
Scalable and Efficient Data Streaming Algorithms for Detecting Common Content
in Internet Traffic

Minho Sung, Abhishek Kumar, Li (Erran) Li, Jia Wang, and Jun (Jim) Xu ∗

Abstract
Recent research on data streaming algorithms has provided

powerful tools to efficiently monitor various characteristics of
traffic passing through a single network link or node. How-
ever, it is often desirable to perform data streaming analy-
sis on the traffic aggregated over hundreds or even thousands
of links/nodes, which will provide network operators with a
holistic view of the network operation. Shipping raw traffic
data to a centralized location (i.e., “raw aggregation”) for
streaming analysis is clearly not a feasible approach for a
large network. In this paper, we propose a set of novel dis-
tributed data streaming algorithms that allow scalable and ef-
ficient monitoring of aggregated traffic without the need for
raw aggregation. Our algorithms target the specific network
monitoring problem of finding common content in the Inter-
net traffic traversing several nodes/links, which has applica-
tions in network-wide intrusion detection, early warning for
fast propagating worms, and detection of hot objects and spam
traffic. We evaluate our algorithms through extensive simula-
tions and experiments on traffic traces collected from a tier-1
ISP. The experimental results demonstrate that our algorithms
can effectively detect common content in the traffic traversing
across a large network.

1. Introduction
In recent years, the problem of monitoring and analyzing

the aggregate traffic passing through many high-speed links
has emerged as an important and challenging problem in net-
work measurement and management. Monitoring the char-
acteristics of this aggregate traffic is essential for detecting
“global” events that are intrinsically distributed through the
network. Examples of such events range from global top-k
traffic sources (global elephants) to incipient worm infections
(involuntarily “popular” content). It is hard to detect such
events using traditional per-link monitoring mechanisms since
the signal is usually too feeble to be detected locally. Such
events may leave indelible signatures in the aggregate traffic,
but only through correlation of traffic among many links can
this signature be revealed.

In this paper, we focus on a specific problem in moni-
toring aggregated traffic – detecting common content in the
packet-level traffic across multiple network links. Note that

∗M. Sung, A. Kumar, and J. Xu are with College of Comput-
ing, Georgia Institute of Technology. L. Li is with Bell Labs, Lu-
cent Technologies. J. Wang is with AT&T Labs – Research. E-mails:
{mhsung,akumar,jx}@cc.gatech.edu, erranlli@bell-labs.com,
jiawang@research.att.com

although a content may be widely spreading across a network,
local monitoring at a single point in the network might fail to
identify such content since the frequency with which packets
containing the same application layer data pass through any
unique monitoring point (link or node) in a network might not
be significant.

We propose a set of novel distributed data streaming algo-
rithms that allow us to perform large-scale distributed mea-
surement on tens of thousands of high-speed links and nodes.
Data streaming is concerned with processing a long stream
of data items (e.g., packets) in one pass using a small work-
ing memory in order to answer a type of query regarding
the stream. The trick is to remember, in this small memory,
information that is most pertinent for answering the query.
Our solution extends this data streaming vision to distributed
monitoring as follows. Each link first processes traffic going
through it using streaming algorithms specialized for gather-
ing fragments that may potentially become a part of the signa-
ture we are looking for in the aggregate traffic. These stream-
ing results, which are several orders of magnitude smaller than
the original traffic stream, will be shipped to a data process-
ing center for synthesis and analysis to detect common con-
tent. The data processing center needs to correlate different
fragments and identify the common content signature super-
imposed with “background noise”. We will show that this task
is very challenging since the signals are so weak that novel sig-
nal processing techniques have to be developed to magnify and
detect it. We demonstrate through extensive simulations and
stress tests using traffic traces collected from a tier-1 ISP that
our algorithms are able to detect common content “planted”
in the Internet traffic very effectively. To our best knowledge,
this is the first set of distributed data streaming algorithms for
network monitoring and measurement.

1.1. Motivations for detecting common contents
Rapid spreading of common content is a daily phenomenon

in today’s Internet. A number of traffic flows carrying the
same application layer data can often be seen along different
paths across a network. Examples of such content include pop-
ular Web pages, “hot” music files, Internet worm/virus files,
and spam emails.
Web browsing. Even with the deployment of Web proxies
and content distribution networks (CDNs), a significant num-
ber of duplicated content (not necessarily from the same URL)
are delivered over the Internet, especially in a flash crowd
event. Detecting common content being transmitted in Web
traffic flows might help network operators to react to such flash
crowd events.

