’s stateful bitrate selec-
tion, i.e., we delay the switch to bitrate level k by k segments,
but decrease the bitrate level immediately if necessary.

(iii) PANDA allows a client to keep increasing its video
bitrate to probe the bandwidth until observing a throughput
decrease, which is taken as a congestion indicator. Then it
reduces video bitrate based on the difference between bitrate
and throughput of the last video segment. Our implementa-
tion exactly follows the default PANDA parameters in [15],
the parameter k controlling the rate reduction speed is set
to 0.14, which means slow rate reduction after a congestion.

5. EVALUATION
In this section, we first validate each component in piStream,

including the real-time monitor (RMon), PHY-aware band-
width scaling (PIRS), and LRD-based video adaptation (LVA)
(Section 5.1). Then we combine everything together and
perform a thorough system-level test under various network
conditions (Section 5.2). All experiments (except one with
trace-driven emulation in Section 5.1.3) are conducted over
real-world Verizon LTE network on channel 13 (746-756MHz)
using Samsung Galaxy Nexus smartphones. They also use
the same server and DASH data sets specified in Section 4.

The performance evaluation focuses on two major QoE
metrics [30]: (i) The average video bitrate represents video
quality. It is defined as the mean video bitrate over all
streamed video segments. (ii) The video stall rate repre-
sents playback smoothness. It is defined as the percentage

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

C
D

F

Estimation error (in percentage)

Close to basestation
Far from basestation

Figure 16: Our resource
monitor RMon outputs
accurate resource utiliza-
tion.

0

2000

4000

6000

8000

w/ PIRS w/o PIRS
0

25

50

75

100

V
id

eo
 B

itr
at

e
(K

bp
s)

V
ideo S

tall R
ate (%

)
Video Bitrate
Video Stall Rate

55% gain

Figure 17: PIRS compo-
nent alone improves the
performance.

of video stalls, i.e., the number of video segments that stall
the video divided by the total number of streamed video seg-
ments to obtain the video stall rate. We obtain these metrics
by logging the bitrate of every video segment and the buffer
level on the client testbed in real time.

5.1 Micro-benchmark

5.1.1 Validating the Radio Resource Monitor (RMon)
We first examine how accurate piStream’s resource mon-

itor RMon can estimate the PRB utilization statistics. We
evaluate the PRB utilization (in percentage) for a single-
user video streaming. Meanwhile, we record the bandwidth
utilization (in percentage). As discussed in Section 4, LTE
downlink channel is usually the bottleneck between server
and client. Hence, if RMon is accurate, its PRB utiliza-
tion output should equal bandwidth utilization for this single
user. Estimation error is defined as the difference between
PRB utilization and bandwidth utilization. The experiments
are performance in static environment during idle hours so
that the bandwidth utilization is w.r.t. the same bandwidth.
We repeat the experiments under two link conditions, cre-
ated by moving the client close by and far from the basesta-
tion while ensuring connectivity. In each case, we compute
RMon’s estimation error over 200 seconds and plot its CDF.

Figure 16 shows that RMon is highly accurate — it pro-
duces the same output as the ground truth for more than
90% of the time. In case it errs, it differs by no more than
10%. In addition, its accuracy is only slightly affected by
link condition. Therefore, its PRB statistics can be reli-
ably used by piStream’s higher-layer modules. In our sys-
tem tests (Section 5.2), we will demonstrate the synergistic
performance under a variety of conditions including node
mobility.

5.1.2 Validating the PHY-informed Rate Scaling (PIRS)
To verify the eventual impact of PHY-informed rate scal-

ing, we evaluate how much performance improvement it can
achieve in DASH video steaming. In this experiment, the
RMon keeps sniffing the LTE downlink channel during DASH
video streaming and reports the PRB utilization to the DASH
client periodically. The client then scales up its bandwidth
estimation based on the latest PRB utilization and directly
sets the quantized bandwidth estimation as the bitrate for
the next video segment. To exclude the influence of down-
link bandwidth variation, we test a single static client during
late night for 10 consecutive runs.

