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Abstract—In multi-rate wireless LANs, throughput-based fair
bandwidth allocation can lead to drastically reduced aggregate
throughput. To balance aggregate throughput while serving
users in a fair manner, proportional fair or time-based fair
scheduling has been proposed to apply at each access point (AP).
However, since a realistic deployment of wireless LANs can
consist of a network of APs, this paper considers proportional
fairness in this much wider setting. Our technique is to intelli-
gently associate users with APs to achieve optimal proportional
fairness in a network of APs. We propose two approximation
algorithms for periodical offline optimization. Our algorithms
are the first approximation algorithms in the literature with
a tight worst-case guarantee for the NP-hard problem. Our
simulation results demonstrate that our algorithms can obtain
an aggregate throughput which can be as much as 2.3 times
more than that of the max-min fair allocation in 802.11b.
While maintaining aggregate throughput, our approximation
algorithms outperform the default user-AP association method
in the 802.11b standard significantly in terms of fairness.

I. INTRODUCTION

Fair and efficient medium access is a fundamental problem
in wireless networks. This problem is particularly challenging
to address in modern WLAN networks due to the introduction
of multi-rate WLANs to accommodate users with diverse
channel conditions. Recent measurement studies have shown
that rate diversity is prevalent in operational WLANs [15].

In the case of a single access point supporting multi-rate,
the tradeoff between fairness and efficiency is resolved by
the introduction of the proportional fair scheduler. Specif-
ically, the widely used 802.11 MAC provides equal long-
term transmission opportunities. This is also referred to as
throughput-based fairness. A consequence of this fairness
is that nodes with lower data rates occupy the medium
a larger percentage of time than those with higher data
rates, leading to drastically reduced network throughput [10],
[15]. In contrast, proportional fairness implements time-based
fairness and provides a good tradeoff between fairness and
network throughput.

However, many deployed WLANs consist of multiple
APs, interconnected by a wired backbone network, providing
overlapping coverage. In this much wider network-based
setting, the client nodes are often distributed unevenly among
the access points [6], [7], [12], and a node can be associated
with one of multiple APs. In other words, a significant
challenge in this more realistic setting is association control.
Association control plays a major role in determining not
only fairness but also efficiency and load balancing [5]. As
researchers pointed out in a previous study [9], association
control without consideration of fairness can lead to non-
Pareto optimal channel capacity allocation. By a Pareto
optimal allocation it means one such that there does not exist
another feasible allocation where at least one node gets more
bandwidth, and all others get at least the same bandwidth.

In this paper, we study how to use association control
to achieve optimal proportional fairness; that is, how to
associate the nodes to maximize the sum of the logarithm

of the rates allocated to users. The logarithm of a rate can
be viewed as a utility function of each user.

Since the objective function of proportional fairness is non-
linear and non-concave, implementing optimal proportional
fairness is much more challenging than the max-min fairness
problem addressed in [8]. If each user can be associated with
only one AP, the problem of achieving optimal proportional
fairness then is NP-hard. We present two algorithms allowing
tradeoffs between performance and computational speed. In
our first algorithm, we solve a relaxed convex program to
obtain a fractional association. We then round this solution
to an integral solution. The total utility of the bandwidth
allocation vector given by our algorithm is greater than the
that of optimal bandwidth allocation vector scaled down
by a factor of ��� 	�
�	 . In our second algorithm, we first
discretize the nonlinear program to obtain a linear program
relaxation of the problem where each user can be associated
with multiple APs simultaneously. Via rounding the solution
to the discretized linear program, we design an efficient
approximation algorithm such that, the total utility of the
bandwidth allocation vector given by our algorithm is greater
than the that of optimal bandwidth allocation vector scaled
down by a factor of 
��� .

As far as we know, the only closely related paper in the
recent theory literature is [4]. Azar and Epstein [4] give
algorithms for minimizing the ��� norm of the load vector
in the problem of scheduling unrelated parallel machines.
Similar to our work, they use the Generalized Assignment
technique of Shmoys and Tardos [14] to round a relaxation of
the problem formulation. Thus, to the best of our knowledge,
we are the first to present association control algorithms that
provide guarantees on the quality of bandwidth allocation
with respect to the optimal proportional fairness solution.

Our approximation algorithms can be used for periodic
offline optimization. The function can be implemented in a
central management server (e.g., Cisco’s Wireless Control
System [2]) to allow enterprise wireless networks to be de-
signed, controlled, and monitored from a centralized location.

We conduct extensive evaluations to demonstrate the effec-
tiveness of our algorithms. We show that our approximation
algorithm achieves close-to-optimal proportional bandwidth
allocation (we compare with an upper bound of the optimal
objective function since the problem is NP-hard), obtains
an aggregate throughput which can be as much as 2.3
time more than that of the max-min fairness allocation, and
outperforms the default user-AP association method in the
802.11 standard. We also find that our convex programming
based algorithm runs much faster than our second discretized
linear programming formulation.

The rest of this paper is organized as follows. We motivate
our design in Section II. We introduce our notations and
formulation in Section III. We present our two algorithms
in Sections IV and V, respectively. We evaluate our algo-
rithms in Section VI. After presenting the related work in
Section VII, we conclude in Section VIII.
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II. MOTIVATION

We motivate our design choices using an example network
shown in Fig. 1. The network has 2 APs � and � , and 3 users
indexed by 1, 2, and 3. The dashed lines show the possible
links. The number besides each link is its bit rate. We assume
that all users have the same priority.

A. Fairness

Two fairness definitions are widely used in network re-
source allocation. Proportional fairness allocates bandwidth
to users in proportion to their data rates in the single AP
case. It maximizes the sum of the logarithms of the allocated
bandwidth of each user in the multiple-AP case. Max-min
fairness, on the other hand, tries to allocate bandwidth equally
among users to the extent possible. That is, a bandwidth
allocation is max-min fair if there is no way to give more
bandwidth to any user without decreasing the allocation of a
user with less or equal bandwidth.

32948 66
321

a b

Fig. 1. An example network (the number besides each link is its bit rate).

Applying the two fairness definitions to the example net-
work shown in Fig. 1, we can verify by exhaustive search
that the following assignment of users to APs satisfies both
fairness definitions: user 1 and 2 to � , and 3 to � .