P2P file sharing. P2P file-sharing has become one of the
most popular applications. Content is shared (illegally in most
cases) among all the users. Hot content, e.g., newly released
movies, is likely to be requested by many users. As a result,
such content can be transmitted to many destinations over the
Internet, consuming a large amount of bandwidth. Monitoring
common content delivered to different users can allow us to
track illegal content sharing.
Internet worm/virus. Internet worms (non-polymorphic) and
viruses also have the flavor of widely spreading common con-
tent1. Identifying common content across multiple links may
help us identify an unknown worm that is in its earlier stage of
propagation. This may potentially win us a couple of critical
hours to effectively control the damage.
Spam emails. Unsolicited email or spam is a significant con-
sumer of network resources. In this case, copies of the same
message are sent to many users simultaneously. Except for the
SMTP header, the body of the messages would be the same in
all the instances. Detecting spam emails would help operators
to set up proper filters to block the unwanted spams.

We concede that illegal or malicious content can easily
evade detection through various obfuscation techniques. For
example, (illegal) P2P content can be encrypted with different
keys to look different in each distance; worms and viruses can
change their content or use encryption; spam emails can have
random gaps between words to fail any string matching effort.
We argue, however, that even in this context our effort serves
a purpose for the following reason. First, obfuscation often
affects the effectiveness of the malicious content in terms of
propagation and infection. For example, key distribution re-
quired for encrypting content with different keys in order to
evade our detection clearly increases the complexities of such
activities; encrypted worms and viruses may not work well
on systems that are not equipped with the decryption algo-
rithm and correctly implementing polymorphic worms might
require higher levels of programming skills. Finally, we ex-
pect that, detecting common content as a well-defined Internet
monitoring primitive, may find new applications in the future
Internet.

1.2. Paper outline
The rest of this paper is organized as follows. In Sec-

tion 2, we describe an overview of our solution framework and
streaming algorithms. We present the algorithm for detecting
common content in a distributed manner in Section 3. Evalua-
tion of algorithms using simulations and experiments on traffic
traces collected from a tier-1 ISP is presented in Section 4. Fi-
nally, we present related work in Section 5 and conclude in
Section 6.

2. Overview
In this section, we present the problem statement and de-

scribe an overview of our solution framework. We then pro-
vide an intuitive description of our detection algorithms and
discuss some of the subtleties involved in detecting common
content. We conclude this section with a discussion of the as-
sumptions used in the rest of the paper.

1Our solution cannot detect a polymorphic worm which changes its binary
content during infection/propagation.

PacketizationPacketizationPacketizationPacketization

Common substring

Common substring

Common substring

Common substring

App Header 2

App Header 2

− Unaligned Case

− Aligned Case

App Header 1

App Header 1

Figure 1. The aligned and unaligned cases.

2.1. Problem statement
We view an object/file as a string, and say that two ob-

jects/files share the same content if they contain a large com-
mon substring. We consider two cases in Figure 1.
Aligned case. Two instances of objects/files are simply iden-
tical. Same content encountered in Web browsing, P2P file
sharing, and some Internet worms such as CodeRed and Slam-
mer are examples of this category.
Unaligned case. The common substring starts at different lo-
cations in the object. In other words, there is a variable pre-
fix that precedes the common substring. Many email worm
viruses such as Nimda, Sircam, or Mimail are examples of
the unaligned case. Due to the nature of SMTP, the size of
the application-layer header before the fixed attachment of the
content are variable.

In the observed traffic flows, an object is packetized into
one or more IP packets. If these packets are of a fixed size
except for the last packet and this size is the same for two
identical objects A and B, the ith packet of A will have the
same payload as the ith packet of B in the aligned case. Under
the same assumption, packets from two identical objects in the
unaligned case will result in the same packet content under a
“shift” according to the difference in the initial offset.

In this paper, we focus on the unaligned case which is more
general and challenging problem than the aligned case. We
provide, however, an overview of the mechanism for aligned
case in Section 2.3 to help understanding of the mechanism for
unaligned case. The detail of the aligned case can be found in
our technical report [16].

2.2. Solution framework
The problem of detecting content that is common across a

large set of nodes is essentially equivalent to detecting com-
mon substrings in the aggregate traffic traversing all of these
nodes. However, traditional string-matching algorithms are
too slow to operate on the immense scale of data flowing
through today’s large networks. In fact, any centralized solu-
tion, that requires all the raw data to be aggregated at one loca-
tion for analysis, would be impractical due to the prohibitively
high cost of shipping all the data to a data processing cen-
ter. Clearly, any practical solution needs to be lightweight
and distributed. Next, we describe a solution framework for
our solution that fits this bill.