Figure 17 compares the performance of using PIRS or sim-
ply the throughput for video bitrate adaptation. We see
that PIRS module alone improves the average video quality
by 55% at the cost of only 1% increase in the number of
video stalls. Therefore, PIRS can effectively overcome the

(a) Video quality (higher is better) (b) Video stall rate (lower is better)

0

5

10

15

20

Latest
Throughput

Harmonic
Mean

Arithmetic
Mean

LVA
Adaptation

V
id

eo
 S

ta
ll

R
at

e
(%

)

0

1500

3000

4500

6000

Latest
Throughput

Harmonic
Mean

Arithmetic
Mean

LVA
Adaptation

V
id

eo
 B

itr
at

e
(K

bp
s)

Figure 18: Trace-driven emulation with perfect
knowledge of current & historical (but not future)
bandwidth.

slow ramp-up behavior typically seen in throughput-based
bandwidth estimators (Section 2).

5.1.3 Validating the LRD-based Video Adaptation (LVA)
In this micro-benchmark, we compare LRD-based video

adaptation with several widely adopted DASH adaptation
algorithms: (i) Latest-throughput-base adaptation, which
uses bandwidth experienced by the latest video segment as
the expected future bandwidth. (ii) To handle the band-
width variation, adaptation based on the smoothed histor-
ical bandwidth is also widely used. A straightforward so-
lution is to compute the arithmetic mean. (iii) Harmonic
mean based bandwidth smoothing has demonstrated supe-
rior performance [10] than the arithmetic mean since it is
more robust to larger outliers.

We use trace-driven emulation only for this micro-benchmark
to isolate the effect of inaccurate bandwidth estimation in
other algorithms. Instead of using the C++ implementation
as in all other real-world experiments, we implement the al-
gorithms again in MATLAB. The DASH video set used here
is the same as that in all other real-world experiments. The
transmission time is emulated within MATLAB based on the
video segment size and the LTE downlink bandwidth in the
collected traces. The traces contain a time series (at second
level time granularity) of available LTE downlink bandwidth
during busy hours for the target UE, collected by running a
saturated Iperf TCP session. All DASH algorithms are run
over the same trace. Arithmetic and harmonic mean based
adaptation algorithms work on a granularity of 20 segments,
as suggested in [10].To investigate video stalls, we compute
the buffer level at the client as a time series based on the bi-
trate selection for each video segment and the bandwidth at
that time, where the buffer level may drop to 0 and cause a
video stall when the selected bitrate exceeds the bandwidth.
Note that among DASH schemes, only piStream can obtain
an accurate estimation of the current available bandwidth
and use it for video bitrate adaptation. Yet for a micro-
benchmark comparison of adaptation algorithms, we assume
the current bandwidth (not future bandwidth) is known and
used by all algorithms.

(i) Video streaming performance of adaptation algorithms.
We first compare the video streaming performance of these
algorithms. Figure 18 plots the results of this trace-driven
emulation. Compared to the latest-throughput-based adap-
tation, LVA reduces the video stalling rate from 13% to 4%,
at the cost of slight video quality loss (9%). Meanwhile,
compared to the harmonic mean based adaptation, LVA im-
proves video quality by 5% and the video stall rate by 1%.

(ii) Effectiveness of adaptation algorithms. To further in-
vestigate the reason behind the performance improvement,
we look into the accuracy of adaptation by comparing the
bitrate selection and the actual bandwidth of a video seg-

OvershootUndershoot

0
0.1
0.2
0.3
0.4
0.5
0.6

-15 -10 -5 0 5 10 15

P
D

F

Bandwidth Adaptation Error (Mbps)

Latest throughput
Harmonic mean
Arithmetic mean
LVA

Figure 19: LVA has
the lowest overshoot
prob.(18% lower than the
runner-up)

0

1000

2000

3000

4000

5000

6000

020406080100

V
id

eo
 B

itr
at

e
(K

bp
s)

Video Stall Rate (%)

BBA

FESTIVE

GPAC
PANDA

piStream

Be
tte
r

Figure 20: Average video
bitrate & video stall ratio
for a static client.

ment. Figure 19 shows that, 57% of the time, our LVA algo-
rithm picks the video bitrate exactly matching the band-
width, which is the highest among all tested algorithms.
Moreover, we also see that the LVA algorithm has less over-
shoots and undershoots in the adaptation compared to other
algorithms.