However, the two fairness definitions allocate different
amounts of bandwidth to different users and achieve dif-
ferent overall network throughput. Specifically, proportional
fairness allocates 3, 24 and 6 units of bandwidth to users 1, 2
and 3 respectively by giving users 1 and 2 equal transmission
time. As a comparison, max-min fairness allocates 16/3, 16/3
and 6 units to users 1, 2 and 3 respectively by giving user 1
longer transmission time (8 times more than that given to user
2). Comparing the total network throughput, we observe that
max-min fairness achieves only 16.67, far less than 33, the
total throughput achieved by the proportional fair allocation.

This example also can illustrate that fairness must be
considered in a broader context than a per-AP basis. Without
this, the bandwidth allocation can be quite inefficient. For
example, consider a fixed assignment of user 1 to � , 2 and
3 to � . This allocation gives the user an allocation of 6, 4.5,
and 3 which results in a total bandwidth of 13.5, far less than
the optimal of 33.

Note that in an extremely large wireless LAN deployment,
we may partition the network into several components. In
each component, we apply our proportional fairness allo-
cation. This may have fairness implications, but maybe a
reasonable tradeoff in achieving feasible implementation.

B. Load balancing

Fairness and load balancing are traditionally considered
in separation. In our framework, the resources at all access
points are considered as a whole when allocating bandwidth
fairly to users. With this network-wide fairness objective,
load balancing is automatically taken care of.

C. Periodic offline optimization
The network has to make association decisions as users

arrive. Therefore, online association algorithms are necessary.
However, online decisions may become inefficient over time
both in terms of aggregate throughput and fairness. Thus,
our system is to combine an online algorithm with periodic
offline optimization.

An online algorithm has to make a decision without know-
ing the future. Because of this, it can be arbitrarily unfair to
certain users. For example, suppose we have two APs �����
and � users. Suppose only user 1 is able to communicate
with both APs and the data rate is 48, and 24 to � and �
respectively. The rest of the users are all outside the coverage
of AP � , but are within the coverage of AP � . When user 1
first arrives, an online algorithm will associate the user with
AP � . Then the rest of ����� users arrive. Since an online
algorithm will not re-associate users, the first user will get� 	 �!� . However, if user 1 associates with AP � instead, it
will get 
 � . We remark that this worst case occurs for any
online algorithm with a simple adversarial analysis. Suppose
an online algorithm assigns the first user to AP � when it
first arrives. The adversary can place the rest of �"��� users
to AP � which result in the same situation.

Due to the inefficiency in terms of aggregate throughput
and fairness of any online algorithm, our system architecture
is to combine an online algorithm with periodic offline
optimization.

III. NOTATIONS AND FORMULATION

Our notation is summarized in Table I. We consider an
IEEE 802.11 WLAN consisting of multiple access points
(APs). We denote the set of APs as # indexed by �$�%�&�%�'�)( .
All the APs are attached to a fixed infrastructure which
connects them to wired data networks such as the Internet.
The backhaul capacity for each AP may be limited. Each
AP has a limited coverage and it can serve only users that
reside in its coverage area. The network coverage area is the
union of the coverage area of each AP. We assume adequate
frequency planning where interfering APs are assigned or-
thogonal channels. Our algorithms can be easily extended
to the case where interfering APs share the same channel
resource equally.

Symbol Semantics*
The set of all access points (APs).+ The number of APs, i.e. +-,/. * . .0
The set of all users.1 The number of users, i.e. 12,3. 0 . .465
The infrastructure link bit rate of AP 7 .8 5 9 The wireless link bit rate between AP 7 and user : .; 5 9 The fraction of time that AP 7 allocated to user : .< 9 The weight (priority) of user : .=>9
The bandwidth allocated to user : .? 5 9 The fractional association of user : with AP 7 .? An user-AP association matrix.; An user-AP time allocation matrix.@ 5 9)A 1 if AP : allocates B time slots to 7C 5 9 The utility user : gets from AP 7 .C An user-AP utility matrix.

TABLE I
NOTATIONS.

We denote the set of users as D indexed by �$�&�%�%�%�E� . For
each user–AP pair F��)G , we assume that we know the effective
bit rate HJILK of the link between F and G . The effective bit rate
is measured in a longer time scale which tracks the long-
term channel condition (mainly influenced by path loss and
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slow fading). The effective bit rate also takes into account
the overhead of retransmissions due to reception errors. We
assume that a user consumes all bandwidth allocated to it
by the network and always has traffic to send or receive.
Furthermore, we assume that each user F has a weight M K
that specifies its priority. This weight is used to determine
the channel occupancy time it entitles to have with respect
to the other users.

We assume that each user communicates directly only with
a single AP for an extended period of time. In other words,
each user must be assigned to only one AP. Each AP, on
the other hand, may serve multiple users. We formulate the
problem of associating users with APs as an optimization
problem. Due to the dynamic nature of the channel condition
between an AP and a user, as well as the bursty nature of
data traffic, rate allocation through association control should
be done in a longer time scale. The alternative would entail a
much higher communication overhead and adversely impact
ongoing traffic flows. Therefore, our association control de-
cisions are based on the effective bit rate of user-AP pairs,
not the instantaneous rate.

In our formulation, we use two sets of variables. For each
user-AP pair, we shall have a binary variable N6ILK that is equal
to 1 if client F is associated with access point G ; 0 otherwise.
We express the fraction of time each AP devotes to each of its
users using a fractional variable O6ILK . For each AP G and user F ,
if F is associated with G , then O ILK is a fraction between 0 and
1 that specifies how much time G spends communicating withF . If client F is not associated with G , then the fraction O6ILK is
0. We denote the N ILK matrix by N and the O ILK matrix by O . It is
easy to verify that the product O ILK or N ILK O IPK accurately reflects
the fraction of time access point G spends talking to client G .
For convenience, we use N ILK O IPK in our second algorithm. The
bandwidth � K allocated to each user F is given as follows.�)KRQ�S IUT$VXW HJIPKYN�IPK)O�IPKJZ[Q\S I>T$VXW HJIPK]O�IPK!Z

Our goal is to construct an assignment of clients to APs in
a proportional fair manner; the assignment allows each user
sufficient bandwidth without unduly restricting the amount
of bandwidth available to other users. Formally, we would
like to maximize the weighted sum of the logarithm of the
bandwidth allocation [11]:

^!_ W NY�`O�ZaQcbK'T d M K2egf$h � K � (1)

Note that, we assume no isolated users. That is, for each userF , at least one of its H IPKji�k . Therefore, the sum inside theelf�h function is strictly greater than zero. This can be ensured
easily by pruning the isolated users. We can show that the
problem is NP-hard by slightly adapting the reduction in [9].