The overall architecture of our solution is shown in Fig-
ure 2. The idea is to use lightweight data-collection mod-
ules running at each monitored link or node to process the
cross traffic at line speeds and produce small digests that can

1. Update

Packet stream

Monitoring

3. compose matrix
4. Anayze & sound alarm

to stations
Feedback

Valued customersCentral Monitoring Station

m x n

1 x n

2. Transmit digest

station mstation 2

Analysis
Data

Module

MonitoringMonitoring
station 1

Collection
Data

Module
Collection

Data

Module
Collection

Data

Module

1. Update

Packet stream

1. Update

Packet stream

Figure 2. Solution framework.

be shipped to a central analysis module for further process-
ing. The data collection modules uses specially designed data-
streaming algorithms to produce succinct digests that are sev-
eral orders of magnitude smaller than the processed traffic,
making it affordable to ship the digests to a central analysis
module. A synthesis algorithm at the analysis module aggre-
gates these digests and processes them together to detect com-
mon content.

The challenge in this solution framework is to design the
local streaming algorithms and the data synthesis algorithm
in such a way that the digests they produce contain informa-
tion, pertinent to the events we are looking for, with an ac-
curacy almost as good as obtainable from processing the ag-
gregated traffic directly. The algorithms to be presented in
the following sections employ sophisticated techniques to ex-
tract as much information as possible from these digests. This
approach places stringent requirements on the design of both
modules:
Data collection module. First, the collected data has to be
much smaller than the original raw data size. Our algorithm is
expected to achieve at least three orders of magnitude reduc-
tion on the traffic volume. Second, the collected data has to
contain enough information for accurate analysis of the traffic.
These two are conflicting requirements that are finely balanced
in our design. Third, the data collection mechanism should be
fast enough to keep up with high line speeds of 10 Gbps (OC-
192) or even 40 Gbps (OC-768).
Data analysis module. For continuous monitoring, the data
synthesis algorithm has to be able to process each second’s
worth of traffic in one second. However, since these algo-
rithms are easily parallelizable, this requirement can be re-
laxed when we have tens of CPU’s to use. Within this compu-
tational complexity constraint, our algorithms need to identify
patterns from these digests, with both low false positive (report
a pattern that does not actually exist) and low false negative
(fail to report a pattern).

2.3. Algorithm overview
In our schemes, the data collection modules collect spe-

cially constructed bitmaps, succinctly preserving signatures of
the strings seen in the actual traffic. The analysis algorithm
then tries to discover correlations among the various bitmaps
collected at the distributed monitoring points.

In an aligned case, the data collection modules at partici-
pating routers uses 4 million-bit bitmap, enough for 1 second’s

traffic on an OC-48 link, to succinctly collect the signatures of
the strings seen in the actual traffic. The bitmap is set to all
0’s at the beginning of a measurement epoch. When a packet
arrives, we hash the application layer data or a part of it to
produce an index into the bitmap, and the corresponding bit
is set to 1. The analysis algorithm then collect and compose
bitmaps from the distributed monitoring points for analyzing.
Because the common content consisting of b packets that is
seen by a routers will form the same nearly b positions of 1’s
in a bitmaps, finding submatrix of all 1’s in a large matrix can
be used to find the existence of big common contents. This
problem can be reduced to the problem of finding submatrix
of all 1’s in a large matrix, which is NP-hard in general2. For-
tunately, in our special setting, the input of the problem is not
arbitrary, but it is the superposition of common content sig-
nature and values of random variables that are approximately
Bernoulli. Exploiting this property of the bitmap-construction
procedure, we design an efficient polynomial time algorithm.

The unaligned case, where different initial offsets can cause
the same piece of content to be packetized differently in indi-
vidual instances, turns out to be slightly more complex pro-
viding us the grounds to design more sophisticated detection
schemes. Due to the variable offsets, bitmap construction at
data collection modules needs more complexity to capture sig-
natures of randomly shifted content. To borrow an analogy
from signal processing, we need to amplify the signal because
it is weakened due to the presence of noise (random offsets).
We introduce techniques that perform such amplification dur-
ing data collection in Section 3.1.