These results explain what Figure 18 shows. First, the
latest-throughput-based adaptation has the highest video bi-
trate but lots of video stalls since it has more overshoots and
less undershoots than other algorithms. LVA algorithm has
the smallest video stall rate since it has the highest accuracy
in adaptation (the peak at x = 0 in Figure 19). Both the
harmonic and arithmetic mean based adaptation have low
accuracy in adaptation, hence much worse performance.

5.2 System Level Test
We now compare piStream with state-of-the-art DASH

adaptation algorithms (Section 4), including GPAC’s DASH
player [8], BBA [9], FESTIVE [10], and PANDA [15].

5.2.1 piStream Client in Real-world LTE Network
We first conduct experiments with a static piStream client

playing MPEG-DASH video over populated commercial LTE
network. To ensure a practical test environment with suf-
ficient link dynamics, e.g., other clients joining or leaving
the network, we perform the experiments in a library with
about 100 students inside during the afternoon, where our
resource monitor constantly reports around 30% background
PRB utilization caused by other LTE clients.

Before the experiments, we first use Iperf to measure the
end-to-end bandwidth using wireline network to ensure there
are no other bottlenecks between the DASH server and the
client. We also use OpenLTE [7] to scan the LTE downlink
channel to ensure there is no inter-cell interference. Each
of our test lasts around 200 seconds, and we repeat each
experiment with 10 runs.

(i) From Figure 20, we see that piStream substantially
boosts video quality compared with alternative approaches.
In particular, it improves the average video rate by 64% over
GPAC, 125% over FESTIVE, 61% over BBA, and compa-
rable to PANDA. This performance boost in video quality
is mainly attributed to the PHY-informed bandwidth scal-
ing, which enables the piStream client to select higher video
bitrate than other algorithms without exceeding the band-
width.

Meanwhile, piStream maintains a low video stall rate of
close to 0. This implies that the LRD-based video adap-
tation can minimize the risk of buffer underrun, despite
the aggressive video rate selection upon bandwidth scal-
ing. (ii) GPAC’s DASH player experiences a lower video
stall rate compared to the trace-driven simulation (i.e., the
latest-value-based adaptation in Figure. 18) where the cur-

(a) Slow driving (b) Fast driving

0

2000

4000

6000

8000

10000

020406080100

V
id

eo
 B

itr
at

e
(K

bp
s)

Video Stall Rate (%)

BBA

FESTIVE

GPACPANDA

piStream

Be
tte
r

0

2000

4000

6000

8000

10000

020406080100

V
id

eo
 B

itr
at

e
(K

bp
s)

Video Stall Rate (%)

Be
tte
r

BBA
FESTIVE

GPAC

PANDA

piStream

Figure 21: piStream outperforms other DASH algo-
rithms in mobile environments.

rent downlink bandwidth is assumed to be known. In this
real experiment, the GPAC client needs to execute its his-
torical averaging based bandwidth estimation, which tends
to be conservative, resulting in less video stalling.

(iii) The FESTIVE algorithm relies on the harmonic mean
of the historical throughput to control the video bitrate. De-
spite its effectiveness in wireline networks [10], the harmonic
mean takes a long time to converge. Under the high band-
width variation of LTE, it results in severe bandwidth under-
utilization, despite a comparable stalling rate with piStream.