IV. A �m� 	 
�	 APPROXIMATION ALGORITHM VIA CONVEX
PROGRAM RELAXATION

We first present a convex program relaxation formulation
of the problem. We then show how we can obtain an
approximation algorithm through rounding.

A. Convex program relaxation

Since each user F is assigned to only one AP (integral
association), there is exactly one non-zero OnIPK , for G[op# . We
now relax this constraint and obtain the following convex
program formulation:

Algorithm cvapPF( qsrut )

1. v 5 9 = solve CVP( wyx 5 9&z , w'{ 9Jz )
2. |�}�~jtRrJ�2~�q

set v��5 9�� v��5 9 if ��}�rU�!� is a strong edge; 0 otherwise� �9���� 5>�J� x 5 9 v � 5 9� � 5 9 ��������������� ��� 5 9 � � �������
3. Set up the Generalized Assignment problem

using � � �>r � �
4. �� = roundGAP( � , � � )
5. �v 5 9 � �� �L� � ������ ¢¡ �u£ �����

Fig. 2. A formal description of our proportional fair algorithm

maximize ¤9'�$¥ { 9n¦L§&¨ � 9
|$�©~�q-ª � 9 � ¤5��«� x 5 9 v 5 9
|�}�~jt¬ª ¤9'�$¥ v 5 9R¯®
|$�©~�q-ª ¤5��J� v 5 9 ¯®
|�}�~jt�r>�2~�q¬ª °  v 5 9 ¯®J±

(CVP)

The first constraint is an expression for the auxiliary
variable ��K , the bandwidth allocated to each user F . The
second constraint says that the total allocated time fraction
of each AP G can not be more than 1. The third constraint
says that the total fraction of time each user F communicates
with all AP can not be more than 1.

Convex program can be solved to the desired precision
in polynomial time. We first solve problem CVP and obtainO ILK , which induces a fractional assignment N ILK , where N ILK Q² �L� � ���³ � . We can view the assignment as a bipartite graph. We
now define two types of edges. An edge W G���F�Z is weak if� K©iµ´ H IPK ; otherwise, it is called a strong edge. ´ Q·¶ 
a¬�
is a parameter which will be determined later. Our algorithm
is summarized in Fig. 2.

We use the example in Fig. 1 to illustrate the key steps of
our algorithm. Let’s index AP � and � by 1 and 2. Applying
cvapPF, we obtain a fraction O ILK as follows: O6¸�¸¹Qc�«��
 , O6¸EºRQ
���� , On¸u»RQc�«��� k , O¢º�ºRQ¼	����J� , O�º)»RQ·½$���J� . We have �&¸¹Q¿¾ ,� º QÀ
 � , � » QÂÁ . The induced N�ILK is shown in Fig. 3-a.
Note that, edge W 
m��
$Z is weak. This is because �&ºjQÃ
 � iW ¶ 
�¼�«ZYÄ[Å .

7/151/54/51 8/15
321

a b

1 7/151 8/15
321

a b

(a) N after solve CVP (b) N�Æ after weak edge del

111
321

a b

(c) ÇN after rounding via GAP

Fig. 3. An example: assignments at each step.
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B. Rounding via generalized assignment problem (GAP)

The fractional assignment N ILK yields too many assignments
(edges). Our goal is to derive an integer assignment. We
first delete all weak edges. This induces another fractional
assignment O�ÆIPK . That is,

O�ÆIPK Q O�IPK$� if (i,j) is strong Èk � if (i,j) is weak � (2)

Define �yÆK Q S IUT$V HJIPK)O�ÆIPK . We have the following lemma:
Lemma 4.1: For a given user F , �%ÆK©É W �¹� ¸Ê Z)�)K .

Proof: Let Ë be a subset of APs # such that, Ì6G�o¯Ë ,W G���F�Z is a strong edge.

� K Q\� ÆK  bIUT$VÎÍ6Ï H ILK O ILK �
By definition of weak edge,

bI>T$VÎÍnÏ H IPK O IPKÑÐ �)K´ bIUT$VÎÍ6Ï O ILK �
Since S I>T$VÎÍnÏ O ILK�Ð � , we have that the bandwidth con-
tributed by all weak edges is no more than

³ �Ê . Thus,�yÆK É W ��� ¸Ê ZE� K .
Define N�ÆIPK Q ² �L� � ����³ �� . By definition of N�ÆILK and �'ÆK , we have

S IUT$V N�ÆIPK Q�� . Since S IUT d O¢ÆILK Ð � , substitute O�ÆILK by N�ÆILK ³ ��² �L� ,

we have S I>T d ³ ��² �L� N�ÆIPK Ð � .
Thus, we get the following assignment problem:

|�}Y~Òq-ª ¤5��«� � � 5 9 � ®JÓ
|�}Y~Ôt¬ª ¤9y��¥

� �9x 5 9 � � 5 9 ¯®J± (GAP-C)

We have the following lemma:
Lemma 4.2: If N ÆIPK i-k , then

³ ��² �L� Ð¬´ .
Proof: By definition of N6ÆIPK , O¢ÆILK iÕk . By definition of

O ÆILK iµk , edge W G���F�Z is strong. Per its definition,
³ ��² ��� Ð-´ .

Using our example, after deleting weak edge W 
���
$Z , we
obtain N ÆILK as shown in Fig. 3-b.

Using the rounding procedure of Shmoys and Tardos [14],
we get an integral solution ÇN�ILK such that,

|��©~�q-ª ¤5��«� �� 5 9 � ®&Ó
|�}Y~Öt¬ª×¤9'�$¥

� �9x 5 9 �� 5 9 ¯®ÙØ�ÚÙ± (3)

The rounding procedure has to cleverly reassign users that
are fractionally assigned to many machines each to a single
machine, while not reducing the overall value of the solution
obtained (we do not have an explicit objective function here;
we will see one in our next algorithm). Shmoys and Tardos
achieve this by carefully setting up a bipartite min-cost flow
problem, whose optimum solution corresponds to a suitable
integer assignment. In this process, the procedure may assign
an extra job to each machine, thus exceeding the capacity
of each machine by the load imposed by the extra job. For
detailed description of the rounding procedure, we refer the
reader to the original source [14].