Detecting correlations among such complex bitmaps is also
less straightforward. In section 3.2, we design a novel tech-
nique which is based on the phase transition theory of Erdös-
Renyi random graphs 3 to detect such correlations. The phase
transition theory for Erdös-Renyi random graphs says that if
the probability of the existence of an edge between any two of
the n vertices in such a graph is less than 1

n , then, with high
probability, all connected components are of size O(log n).
However, when this probability is greater than 1

n , a giant con-
nected component of size Θ(n) begins to emerge. The de-
sign of our detection algorithm leverages this theory in the
following manner. First, the pairwise correlation among var-
ious bitmaps is computed. We then construct a graph with
vertices representing bit-vectors and impose edges between a
pair of vertices according to p – an appropriately scaled value
of the correlation between the corresponding bitmaps. The
scaling factor is chosen in such a way that the expected value
after scaling is below 1

n if there is no common content. This
would result in a graph with small connected components.
However, if common content is present, the size of the largest
connected components in the graph becomes much larger than
that should happen in the Erdös-Renyi random graph, indicat-
ing the presence of common content. This is due to the high
correlation between bitmaps collected at any two nodes that
have both recorded the passage of the same piece of content.
As we show later, this simple test turns out to be extremely
accurate.

Once this Erdös-Renyi test (described in detail in Sec-

2refer [16] for proof and the detail of the algorithm for aligned case
3Erdös-Renyi random graph used in this paper is a random graph G(n, p)

that have n vertices and each possible edge independently with probability p

tion 3.2) indicates the presence of a pattern, we need to iden-
tify the actual nodes that saw the common content. For-
mally, the general problem is equivalent to finding a maximum
clique. This problem is NP-hard and there does not exist any
constant factor approximation algorithm for it [10]. Our graph
is mostly the union of a random graph and some “clique-like”
dense subgraphs. Using this property, we propose a greedy al-
gorithm to find most of the vertices in the largest cluster, i.e.,
the largest set of vertices that connect to each other with higher
probability than 1

n . The algorithm is proven to be stochas-
tically optimal under a reasonable computational constraint,
using stochastic ordering theory.

2.4. Assumptions
In the rest of the paper, we assume that common content

is always chopped up into packets of the same size. Our al-
gorithms can be extended to cover the more general case of
variable packet-sizes, but we make this assumption for sim-
plicity of presentation. This assumption is justified by the fol-
lowing reason. Typically the same application-layer protocol
is used to transmit such common content, e.g., email viruses
are always transmitted over SMTP. If the application runs over
TCP, it typically adopts the standard MSS (Maximum Seg-
ment Size). A recent study of Internet packet size distribu-
tion [8] indicates that there are only 2 popular packet sizes no
smaller than 500 bytes: 576 and 1,500 bytes. So in practice, a
large portion of common content will be transmitted over the
same packet size. In this paper, we focus on common con-
tent transmitted using such popular sizes. We remark that, our
algorithms can be made to work for common content transmit-
ted with any packet sizes; however, they are optimized for the
common case.

In addition, our algorithm can be viewed as a clustering al-
gorithm which detects one large cluster in the dataset. This
cluster can contain either single common item or multiple
common items. The techniques that are used to separate out
sub-clusters upon detecting a large cluster have been maturely
developed. Thus we will focus on only detecting one large
cluster assuming those techniques that can be used on top of
our algorithm to report multiple common content occurring
within the same measurement epoch.

3. Design for the Unaligned Case
In this section, we design a technique for detecting com-

mon content for the unaligned case, and discuss the complex-
ity of the algorithms.

3.1. Distributed online streaming module
As discussed in Section 2.4 we assume that all common

content is transported using a fixed packet size. Suppose the
common content is transmitted over TCP, which typically use
MTU segments of 576 bytes. Each packet includes a 40 byte
header and a 536 byte payload. Then the common content can
have 536 different starting points (0, 1, ..., 535) in the transmit-
ted object modulo 536. If the common content in two objects
seen by two routers has the same prefix length, and the two
routers sample fragments at the same offset, they will obtain
the same fragments. This will produce two identical sequences

1. Initialization
2. Set all bits in Arrays A1, A2, ..., Ak to 0;

3. Update arrays(pkt)
4. for array index i := 1 to k
5. bit index j := hash(substring(pkt.contents, offset[i], 20));

/* hash the 20-byte fragment from the offset offset[array index] */
6. A[i][j] := 1;
7. end

Figure 3. Offsets sampling algorithm for updat-
ing the online streaming module

of hash values. In the bit locations indexed by these hash val-
ues, the arrays corresponding to both these routers will have
value 1. However, the probability that such a match happens
is only 1

536 , if the prefix length is distributed uniformly at ran-
dom in [0, 535]. Also, even if we are lucky to have such a
match, for a common content that is split into 100 segments,
we are looking at about 100 common 1’s between arrays that
are both 131,072 bits wide (to be justified in Section 4), assum-
ing we are using same or similar parameters as in the aligned
case [16]. The signal is too weak to be detected.