(iv) Surprisingly, the BBA algorithm exhibits an unac-
ceptably high video stall rate (23%). It should ideally mit-
igate stalling by reducing the video rate whenever it sees a
low buffer level. By examining at its adaptation logs, we
found that, given a high buffer level, BBA decides on a high
video bitrate regardless of the current downlink throughput.
Such uninformed aggressive choice tends to drain the buffer
off before the high-rate video segment finishes downloading.

(v) The PANDA algorithm is built on a bandwidth prob-
ing mechanism and should ideally make more informed de-
cisions. Yet the results show 50% of stalling rate despite
its comparable video quality with piStream. We found that
PANDA probes the bandwidth until observing a decrease
in the downlink throughput, which is taken as an indicator
for congestion. However, it may have already overshoot the
bandwidth before experiencing such a throughput decrease.
Also, its slow end-to-end probing can hardly keep track of
the bandwidth in real-time.

In summary, piStream makes the best tradeoff between
video quality and stalling rate compared with a wide range
of video adaptation protocols that adopt rate-based, buffer-
based and probing-based approaches. These adaptation al-
gorithms fall short of agility and precision in the presence of
high bandwidth variation in LTE. piStream’s PHY-informed
design effectively overcomes such limitations.

5.2.2 Impact of Mobility
We further evaluate piStream’s performance by running

it inside a moving vehicle in two outdoor scenarios: slow-
driving (20 to 25 mph in an urban downtown area) and fast-
driving (45 to 50 mph in a suburban area). The software-
radio running piStream’s RMon module is driven by a 120V
power-inverter inside the vehicle. To ensure similar effect
of mobility to all algorithms, we conduct the experiment by
driving through the same route when testing different algo-
rithms. Since our current spectrum monitor design cannot
properly handle the hand-off between cells, we need to en-
sure that the car remains in current cell during the evalu-
ation time. Therefore, we only stream for 100 seconds for
each algorithm.

Figure 21(a) and (b) plot the experimental results. First,
we see that the performance of all algorithms suffers under
higher mobility, which is expected since mobility is known

(a) Video quality (b) Fairness

0

0.2

0.4

0.6

0.8

1

GPAC FESTIVE piStream

Ja
in

’s
 F

ai
rn

es
s

In
de

x

0

1000

2000

3000

4000

5000

GPAC FESTIVE piStream
0

20

40

60

80

100

V
id

eo
 B

itr
at

e
(K

bp
s)

V
ideo S

tall R
ate (%

)

Video Bitrate
Video Stall Rate

Figure 22: Performance with multiple DASH clients.

to worsen the channel condition and bring more bandwidth
variations. Notably, the average video rate in the slow driv-
ing case is even higher than that in the static indoor environ-
ment (Figure. 20). This is because the higher signal strength
outdoor can partly offset the negative effect of mobility.

piStream maintains the highest video quality among all
tested algorithms and a low video stalling rate. This also
implies that the RMon module in piStream is robust and
reports accurate PRB utilization ratio even in the high mo-
bility cases. In contrast, we found the control information
decoding based method in LTEye [6] easily fails due to high
bit errors induced by channel fading. It missed 40% of the
downlink PRBs filled with higher energy, and it erroneously
detected more than 1000 UEs in 20 seconds within a small
cell. This poor performance is caused by the CRC failure,
since LTE is designed to only let the UE to decode its own
downlink allocation (Sec. 3.1.2).

The performance ranking of other tested algorithms also
remains similar as in the static case. These algorithms can
not keep track of the high bandwidth variation, and hence
the video quality degradation becomes even more pronounced.

5.2.3 Multiple piStream Clients Coexisting
Will piStream’s bandwidth scaling method cause unfair-

ness when multiple clients coexist? We have provided a
negative answer with basic intuitions in Section 3.2. Now
we conduct experiments with four clients8 running piStream
concurrently and evaluate the Jain’s fairness index. We only
compare piStream with GPAC and FESTIVE, since BBA
and PANDA keeps an unacceptably high stalling rate.