Define

ÇO IPK Q ÇN¢ILKJ�yÆK
W �� ´ ZuH ILK � (4)

Denote Ç� K the bandwidth allocated by ÇO IPK . We have the
following lemma:

Lemma 4.3: Ç��K É ¸¸uÛ Ê W �¹� ¸Ê ZE�)K .
Proof: By definition, Ç�)KpQ S IUT$V HJIPKYÇO�IPK . By definition

of ÇO IPK ,
�� 9 � � 5>�J� x 5 9 �� �L� � ���gÜ` mÝ$£ ������ � ��Ü` �Ý � 5��«� �� 5 9� � ��Ü` �ÝÞ � �Ü` �Ý � ®�ß ÜÝ � ±

(5)

After this step, our example yields the integral association ÇN
as shown in 3-c.

C. Analysis
We would like our integral assignment to achieve a band-

width as close to the optimal as possible. Thus, we try to
find the best parameter ´ . It is easy to see that ´ Qà¶ 
¹µ�
is the best parameter. We have the following theorem:

Theorem 4.1: Consider any optimal integral associationW N6á$�`O6á&Z . Then, for the solution W ÇNÎ�mÇO6Z produced by our
algorithm it holds that^ _ W N á �UO á � W ¾R¬
 ¶ 
�ZEZ Ð ^ _ W ÇNY�mÇO�Z'�

Proof:â&ã �'�� r$�vm� � � 9'�$¥ { 9 ¦L§J¨ �� 9Þ � 9'�$¥ { 9 ¦L§&¨ � 9&ä �>å Øçæ«è æ �� � 9'�$¥ { 9�¦�§&¨ � 9 ß { 9'éX¦L§J¨ �>å Øçæ è æ �Þ � 9y��¥ { 9ê¦L§J¨ x 5 9 v]ë5 9 ß { 9'éX¦L§J¨ �>å Øçæ è æ �� â ã � � ë&r�v]ë ä �>å Øçæ è æ ��� ±
(6)

Note that, the second inequality is due to the fact that the
convex program solution achieves a better objective function
value than that of any optimal integral solution.

V. A 
��� APPROXIMATION ALGORITHM VIA
DISCRETIZED LINEAR PROGRAM RELAXATION

In this section, we first present an exact non-linear program
formulation. We then discretize the non-linear formulation
to obtain a linear formulation. We establish the relationship
between the solutions of the two programs. We show how we
can make use of the linear formulation to obtain an efficient
approximation algorithm.

A. Non-linear exact formulation
Because N�IPK takes either 0 or 1 and there is exactly oneN ILK Qì� for each user F (denote such a specific AP asG�Æ ), we have elf�h S IUT$V�W H&ILKÙN¢ILKEO¢ILK«ZXQ egf$h W H&I � KEO¢I � KJZ ; similarly,S IUT$V N�IPK egf$h W HJIPK)O�IPKJZ�Qîí`ïJð W H&I � KEO�I � KJZ . So the egf$h of sum

equals to the sum of egf$h in our specific setting (note that
in general this is not the case). Thus, the objective function
in Eq. (1) is equivalent to the following function:^!ñ W NY�`O�ZaQòbK'T d bIUT$V N ILK M K2egf$h W H ILK O ILK Z'� (7)

To simplify our notation, we allow H IPK to be zero. When H IPK
is 0, N IPK will be set to 0. Note that, by convention, k íUïJð W k Z is
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defined to be 0. In practice, when H ILK Q k , the corresponding
terms in the objective function and the constraints will be
pruned before running any mathematical program solver.

We now formulate the multi-AP proportionally fair asso-
ciation problem as the following mathematical program. The
non-linear program is referred as NLP.

maximize ¤9'�$¥ ¤5>�J� � 5 9 { 9R¦L§J¨ ��x 5 9 v 5 9 �
|$�©~�q¬ª ¤5>�J� � 5 9 � ®
|�}�~Ôt¬ª ¤9'�$¥ � 5 9 v 5 9�¯®
|�}�~Ôt�rU�Ñ~Òq¬ª °  v 5 9 ¯®
|�}�~Ôt�rU�Ñ~Òq¬ª � 5 9 ~�w%°�r ® z ±

(NLP)

The first and fourth sets of constraints specify that each user
must be assigned to exactly one access point. The second set
of constraints expresses the fact that each AP must share its
available time among its assigned users to the extent of at
most 1. The third set of constraints states that no user can
get more than 100% of an AP’s time share.

The mathematical program (NLP) is difficult to solve
because of two reasons. First, it imposes integrality con-
straints on the N�IPK variables. Second, even if we disregard
the integrality constraints, the problem is non-linear and non-
concave.

In the case of a single AP, proportional fairness calls for
the access point to divide its time among its users equally
if all users have the same priority, or in proportion to their
assigned priorities. Using the Lagrangian methods, we can
check that our formulation satisfies this property. We state
the following lemma for use by later proofs.

Lemma 5.1: If the number of APs (óQô� , then O�¸ K Qõ �ö � �>÷&ø õ � � gives the unique optimal solution to our NLP
formulation where D is the set of users associated with AP
1.

Thus, given a fixed association matrix N which determines
which AP a user associates, we know how much time OnILK
user F gets from AP G . By Lemma 5.1, it is O IPK QùN IPK M K �S K � T d�W N IPK � M K � Z . If M K is the same for all F , then all users
associated with a given AP G gets equal time share from G .
B. Discretized linear formulation

As the first step in solving the NLP formulation, we start
by discretizing the scheduling period of each AP into ú
discrete intervals. To achieve a theoretical approximation
guarantee, we have to pick a possibly larger ú , whereúûQ W �jò�yZ ö � ÷&ø õ �üþý ÿ��Eõ ��� K'T d�� turns out to be sufficient. We
introduce a new indicator variable � ILK�� that is equal to 1
if and only if user F is assigned to access point G , and access
point G has allocated 	 (out of ú ) of its time slots to user F .
Note that it is 	 number of slots out of ú , not the 	 -th slot.
Here is the discretized formulation. The variable 	 always
ranges from � to ú .

maximize ¤5��«� ¤9'�$¥


¤A�� Ü  5 9)A { 9R¦L§J¨ ��x 5 9��� �

|��2~Òqµª ¤5>�J�


¤A�� Ü  5 9EA � ®

|�}Y~Öt¬ª ¤9y��¥


¤A�� Ü  5 9EA �� �®

|�}Y~ÖtRrU�2~�q¬ª  5 9)A ~�w'°$r ® z ±

(DLP)

With the integral constraint on � IPK�� (third one in DLP
formulation), the first constraint makes sure that there is one

and only one � ILK�� equals to 1 for each user F . The second
constraint ensures that the total fraction of time allocated by
an AP G is no greater than 1. In the following discussion, we
use

^��
to denote the objective function of the DLP program.