Next, we describe our solutions – offset sampling and flow
splitting – to address the above two problems.
Increasing matching probability. To increase the probabil-
ity that we are going to have a match, instead of each router
taking a fragment from a fixed location, each router picks a set
of k random offsets chosen beforehand and fixed for a mea-
surement epoch. For each packet, the router samples a total of
k fragments, starting at these offsets. The hash values will be
used as indices to write into k different arrays, one array cor-
responding to each offset. Figure 3 shows the offset sampling
algorithm.

In general, using k offsets amplifies the probability of hav-
ing a match by approximately k2. Suppose the offsets used by
router 1 are a1, a2, ..., ak and the offsets used by router 2 are
b1, b2, ..., bk. Then ((ai−bj) modulo 536) is a set of k2 random
numbers. Let the common content seen by these two routers
have prefix length l1 and l2, respectively. If ((l1 − l2) modulo
536) matches any of the ((ai−bj) modulo 536), the fragments
taken from segments of contents 1 at offset ai will be the same
as fragments taken from segments of contents 2 at offset bj . In
this case, there will be 1’s in a common set of indices in both
the ith array of router 1 and the jth array of router 2. Since,
given a fixed set of ai and bj , there are about k2 combinations
of i and j, the probability for such a match is increased by k2.
To be accurate, this increase is slightly smaller than k2 due to
some collisions. The probability for two arrays to have such

a match is 1 − e
−k2

536 . In general, to achieve similar match-
ing probability, for large-size packets, we should use larger
value of k. However, since the probability increases approx-
imately quadraticly with k, the value k only needs to be

√
δ

times larger when the packet size is δ times larger.
In this paper, we will fix the number of arrays to 10, tar-

geting the packet size of 536. For packets around 500 bytes
in length, we will use 10 different offsets, one offset per array.
For packets 1000 bytes and above, we will use 20 different off-
sets, two offsets per array. We will not perform such operation
for packets smaller than 500 bytes, which we will justify in
Section 4. This effectively limits the computational and mem-
ory complexity of this operation to 10 bits per 536 bytes of

1. Split flow
2. Upon the arrival of a packet pkt
3. group index := hash(pkt.flow label);
4. call Update arrays(pkt) to update all arrays of the
5. group indexed by group index;

Figure 4. Offset sampling plus flow splitting al-
gorithm for updating the online streaming mod-
ule

traffic.
Magnifying signal strength. Now the probability of having
a match is increased by around k2, but we have to solve the
problem of weak correlation between two matching arrays.
We have argued that it is extremely difficult to identify a match
of 100 packet segments between two 4M bit arrays. To in-
crease the signal strength, we need to reduce the size of each
bit array. Therefore, we split the overall traffic into multiple
group of arrays. Our scheme requires that packets belonging
to the same flow go to the same array. We use a standard
technique of splitting traffic into groups according to the hash
values of their flow labels to ensure this. Figure 4 shows the
flow splitting algorithm. Note that, there can be multiple in-
stances of the same content passing through a given router.
Flow splitting allows multiple instances of the same content to
be registered in separate bit arrays. This further increases the
signal strength.

In summary, each router will generate a matrix of 1,024 bits
in width and 1,280 in height4. These matrices will be shipped
to the data analysis center for analysis.

3.2. Data analysis module
Once matrices are shipped from the data streaming mod-

ules, they will be merged vertically to produce a giant (in
number of rows) matrix of 1, 024 columns. The function of
the data analysis module is to assist in the detection of com-
mon content. We propose two “tools” in this respect. Our first
tool answers the question whether there exists common con-
tent or not. The second tool answers the question which set of
routers potentially witnessed the common content. Once the
existence of the common content has been found with the first
tool, we may be able to use the second tool to identify the part
of the routers related. Then the external means, such as packet
logging or intrusion detection available to ISPs, may be used
to find the common content.
Statistical test on random graphs. The common content
detection problem in the unaligned case can be reduced to
the problem of performing statistical test on a random graph
G(n, p). Here G(n, p) denotes a random graph that has n
vertices, and the events of any two vertices having an edge
between them are independent and each event happens with
probability p. Each bitmap corresponds to a set of vertices in
this graph and correlations caused by the common content is
translated into a higher probability for some vertices to have
an edge between them than the “background” probability p.

Our statistical test problem is that, given a graph that con-
tains n vertices, we would like to test whether it is an instance

4The height of the matrix can be tuned depending on the speed of the
router.

of Erdös-Renyi (ER) random graph G(n, p1) [3], or there ex-
ists a subset of vertices in the graph such that the probability
for any two vertex to have an edge between them is larger than
p1. We refer to the latter as “preferential attachment”. In sta-
tistical testing, the former is the null hypothesis and the latter
is the alternative hypothesis.