Figure 22(a) shows that piStream maintains the highest
video quality among all users, with comparable/lower stalling
rate than other approaches. On average, a piStream client
enjoys 42.3% and 108% higher video rate than GPAC and
FESTIVE, respectively. More importantly, Figure 22(b)
shows a Jain’s fairness index of close to 1 among all users.
This implies that each piStream client takes a fair share of
the available resource when enforcing the bandwidth scal-
ing. Note that GPAC tends to result in low fairness (in-
dex around 0.8), with its simple historical throughput based
adaptation, whereas FESTIVE has trade video quality for
fairness into its adaptation algorithm, i.e., sacrificing many
bitrate increase opportunities in its stateful bitrate selection,
thus achieving good fairness.

6. RELATED WORK
LTE measurement profiling and application opti-

mization. The study in [31] represents a first measure-
ment of commercial LTE deployment, revealing architecture-

8piStream can support many more users than 4, but we be-
lieve fairness is meaningful only when all concurrent clients
have good QoE (e.g., with stalling rate of below 10%).
Therefore we only serve 4 users to trade concurrent user
number for QoE.

level properties enabling lower-latency and higher through-
put than 3G networks, as well as low-layer configurations
(e.g., large in-network queues) that cause high-layer anomaly.
Huang et al. [32] examined how radio state machine inter-
acts with application traffic in LTE networks, focusing on
the end-host energy wastage due to uninformed active radio
state maintenance. More recent studies examined the im-
pact of handover [33], traffic burstiness and fair scheduling
policies [4] on LTE/HSPA transport-layer. All such mea-
surement/simulation hints to the importance of cross-layer
interaction in LTE networks.

Adaptive video streaming protocols. Video stream-
ing applications have kept challenging mobile Internet infras-
tructure and protocol design. Conventional video streaming
relied on propriety services, often on top of UDP [34, 35].
Mobile video services like YouTube used to execute adapta-
tion at server side, often employing simple strategies such
as periodically downloading fixed-sized chunks, or down-
loading an entire video file at once [19]. More recent ser-
vices are converging to DASH, which allows simply repur-
posing commodity web infrastructure (e.g., CDN servers)
for video streaming. This trend has proliferated many vari-
ants of DASH (e.g., Microsoft Smooth Streaming, Apple
HTTP Living Streaming, and Netflix). Existing DASH algo-
rithms strive for a balance between high video quality (bit-
rate) and the risk of buffer underrun. This tradeoff can be
deemed as an optimization problem. The key challenge lies
in the under-determined “available bandwidth” constraint,
which has been approximated using either historical TCP
throughput [10, 15], or buffer dynamics [9]. We have shown
that piStream essentially overcomes the limitations of these
approaches via an informed cross-layer available-bandwidth
estimation.

RAN-based throughput guidance. In cellular net-
works, the Radio Access Network (RAN) performs RRM
(Radio Resource Management), all PHY layer details are
available at the basestation. This fact inspires RAN-based
throughput guidance solutions [36, 37], in which the traffic
scheduling algorithm runs on the basestation and controls
the end-to-end traffic by sending non-LTE-standard control
messages. However, such RAN-based solutions require heavy
modifications on the LTE basestation or even the core net-
work [37]. In contrast, our piStream design is UE-oriented,
which only requires a firmware upgrade for the UE devices.
We believe this makes our design more practical and easier
to deploy.

Adapting higher layer protocols to wireless band-
width variation. Substantial research has been devoted
to tailoring TCP for wireless networks. Many wireless TCP
protocols proposed to prevent unnecessary TCP congestion
reaction caused by lossy wireless links (see [38] for a sur-
vey). Modern cellular networks have masked link-level losses
through smart retransmission mechanisms like HARQ. How-
ever, substantial challenges remain, e.g., highly variable chan-
nel condition [39] and bufferbloat [40]. In the end, all these
problems can be solved in future if an accurate end-to-end
bandwidth estimation is available for the TCP layer.