That is,

^�� W �mZ�Q bIUT$V bK'T d
�
b��� ¸ � ILK�� M K2egf$h W H ILK 	ú Z'� (8)

Recall that previously we have defined
^$ñ

in Eq. (7). The
following lemma establishes a tight relationship between the
two formulations.

Lemma 5.2: For every integral solution W NY�`O�Z to the NLP
formulation, if we were to scale down all time allocations in
the former formulation by a factor �� � , the latter formulation
would yield a solution that is at least as good:

^ ñ W NY�UOn� W �Ù��Z)Z Ð ^�� W �mZ .
Proof: Without loss of generality, we can assume thatW NY�`O�Z is an optimal solution. By Lemma 5.1, the optimal O

for any fixed integral assignment N is the weighted time fair
allocation O�ILK©QµN¢ILK&M[K!� S K � T d�W N¢ILK � MaK � Z .

Define an integral solution � to the formulation (DLP) as
follows. For each pair W G���F�Z , define � ILK�� Qc� and 	ÒQ��PO IPK ú��
if N¢ILKÖQù� ; �$IPK��"Q k , otherwise. For the Lemma to be true,
all we need is � É �PO�ILKYú�� É � �L� �¸uÛ�� , Ì�F�o D¹�EG/o # ifO ILK/iÃk . If O IPK3iÃk , then O IPK É õ �ö � � ÷&ø õ � � . Thus, picking

úùQ W �[��yZ ö � ÷&ø õ �üþý ÿ��)õ � � K'T d�� suffices.
For the opposite direction, we need only concern ourselves

with translating a fractional solution to (DLP) to a fractional
solution to (NLP).

For every G���F , define

� 5 9 ª �


¤A�� Ü  5 9)A (9)

v 5 9 ª � � 
A�� Ü � ä �  5 9)A� 5 9 (10)� 5 9 ª � { 9�¦L§&¨ x 5 9 v 5 9 ± (11)

In cases where N ILK Q k , we can define e.g. O IPK Q k and� ILKRQc� � . We have:
Lemma 5.3: For every fractional solution � to the formu-

lation (DLP), the preceding is a fractional solution W NY�`O�Z to
the formulation (NLP) such that

^�ñ W NÙ�UO�Z É ^�� W ��Z .
Proof: It is straightforward to check that the solutionW NY�`O�Z is feasible for (NLP). To see that

^ ñ W NY�UO6Z É ^ � W �mZ ,
we make use of the concavity of the logarithm function. From
Jensen’s inequality:� ILK Q¼M K�egf$h

! S ���� ¸ �$ILK��"	XH&ILK!��úS ���� ¸ �$ILK�� #
É M K S

���� ¸ � ILK��Ôegf$h W 	�H ILK ��ú�Z
S ���� ¸ � IPK�� �

Since
^!ñ W NÙ�UO6ZaQ\S I%$ K N IPK � IPK , we have,

^!ñ W NY�UO6Z É bI>T$V bK'T d N IPK M K
S ���� ¸ � ILK��Ôelf�h W 	�H ILK �!ú"Z

S ���� ¸ � IPK�� �
By the definition of N�ILK ,

^!ñ W NY�`O�Z É bIUT$V bK'T d M K
�
b��� ¸ � IPK��Ôegf$h W 	�H IPK �!ú�Z'�
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Algorithm nlapPF( qsr�t )

1.
� �'& � é ä�( � = solve relaxDLP( wyx 5 9Jz , w'{ 9«z , � )

2. |�}Y~Ôt�r!�2~Òq� 5 9 �¯� 
A�� Ü  5 9)A
v 5 9 �*),+-/.10 A�2 
,3 ��� -� �L�� 5 9 � { 9�¦L§&¨ x 5 9 v 5 9

3. Set up the Generalized Assignment problem
using � � r vm� and �

4. �� = roundGAP(v , � , � )
5. �v 5 9 � { 9Jä � � 9 � �$¥ �� 5 9 � { 9 � �

Fig. 4. A formal description of our proportional fair algorithm

By the definition of
^ � W ��Z , this finishes the proof.

C. Algorithm
With the formulation introduced in the preceding section,

we first give an overview of our approximation algorithm
referred to as nlapPF. We then discuss the details of the
remaining steps of our algorithm, followed by the analysis.

1) Overview of the algorithm: Our algorithm is summa-
rized in Fig. 4. It consists of the following five steps.

1) Set up the problem (DLP) using ú Q54 W �Ù�!�yZ , and
disregard the integrality constraints. Solve the resulting
linear program, and let � denote its optimal solution.

2) Using Equations shown in Fig. 4, obtain a fractional
solution W NÙ�UO6Z to problem (NLP).

3) Use the value O to set up an instance of the Generalized
Assignment problem, to which N is a feasible fractional
solution.

4) Use the rounding procedure of Shmoys and Tardos [14]
to obtain an integer association vector ÇN .

5) Finally, divide up the time allocation of each AP
proportional to the weight of associated users. That
is, define ÇO ILK QùM K � W S K � T d ÇN ILK � M K � Z for each user F
associated to access point G (i.e. N6IPK©Qà� ).

1/102/5

τ=1

1/2
321

a b

1/102/5

τ=2

1/2
321

a b

7/158/15

τ=3
321

a b

Fig. 5. Step 1: @ value for B ,7698;:�8;< .
To better understand these steps, we illustrate them using

the example network shown in Fig. 1. Recall that we index
AP � and � by 1 and 2. Assume M ¸ Q M º Q M » Q � .
Suppose in the first step, we pick ú Q\¾ . Solving the linear
relaxation of DLP, we get the � value as shown in Fig. 5. That
is, � ¸�¸)¸ Q=� ¸�¸uº Q��«�$
 , � ¸Eº�¸ Q>� ¸Eº)º Q�
��$� , � º�º�» Q¿	����J� , and� ¸u»y¸�Q?��¸u»�º-Q �!��� k , �$º�»)»µQ ½$���«� which means user 1
is associated with AP � and gets assigned 1/2*1+1/2*2=1.5

out of three slots, user 2 is associated with both AP � and � ,
and gets assigned 2/5*1+2/5*2=1.2 slot from AP � and 1.6
slots from AP � , user 3 is associated with AP � and � and
gets 0.3 and 1.4 slots from each.