We now show how we convert the matrix to an Erdös-Renyi
(ER) random graph G(n, p1). Consider a 10n × 1,024 matrix,
where the traffic is split into n groups and each group results
in 10 arrays corresponding to 10 different offsets. We convert
this matrix to a graph with n nodes, each node corresponds to
a group. Whether an edge exists between two groups depends
on the maximal number of common 1’s among pairs of rows of
them. The key in transforming this matrix to a random graph
G(n, p1), when there is no preferential attachment, is to keep
the probability of having an edge between two nodes uniform
(= p1). Since the number of 1’s in the rows of different groups
are different, we need to set different thresholds accordingly.
That is, given two rows that belong to two different groups
(vertices) A and B containing i and j 1’s respectively, if the
number of indices at which both rows have value 1’s is higher
than λi,j , we add an edge between A and B. We put at most
one edge between any two vertices. Also we do not establish
an edge from a vertex to itself. Therefore, the resulting graph
is a simple graph.

Let X(i, j) be the random variable denoting the num-
ber of common 1’s between two rows that contain i and
j 1’s respectively. When there is no “matching” be-
tween them, the probability that the number of common
1’s is greater than λi,j is given by P [X(i, j) > λi,j] =

1 − ∑λi,j

k=0 P [X(i, j) = k] where X(i, j) follows a hyper-

geometric distribution P [X(i, j) = k] =
(i

k)(
N−i

j−k)
(N

j)
(Here

the value of N is 1,024). We set a list of thresholds Λ =
λi,j , (0 ≤ i, j ≤ 1, 024) in such a way that the value of
P [X(i, j) > λi,j] ≈ p∗ for any value of i and j, where p∗

is defined by the probability of matching between two arrays.
The value of p1, the probability of the existence of an edge be-
tween two groups, can be estimated by p1 ' 1 − (1 − p∗)100.
It is easy to see that, given p1, we can find the list of corre-
sponding threshold λi,j .

We now describe our novel technique for testing the null
hypothesis whether our constructed graph is an instance of
G(n, p1) against the aforementioned alternative hypothesis.
Our idea is to check whether the size of the largest connected
component in the graph significantly deviates from that is
typical in G(n, p1), based on the following phase transition
phenomenon [3] of the Erdös-Renyi random graph. When
the probability p is less than 1

n in a random graph G(n, p),
with high probability, all connected components are of size
O(log n). However, when p is greater than 1

n , a giant con-
nected component of size Θ(n) begins to emerge. In our ER
test, we tune a set of parameters to keep the expected p1 be-
low the phase transition threshold. If there is no “preferen-
tial attachment”, the largest connected component should have
an expected size q which is O(log n). However, if the graph
contains significant “preferential attachment”, certain pairs of
nodes will be connected by an edge with probability much
higher than p1. These edges will “merge” multiple largest
connected components in the original graph into a much larger

1. FindCore(G)
2. construct G′ = (V ′, E′), a duplicate copy of G
3. repeat
4. let v be the vertex in G′ with the smallest degree;
5. delete v and edges incident on v from G′

6. until |V ′| ≤ β
7. define Vcore as the remaining vertices in V ′

Figure 5. Core finding algorithm for the un-
aligned case

connected component than q. This simple test turns out to be
extremely accurate, with very low false positive and false neg-
ative, as we will show in our evaluation.
Detection algorithm - finding the pattern. Our statistical
testing algorithm determines whether there are common con-
tent in multiple rows of the matrix, but does not identify these
rows. We now introduce a greedy algorithm that finds a large
portion of these rows with high probability.
Step 1: Constructing the graph. We induce a new graph out
of the matrix using a different threshold λ′

i,j . We work with
this new graph rather than the graph used for statistical testing
because the latter graph often does not offer us the best accu-
racy on finding the core. In fact, while the graph for statistical
testing uses λi,j that results in p1 smaller than the phase tran-
sition threshold 1

n , in this new graph the p1 induced by λ′
i,j is

much larger than 1
n . This step is straightforward and will not

be discussed in detail below.
Ideally, we would like to find the clique (or a dense sub-