In wireline networks, end-to-end bandwidth can be esti-
mated by active probing using, e.g., packet pairs and out-of-
band parallel TCP connections [41]. However, the approach
cannot be readily used in LTE, because the resource allo-
cation at probing time does not represent that of real ap-
plications which experience bursty contending traffic, highly

variable network conditions, and intermittent queue build-
up. In [31], a passive estimation mechanism is deployed at a
middlebox between user device and LTE core gateways, but
instead of run-time bandwidth, it can only obtain a band-
width upperbound when sending rate is fast enough to ex-
ceed the available bandwidth.

Sprout [28] introduces a stochastic forecast framework to
predict future bandwidth of a cellular link based on histor-
ical statistics. It assumes each flow is isolated from com-
petitors, and only deals with self-inflicted congestion behav-
ior. Unlike piStream, PROTEUS [42] builds a regression
tree to predict future throughput/delay based on histori-
cal application-layer statistics. In DASH, since application-
layer itself may be trapped on a state with low bandwidth
utilization, application-layer history can no longer indicate
achievable throughput.

CQIC [43] represents the first work to augment band-
width estimation in HSPA+ cellular networks using PHY-
layer channel quality information (CQI). It estimates PHY-
layer bandwidth by multiplying a CQI-based bitrate estima-
tion with the fraction of time a UE is scheduled. Though
bearing similar cross-layer design principle, piStream dif-
fers from CQIC in three aspects: (i) piStream not only in-
spects historical resource usage, but also explores unused
resource; (ii) CQIC targets at packet-level congestion con-
trol while piStream handles second-level video segments. At
this time scale, CQI information is inessential since the im-
pact of short-term channel fading depreciates while long-
term fading is directly captured in per-segment throughput;
(iii) For LTE networks where resources are shared among
UEs, CQI alone cannot represent available bandwidth – com-
peting traffic and available resource are equally important,
and become the dominating factor for relatively static UEs
(Section 2).

7. CONCLUSION
Video streaming is surging to dominate the cellular net-

work traffic today. However, current adaptive video stream-
ing protocols fall short of the expected QoE even under
LTE’s high bandwidth provisioning. To address the problem,
we present piStream, a DASH-compatible adaptive video
streaming framework that exposes LTE’s PHY layer infor-
mation to facilitate video rate adaptation. piStream’s PHY-
informed design enables a more accurate bandwidth esti-
mation and agile video rate adaptation. Extensive exper-
iments on a real-time prototype show that piStream out-
performs state-of-the-art video streaming algorithms in both
video quality and playback smoothness. Under typical video
streaming environments, piStream achieves around 1.6× video
quality (bitrate) gain over the runner-up algorithm while
maintaining a lower video stalling rate. We believe piStream’s
PHY-informed design can be applicable to a wider range of
LTE applications than what we have explored.

Acknowledgement
We appreciate the anonymous reviewers for their insightful
comments. This research was supported in part by the NSF
under Grant CNS-1318292, CNS-1343363 and CNS-1350039.

8. REFERENCES
[1] Cisco Systems, Inc., “Cisco Visual Networking Index:

Global Mobile Data Traffic Forecast Update, 2012–2017,”

2012. [Online]. Available:
http://www.cisco.com/en/US/solutions/collateral/ns341/
ns525/ns537/ns705/ns827/white paper c11-520862.html

[2] Ctrix, “Mobile Analytics Report,” 2014. [Online]. Available:
http://www.citrix.com/content/dam/citrix/en us/
documents/products-solutions/
citrix-mobile-analytics-report-september-2014.pdf

[3] Y. Zhang, A. Arvidsson, M. Siekkinen, and
G. Urvoy-Keller, “Understanding HTTP flow rates in
cellular networks,” in IFIP Networking Conference, 2014.