In Step 2, applying the first equation in this step, we
obtain N ¸�¸ Q � , N ¸uº QùN º)º Q � ��� and N ¸u» QÃN º)» Q �«�$� ;
applying the second equation, we have OY¸�¸¹Qà�«�$
 , O6¸EºRQ�
���� ,O¢º�º¬Qô	 ���«� , O6¸E»¬Q �«��� k and O�º)»¬Q ½����J� ; applying the
third equation, we have � ¸�¸ Q elf�h W ¾�Z , � ¸Eº Q elf�h W Å$Á����$Z ,� º�ºRQ egf$h W ½$
�����Z and � ¸E»RQ egf$h W �&Á�����Z , � º�»RQ egf$h W � � ����Z .

Step 3 sets up the GAP problem using the N ,O , � value
obtained in Step 2. In step 4, we will get a rounded solution.
One such solution is N ¸�¸ Q � , N º�º Q � and N ¸E» Qù� which
means user 1 and 3 is associated with AP � , and user 2 is
associated with AP � . Since O is fixed in Step 4, we obtain
the final ÇO in Step 5 where ÇO ¸�¸ Q ÇO ¸u» Q��«�$
 , and ÇO º)º Qà� .

Our algorithm results in a bandwidth allocation of 3, 24
and 6 for users 1, 2 and 3 respectively.

2) Rounding via Generalized Assignment: We now dis-
cuss the most important remaining step in our algorithm. For
this section, assume that we have a fractional solution W NÙ�UO�Z
to the problem (NLP), obtained, for example, by applying
Lemma 5.3. Our goal is to replace the fractional assignment
vector N by a @ k �&��A vector ÇN that encodes the desired
association of users to APs. In the process of rounding the
association vector, we shall hold the time allocation O ILK fixed;
this allows us to consider a much simpler linear problem.
Defining � ILK as in Equation (11), consider the following
formulation:

maximize ¤5��«� ¤9'�$¥ � 5 9 � 5 9
|$�2ª ¤5��«� � 5 9 � ®
|�}Yª ¤9'�$¥ � 5 9 v 5 9  ®
|�}�rU�2ª � 5 9 ~ w%°$r ® z ±

(GAP)

The N�IPK are variables, and O�ILK and � ILK are constants as
defined in Equations (10) and (11). Note that the formulation
(GAP) is identical to (NLP) except that we are holding the
time allocation O fixed. We denote the objective function as^�B W N6Z . Thus, the following lemma holds trivially.

Lemma 5.4: The vector N in a feasible (fractional) solutionW NY�`O�Z to the formulation NLP is feasible for the formulation
GAP. Alternatively, the feasible solution N for GAP together
with its parameter vector O is a feasible solution to NLP.
Furthermore,

^ ñ W NY�UO6ZaQ ^ B W N6Z .
The problem (GAP) is known as the Generalized As-

signment Problem. It can be phrased as assigning jobs to
machines, with each job being assigned to one machine, and
each machine being able to handle multiple jobs. We get
reward � IPK for assigning job F to machine G , and put loadO ILK on that machine. The goal is to assign jobs to machines
so that no machine has total load more than 1, and the
total reward for the assignment is maximized. Note that by
construction, we can guarantee that O ILK2Ð � .

Shmoys and Tardos [14] gave a rounding procedure for
the Generalized Assignment problem. The procedure takes a
fractional assignment N as input, and constructs an integer
assignment vector ÇN with the following properties.

1)
^ B W ÇN6Z É ^ B W N6Z .

2) Each user F is assigned to exactly one machine, i.e.S IUT$V ÇN¢ILK©Qà� .
3) The load imposed on each server is at most 2, that is,S K'T d ÇN IPK O ILKÑÐ 
 for every server G .
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D. Analysis
Finally we can state the following approximation guarantee

for our algorithm. If we take any optimal solution W NYá$�UO6á&Z ,
scale all bandwidths down by a factor W 
ê>4 W �yZ)Z , then the
utility of this scaled-down optimal solution will be no greater
than the utility of our solution W ÇNY�mÇO6Z .

Theorem 5.1: Consider any integral association W NYá$�UOná%Z
that is a feasible solution to (NLP). Then, for the solutionW ÇNÎ��ÇO¢Z produced by our algorithm it holds that^�ñ W N á �UO á � W 
¹C4 W �yZEZEZ Ð ^�ñ W ÇNÎ�mÇO6Zy�

Proof: Consider any integral association vector W N á �UO á Z .
By Lemma 5.2, we know that there exists a vector � that is
a feasible solution of (DLP) such that^ ñ W N á �`O á � W �[��yZEZ Ð ^ � W �mZ'� (12)

In particular, this holds if � is an optimal solution to (DLP)
that we find in step 1 of our algorithm. This is because
the optimal objective function value for the linear program
relaxation is always greater than or equal to the optimal in the
original integer program (basic linear programming theory).
By Lemma 5.3, for the solution W NY�`O�Z constructed in step 2
of the algorithm we have^ ñ W NY�`O�Z É ^ � W �mZ'� (13)

By the first property of the rounding algorithm,
^DB W ÇNnZ i^ B W N6Z . By Lemma 5.4, we have

^ ñ W ÇNÙ�UO6Z-Q ^ B W ÇN6Z and^!ñ W NY�`O�Z Q ^�B W N6Z . Thus, we produce an integer vector ÇN
in Step 4 of the algorithm such that^�ñ W ÇNY�UO6Z É ^�ñ W NY�UO6Zy� (14)

Combining Eqn. 12, 13 and 14, we have,^�ñ W ÇNÙ�`O�Z É ^�ñ W N á �UO á � W �a¯�yZ)Zy� (15)

The solution W ÇNÎ�UO6Z may not be feasible, as some of the
access points may be over-scheduled by a factor of 2.
However, if we scale down the time allocations O by �!��
 ,
we obtain a feasible solution. By noting S IUT$V S K'T d ÇN ILK M KQ S IUT$V S K'T d NnáIPK M[KÖQÕ� S K'T d M[K , it is matter of simple
algebra to check that^ ñ W ÇNÙ� O 
 Z É ^ ñ W N á � Oná
 W �a¯�yZ Zy� (16)