graph such that almost every node is connected to every other
node in this subgraph) of maximum size in graph G′. How-
ever, the maximum clique problem is NP-hard and cannot be
approximated within a factor |n|1/2−ε for any ε > 0 in the gen-
eral case. However, our problem has nice statistical property
that general polynomial-time algorithm for maximum clique
cannot exploit. We next use the property to complete our
greedy algorithm.
Step 2: Finding the core. Figure 5 illustrates the procedure
for finding the core. We first copy the original graph G to
G′ and perform all the operations on G′ (we will need G in
Step 3). We keep deleting the nodes with the smallest degree
and their associated edges from the graph G, until the number
of vertices in this graph becomes β. The remaining vertices
are the core we are looking for, denoted as Vcore. Through
Monte-Carlo simulation, we configure β such that if the num-
ber of vertices containing the common content are beyond a
detectable threshold, with high probability the majority of the
vertices in the core contain the common content we are search-
ing for.
Our algorithm is stochastically optimal. Our algorithm
shown in Figure 5 for finding the core, is stochastically opti-
mal, under a reasonable computational model, in the following
sense. Among all the algorithms that fall under the computa-
tional model, our algorithm produces a core that has the lowest
average false positive. In other words, the average number of
vertices that do not belong to the core (not containing common
content) is kept to the minimum by our algorithm. This result
is proven using machineries from the stochastic ordering the-
ory [9]. Detailed proof is provided in [16] and omitted here
due to the lack of space.

3.3. Computational complexity
The vast majority of the computational complexity of both

our ER test and the pattern finding scheme comes from com-
puting, for any two rows in the matrix, the number of indices
in which both row have value 1. Other algorithms, mainly ma-
nipulating the graph induced from the matrix, have a low com-
plexity of at most O(|E|) (the induced graphs are all sparse
graphs such that |E| is about O(n)). For a matrix with 10n
rows, we need O(100n2) bitwise-AND operations. We will
show below that if we would like to monitor thousands of
high-speed links (e.g., OC-48), we will have an n that is in
the order of 100,000. In this case, 100n2 is 1 trillion opera-
tions. We estimated that it will take a few hours in software
implementation. However, the network may generate such a
workload every second.

We suggest several possible ways, used alone or in combi-
nations, to cope with this complexity. The first possibility is
that if we are willing to reduce the number of OC-48 links to
be monitored together to hundreds, we automatically reduce
the complexity by about 100 times. However, a large network
often has much more than a few thousands ingress/egress links
to monitor. It is desirable to monitor as many of them together
as possible, to make the probability of detecting a weak (but
potentially interesting) signal higher. The second possibility is
that we can simply sample 10% of the vertices and find a core
only in this subset. Then this core will be used to find other
vertices in the pattern, which has O(n) complexity since the
core is relatively small. This reduces the complexity by about
100 times, i.e., each such computation will take a couple of
minutes. The tradeoff here is that we can only detect patterns
that are several times larger than detectable if we do not per-
form sampling. In other words, the sensitivity of the algorithm
in detecting patterns goes down. The third possibility is to dis-
tribute the load to a large number of CPU’s. Since this comput-
ing job has no data dependence between any two operations, it
is ideal for massive parallel processing (a.k.a, embarrassingly
parallel). However, a few thousand CPU’s are needed for this
gigantic task, the cost of which is nontrivial. The fourth pos-
sibility is that we design special hardware that can perform
tens of thousands of such long (1024 bits) bitwise-AND oper-
ations in a single cycle. Once this hardware helps us generate
the graph, the rest of our algorithms takes a few seconds. Fi-
nally, the fifth possibility is to sample a small percent of the
measurement epochs for analysis. Hopefully the patterns will
span enough epochs to be detectable even with sampling.

4. Evaluation
Our mechanism is designed to monitor thousands of OC-

48 (2.4 Gbps) links simultaneously. We simplify the problem
as follows to make its computational complexity manageable.
We assume a minimum packet size of 4,000 bits because the
streaming algorithm will not perform operations on packets
shorter than 500 bytes. We also assume that we are only mon-
itoring no more than 1

8 of the traffic (i.e., about 75,000 packets
from an OC-48 link in each one second measurement epoch
by ignoring flows that are very large (i.e., elephants)5). Since
putting (ln 2)l random bits [2] into an l bit array will make

5 Elephants can be analyzed locally in a very efficient manner using [5],
for example. Our goal here is mainly to detect “a group of mice”; detecting a

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400 450

C
D

F
of

 E
rd

os
-R

en
yi

 T
es

t

Size of Largest Connected Component

threshold=100

false positive
= 0.005

false negative = 0.166

Random
With pattern

(a) n1 = 120

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 50 100 150 200 250 300 350 400 450 500