[4] Y. Xu, Z. Wang, W. Leong, and B. Leong, “An End-to-End
Measurement Study of Modern Cellular Data Networks,” in
Proc. of Passive and Active Measurement Conference, 2014.

[5] I. Sodagar, “The MPEG-DASH Standard for Multimedia
Streaming Over the Internet,” in IEEE Multimedia, 2011.

[6] S. Kumar, E. Hamed, D. Katabi, and L. Erran Li, “LTE
Radio Analytics Made Easy and Accessible,” in Proc. of
ACM SIGCOMM, 2014.

[7] Ben Wojtowicz, “OpenLTE.” [Online]. Available:
http://openlte.sourceforge.net/

[8] ENST, “GPAC.” [Online]. Available:
http://gpac.wp.mines-telecom.fr/

[9] T.-Y. Huang, R. Johari, N. McKeown, M. Trunnell, and
M. Watson, “A Buffer-based Approach to Rate Adaptation:
Evidence from a Large Video Streaming Service,” in Proc.
of ACM SIGCOMM, 2014.

[10] J. Jiang, V. Sekar, and H. Zhang, “Improving Fairness,
Efficiency, and Stability in HTTP-based Adaptive Video
Streaming with FESTIVE,” in Proc. of ACM CoNEXT,
2012.

[11] X. Yin, V. Sekar, and B. Sinopoli, “Toward a Principled
Framework to Design Dynamic Adaptive Streaming
Algorithms Over HTTP,” in Proc. of ACM HotNets, 2014.

[12] X. K. Zou, J. Erman, V. Gopalakrishnan, E. Halepovic,
R. Jana, X. Jin, J. Rexford, and R. K. Sinha, “Can
Accurate Predictions Improve Video Streaming in Cellular
Networks?” in Proc. of ACM HotMobile, 2015.

[13] W. Leland, M. Taqqu, W. Willinger, and D. Wilson, “On
the Self-Similar Nature of Ethernet Traffic,” IEEE/ACM
Transactions on Networking, vol. 2, no. 1, 1994.

[14] M. E. Crovella and A. Bestavros, “Self-similarity in World
Wide Web Traffic: Evidence and Possible Causes,” in Proc.
of ACM SIGMETRICS, ser. SIGMETRICS ’96, 1996.

[15] Z. Li, X. Zhu, J. Gahm, R. Pan, H. Hu, A. Begen, and
D. Oran, “Probe and Adapt: Rate Adaptation for HTTP
Video Streaming At Scale,” IEEE Journal on Selected
Areas in Communications, vol. 32, no. 4, 2014.

[16] Microsoft, “Microsoft Smooth Streaming,”
http://www.iis.net/downloads/microsoft/smooth-
streaming.

[17] Apple, “HTTP Live Streaming.” [Online]. Available:
https://developer.apple.com/streaming

[18] Adobe, “HTTP Dynamic Streaming,”
http://www.adobe.com/products/hds-dynamic-
streaming.html.

[19] M. Hoque, M. Siekkinen, J. Nurminen, and M. Aalto,
“Dissecting Mobile Video Services: An Energy Consumption
Perspective,” in Proc. of IEEE WoWMoM, 2013.

[20] N. Becker, A. Rizk, and M. Fidler, “A Measurement Study
on the Application-Level Performance of LTE,” in IFIP
Networking Conference, 2014.

[21] A. Gouta, D. Hong, A.-M. Kermarrec, and Y. Lelouedec,
“HTTP Adaptive Streaming in Mobile Networks:
Characteristics and Caching Opportunities,” in Modeling,
Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2013.

[22] Lawrence Berkeley National Laboratory, “iperf3.” [Online].
Available: http://software.es.net/iperf/

[23] Qualcomm, “QXDM.” [Online]. Available:
https://www.qualcomm.com/documents/
qxdm-professional-qualcomm-extensible-diagnostic-monitor

[24] “LTE; Evolved Universal Terrestrial Radio Access
(E-UTRA); Physical channels and modulation,” 3GPP TS
36.211 version 12.3.0 Release 12, 2014.