By Lemma 5.1, the final time allocation ÇO is optimal for the
given ÇN ; it must be that^!ñ W ÇNÎ�mÇO¢Z É ^!ñ W ÇNÎ�UOn��
$Z'� (17)

Combining Eqn. 16 and 17 finishes the proof.
We remark that the inapproximibility result in [9] does not
contradict to our result. The approximation factor is defined
to be the ratio between the objective function value of an
algorithm and the optimal objective function value. Their
inapproximibility result is due to the fact that the optimal
objective function value can be zero. Thus, the factor is
unbounded with zero as a denominator. Our approximation
ratio is defined to be the scaling factor such that when we
scale the bandwidth allocation of an algorithm, we achieve
a better objective function value than the optimal. The
appealing feature of this definition is that it quantifies the
bound of bandwidth penalty of an approximation algorithm.
In other words, we need to scale the amount of bandwidth
at the access points by the approximation factor in order to
achieve more total utility than the optimal achieves will the
current amount of bandwidth available at the APs.

VI. EVALUATIONS

A. Methodology
We compare the performance of the following algorithms:E Our proportional fair algorithms: cvapPF and nlapPF.E An algorithm which computes an upper bound on

proportional fairness. Since the optimal proportional
fairness problem is NP-hard, we can not compute an
optimal solution in polynomial time unless P=NP. We
instead compare with an upper bound of any optimal
solution. We obtain this upper bound as follows: we
scale up the fractional solution O obtained in step 2 by
a factor of ��µ� (equals to 1.1); it is easy to see that
the total utility of this scaled solution is greater than
the objective function value of any integral solution to
formulation (NLP); that is,

^ ñ W NÙ�UO W �!Ñ��Z)Z i ^ ñ W N6á$�UOná%Z
where W Nná$�UOná%Z is any integral optimal solution to for-
mulation (NLP); We refer to this fractional algorithm as
FracPF.E Two algorithms based on max-min fair allocation de-
scribed in [8]; we refer to their fractional and integral
max-min fair algorithms as FracMM and IntMM respec-
tively.E A popular heuristic: Strongest-Signal-First (SSF), which
is the default user-AP association method in the 802.11
standard.

For our proportional fairness algorithms, we assume a
time-fair scheduling mechanism such as [15]. For max-
min fair allocation, we assume a throughput-fair scheduling
mechanism. For SSF, we investigate the performance under
both scheduling mechanisms. The SSF method is referred
to as SSF-PF and SSF-MM for the two scheduling schemes
respectively.

For ease of comparison, we assume essentially the same
simulation setting as the one in [8]. We use a simple wireless
channel model in which the user bit rate depends only on the
distance to the AP. Adopting the values commonly advertised
by 802.11b vendors [3], [1], we assume that the bit rate of
users within 50 meters from AP is 11 Mbps, 5.5 Mbps within
80 meters, 2 Mbps within 120 meters, and 1 Mbps within
150 meters, respectively. The maximum transmission range
therefore is 150 meters. We do not assume any backhaul
capacity limitation.

We place a total of 20 APs on a 5 by 4 grid, where the
distance between two adjacent APs is set to 100 meters and
we assume that an appropriate frequency planning was made.

We have conducted evaluations for two user population
sizes. We use 100 to simulate a moderately loaded network
and 250 a heavily loaded network. Since the results are
similar qualitatively, we only present results for the 100-user
case. We assume two types of user distributions: (1) users are
distributed within the coverage area uniformly at random; (2)
users are randomly positioned in a circle-shape hotspot with
the radius of 150 meters near the center of the 20 AP network.
We assume all users have the same priority. We choose theú parameter to be ten times the number of users.

We solve the discretized linear program using the CPLEX
solver. All of our results presented are averaged over 10
simulation runs.

B. Performance Comparison of Proportional Fair Algo-
rithms

We first compare the performance of proportional fairness
based algorithms. We use the SSF-PF method as a baseline
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Fig. 6. Comparison of proportional fair based algorithms using per-user
bandwidth.
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Fig. 7. Zoom in on the per-user bandwidth allocation of proportional fair
algorithms.

case for comparison.
Our results are shown in Fig. 6 and 7. The Y axis is the

per-user bandwidth in Mbps and the X axis is the user index.
The users are sorted by their bandwidth in increasing order.
The user locations are different at each run, and therefore
the bandwidth of the user with the same N index actually
indicates the average bandwidth of the N -th lowest bandwidth
user (users allocated the N -th lowest bandwidth). We refer to
the vector of per-user bandwidth in increasing order as the
bandwidth allocation vector.

We make the following observations. The bandwidth al-
location vector of nlapPF and FracPF coordinate wise is
very close. Only a few coordinates differ by more than 10%.
The difference is at most 22%. On the other hand, although
SSF-PF performs very well for the uniform case which is
expected (still many of the lowest bandwidth users get 20%
less bandwidth than nlapPF), SSF-PF can be very far from
ApproxPF in the hotspot case. For the first 48 lowest-indexed
coordinates, coordinate wise, SSF-PF is between 57% and
70% of that allocated by ApproxPF. Thus, SSF-PF can be
very unfair to lots of users without considering fairness in a
network-wide context. To see the details on the differences,
Fig. 7 zooms in on the low-bandwidth users. We also note
that, nlapPF performs better than cvapPF in the hotspot case.
Users index 12 to 30 can get as much as 20% more than
cvapPF.

Note that, the per-user bandwidths of the first 36-th users in
the uniform case are all smaller than the per-user bandwidth
of the lowest bandwidth user in the hotspot case. This
seems to be rather counter-intuitive as the users are more
concentrated in the hotspot case. This observation is actually
an artifact of our setting and does not in general apply in other
settings. A close look at our setting shows that, in the hotspot
case, all APs have users within range; in addition, since users
are deployed uniformly within the coverage range of APs,
there is a significant fraction of them are at the boundary
with low data rate. For example, for a specific realization
of the topology, we see 20 users in the uniform case whose
highest data rate to APs is 1Mbps. This is because these
users are at the boundary of the grid (18% of the area are
more than 120 meters away from any AP); while there is
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Fig. 8. Per-user bandwidth comparison with max-min algorithms and SSF-
MM.

none in the hotspot case because all users are within 120
meters away from at least one AP from the setup. There are
17 users whose highest data rate to APs is 2Mbps while there
is only 6 of them in the hotspot case. As a consequence of
this deployment setting, we see this non-intuitive result.

Besides per-user bandwidth, we also compare the algo-
rithms using their aggregated throughput. Table II shows
the results. We observe that the three proportional fair-
based algorithms achieve very similar aggregate through-
put. Although SSF-PF achieves a slightly higher aggregate
throughput (less than 5%), this comes at a cost of reducing
the bandwidth allocation of the low bandwidth users as shown
in Fig. 7.

Case FracMM IntMM SSF FracPF nlapPF cvapPF
PF MM

Uniform 38 36 132 95 125 126 126
Hotspot 96 93 89 83 112 112 110

TABLE II
AGGREGATE THROUGHPUT OF DIFFERENCE SCHEMES IN MBPS.

C. Comparison with Max-min Algorithms and SSF-MM.

We now compare nlapPF with max-min fair based algo-
rithms: FracMM and IntMM [8] and SSF-MM.

We first look at the uniform case. From Fig. 8-(a), we can
see that max-min fairness provides the maximum throughput
for the first lowest bandwidth user. However, in order to
achieve this, it unduly sacrifices the throughput of other
users. Proportional fairness tries to strike a balance. The
first lowest bandwidth user in our scheme gets 44% of the
bandwidth it gets from the IntMM scheme. However, as
shown in Table II, in terms of aggregate throughput, our
scheme is about 236% times more than that of the max-min
scheme. The reason for this poor performance of the max-
min scheme in terms of aggregate throughput is as follows.
In the uniform case, for each AP, there exists some users
with very low data rate (situated at the boundary) within its
coverage. Because max-min scheme tries to guarantee equal
throughput among associated users, this drastically reduces
aggregate throughput. Since SSF-MM does not distribute user
load in any intelligent way, it is no surprising that our scheme
performs much better than SSF. As shown in Table II, our
scheme’s aggregate throughout is about 35% more than that
of SSF-MM (SSF-PF). The median per-user bandwidth value
of our scheme is over 260% times that of the max-min
scheme and over 2 times that of SSF-MM respectively.

We now look at the hotspot case where users are randomly
positioned in a circle-shape hotspot with the radius of 150
meters near the center of the 20 AP network. Notice that in
this setup different users can reach different set of cells. From
Table II, we see that, because SSF-MM does not intelligently
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redistribute users among nearby APs, its aggregate through-
put in this case is actually even worse than the max-min
scheme. The aggregate throughput of our scheme is about
20% more than that of the IntMM scheme. The lowest per-
user bandwidth value of our scheme is 91% of that of the
IntMM scheme. The median per-user bandwidth value of
our scheme is slightly more (7%) than that of the max-min
scheme, and is over 38% more than that of SSF-MM. The
performance of max-min scheme in the hotspot case is much
better than the uniform case. The reason is that it redistributes
users to nearby APs away from the hotspot area; as most of
these users situate at the boundary of nearby APs, their rate
diversity is low. As a result, the aggregate throughput does
not decrease too much when compared with our proportional
fair based scheme ApproxPF.

D. Summary

Our simulation results demonstrate clearly that our Ap-
proxPF algorithm achieves close to optimal proportional
fairness (close to FracPF, an upper bound of optimal). We
have shown that, with rate diversity, proportional fairness
tends to be a better fairness measure as the max-min scheme
can lead to significant reduction in aggregate throughput.
The percentage of throughput gain of our proportional fair
schemes over max-min schemes is precisely linked to rate
diversity. The percentage is more than 226% in the uniform
case, while it is 20% in the hotspot case. The rate diversity
of the first case is much more than the latter. The poor
performance of SSF in the hotspot case demonstrates the
value of association control.

VII. RELATED WORK

The work that is most closely related to this paper is
that of [9], [8], [15]. Bu et al. [9] formulated the gen-
eralized proportional fairness problem in third generation
(3G) wireless data networks. However, their formulation is
specific to 3G data networks. In 3G data networks, through a
signaling channel, each user feeds back its channel condition
continuously to the proportional fairness scheduler at the base
station it associates with. At each time slot, the scheduler at
each base station schedules the user with the largest weight
where the weight is the rate of the user at the current time
slot divided by the average rate it has received so far. In our
WLAN context, such mechanism does not exist at access
points. Furthermore, their association control algorithms do
not provide worst case performance bound with respect to
optimal proportional fairness. Bejerano et al. [8] consider the
problem of achieving network-wide fairness using association
control. However, their fairness measure is max-min fairness.
Max-min throughput fairness can significantly reduce aggre-
gate throughput in multi-rate WLANs. The max-min time
fairness problem they consider is intended for single-rate
WLANs. We consider proportional fairness using association
control. Our problem is much more challenging than [8] as
the objective function is non-linear and the constraints have
integral variables. Sadeghi et al. [13], Tan and Guttag in [15]
consider the proportional fairness problem at each access
point. They do not consider the network-wide proportional
fairness problem.

VIII. CONCLUSION AND FUTURE WORK

Wireless local area networks (WLANs) based on 802.11
standard have increasingly been deployed in enterprises,

academic institutions, etc. In these deployment settings, the
physical locations that access points can be deployed are
typically constrained; users may not be distributed uniformly.
Since each user typically communicates with a single AP
for an extended period of time, it is very important to opti-
mize network performance by intelligently distributing users
among APs, i.e. association control. Network performance
should not be measured in terms of aggregate throughput
only. In multi-rate WLANs, without fairness consideration,
some users may get starved. We consider the objective of
achieving network-wide proportional fairness using associa-
tion control. From the user’s perspective, the network tries to
provide equal channel occupancy time to the extent possible
while being work-conserving. If each user has a utility
function in terms of the bandwidth it gets from the network,
and the utility function is concave, proportional fairness tries
to maximize the total utility. As the problem is NP-hard,
we design two efficient algorithms with worst performance
bound. Our evaluation shows that our algorithms are very
close to optimal. They can obtain much higher aggregate
throughput than max-min fairness based algorithm.

For future work, we would like to study the network-wide
proportional fairness problem in mesh networks. In mesh
networks, our algorithm has to take routing and interference
constraint into account. The problem we consider in this
paper is a special case as the user-AP association takes
one hop. We also believe that, our result in the paper is of
interest to researchers working in network utility optimization
because it is a subproblem to many of the very important
open problems.
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