[25] D. Halperin et. al., “Linux 802.11n CSI Tool.” [Online].
Available: http://dhalperi.github.io/linux-80211n-csitool/

[26] S. Sen, B. Radunovic, J. Lee, and K.-H. Kim, “CSpy:
Finding the Best Quality Channel Without Probing,” in
Proc. of ACM MobiCom, 2013.

[27] M. S. Taqqu, V. Teverovsky, and W. Willinger, “Estimators
for Long-Range Dependence: an Empirical Study,” Fractals,
1995.

[28] K. Winstein, A. Sivaraman, and H. Balakrishnan,
“Stochastic Forecasts Achieve High Throughput and Low
Delay over Cellular Networks,” in USENIX NSDI, 2013.

[29] S. Kotz and S. Nadarajah, Extreme Value Distributions:
Theory and Applications. London: Imperial College Press,
2000.

[30] O. Oyman and S. Singh, “Quality of experience for HTTP
adaptive streaming services,” IEEE Communications
Magazine, vol. 50, no. 4, 2012.

[31] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao,
S. Sen, and O. Spatscheck, “An In-depth Study of LTE:
Effect of Network Protocol and Application Behavior on
Performance,” in Proc. of ACM SIGCOMM, 2013.

[32] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and
O. Spatscheck, “A close examination of performance and
power characteristics of 4g lte networks,” in Proc. of ACM
MobiSys, 2012.

[33] B. Nguyen, A. Banerjee, V. Gopalakrishnan, S. Kasera,
S. Lee, A. Shaikh, and J. Van der Merwe, “Towards
Understanding TCP Performance on LTE/EPC Mobile
Networks,” in Proc. of the Workshop on All Things Cellular
(AllThingsCellular), 2014.

[34] X. Zhu and R. Pan, “NADA: A Unified Congestion Control
Scheme for Low-Latency Interactive Video,” in
International Packet Video Workshop (PV), 2013.

[35] H. Lundin and S. Holmer and H. Alvestrand, “A Google
Congestion Control Algorithm for Real-Time
Communication,” 2013, internet-Draft (Informational).

[36] Internet Engineering Task Force, “Mobile Throughput
Guidance Signaling Protocol.” [Online]. Available:
https://tools.ietf.org/html/
draft-flinck-mobile-throughput-guidance-00

[37] J. Chen, R. Mahindra, M. A. Khojastepour, S. Rangarajan,
and M. Chiang, “A Scheduling Framework for Adaptive
Video Delivery over Cellular Networks,” in Proc. of ACM
MobiCom, 2013.

[38] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H.
Katz, “A Comparison of Mechanisms for Improving TCP
Performance over Wireless Links,” in Proc. of ACM
SIGCOMM, 1996.

[39] M. C. Chan and R. Ramjee, “TCP/IP Performance over 3G
Wireless Links with Rate and Delay Variation,” in Proc. of
ACM MobiCom, 2002.

[40] H. Jiang, Y. Wang, K. Lee, and I. Rhee, “Tackling
Bufferbloat in 3G/4G Networks,” in Proc. of ACM Internet
Measurement Conference (IMC), 2012.

[41] M. Jain and C. Dovrolis, “End-to-End Available
Bandwidth: Measurement Methodology, Dynamics, and
Relation with TCP Throughput,” IEEE/ACM Transactions
on Networking, vol. 11, no. 4, 2003.

[42] Q. Xu, S. Mehrotra, Z. Mao, and J. Li, “PROTEUS:
Network Performance Forecast for Real-time, Interactive
Mobile Applications,” in Proc. of ACM MobiSys, 2013.

[43] F. Lu, H. Du, A. Jain, G. M. Voelker, A. C. Snoeren, and
A. Terzis, “CQIC: Revisiting Cross-Layer Congestion
Control for Cellular Networks,” in Proc. of ACM
HotMobile, 2015.