C
D

F
of

 E
rd

os
-R

en
yi

 T
es

t

Size of Largest Connected Component

threshold=100

false positive
= 0.005

false negative = 0.052

Random
With pattern

(b) n1 = 130

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 100 200 300 400 500 600

C
D

F
of

 E
rd

os
-R

en
yi

 T
es

t

Size of Largest Connected Component

threshold=100

false positive
= 0.005

false negative = 0.010

Random
With pattern

(c) n1 = 140

Figure 6. The effect of n1 on the false positive and false negative probabilities in Erdös-Renyi test

the array contains approximately half 0’s and half 1’s, an ar-
ray of 131,072 bits will do. With each row of size 1,024 bits,
the traffic needs to be split into 128 groups, generating 1,280
arrays (rows) with 10 different offsets. Monitoring 800 such
links will result in 1,024,000 rows in the matrix, which will
induce a graph with 102,400 vertices. Hereafter, the matrix
we are dealing with is 10n × 1024, where n is 102,400.

4.1. Erdös-Renyi test
In this section, we study the sensitivity of Erdös-Renyi test

described in Section 3 in terms of false positive and false neg-
ative probabilities using Monte-Carlo simulations. The false
positive probability is the probability that a random graph is
misinterpreted as a graph with common content pattern. The
false negative probability is the probability that a graph with
common content pattern is considered to be a random graph.

We assume that the common content is packetized into 100
packets. We compute the aforementioned threshold table Λ
using p1 = 0.65/105. Note that the phase transition proba-
bility for an ER random graph of this size is 1.024/105 which
is larger than p1. Then, we run Monte-Carlo simulations by
varying n1, the number of vertices that have seen the common
pattern.

Figure 6 shows the cumulative distribution of the size of the
largest connected component, for random graphs and graphs
that have seen a pattern. We observe that the larger the num-
ber of vertices that have seen the pattern, the larger “distance”
between these two CDF curves. If we set the threshold of the
largest component to the same number (i.e., 100), there is al-
most no false positive in deciding the existence of a pattern in
all three cases of n1. However, we observe some false nega-
tive cases. The corresponding false negative probabilities are
16.6%, 5.2%, and 1.0% for n1 = 120, 130, and 140, respec-
tively. Note that some false negative are tolerable since such
detection is performed every second. Even if the pattern is
missed in one second, it may be caught in the following sec-
onds. We can select the size of the largest connected compo-
nent which strikes a balance between false positive and false
negative probabilities. We also observe that, a pattern of a
small number of nodes—n1 correlated vertices out of 102, 400

group of elephants is clearly an easier problem sidestepping which allows us
to focus our computation and storage resource on the more interesting prob-
lem.

packets Average Average Average
in common n1 core false false

content size negative positive
125 65.3 0.485 0.014

100 144 112.1 0.241 0.025
165 154.4 0.099 0.037
67 35.6 0.481 0.023

110 77 59.3 0.239 0.012
89 81.8 0.096 0.017
44 22.4 0.491 0.001

120 51 38.5 0.249 0.006
57 51.9 0.092 0.002

Table 1. Average size of cores detected by
greedy algorithm

vertices—is very effective in connecting the smaller connected
components in forming a rather larger one. This shows that the
Erdös-Renyi test is very sensitive in detecting the patterns.

4.2. Finding the core using Monte-Carlo simulation
Table I shows the average size of cores detected by our

greedy algorithm. Here we set the value of p1 as 0.8/104,
which is higher value than the one for Erdös-Renyi test (as ex-
plained in Section 3.2), and compute the corresponding thresh-
old table Λ′. Given the number of packets in common content
in the first column of the table, three values of n1 in each line
shows the minimum value of n1 to make the average core sizes
more than 50%, 75%, and 90% of n1, respectively. The third
and fourth columns show the average false negatives and false
positives in the detected core in terms of the set of routers
identified6

There is a clear tradeoff between the size of the common
content and the number of vertices that need to contain it to
be statistically significant. For example, when there are 100
packets in the common content and 125 vertices in the pattern,
the greedy algorithm will find a core of average size 65.3 (out
of 125), which contains 51.5% of the vertices in the pattern.
With 144 and 165 vertices, we can increase the size of the core
to 75.9% and 90.1% respectively. If the number of packets

6 The definitions of false positive and false negative are different from
the ones in Erdös-Renyi test. A false positive in this case, corresponds to a
router being mistakenly identified as having seen the common content, and a
false negative correspond to routers that have seen the common content being
missed by the detection algorithm.

in the common content increases to 120, we only need 44,
51, and 57 vertices to get 50%, 75%, and 91% of the cores,
respectively. In all simulation results, we get very small false
positive values.

4.3. Stress test using tier-1 ISP trace
In this section, we evaluate our algorithms using Internet

packet header traces. If the traffic is evenly split into differ-
ent groups according to the hash values of the flow labels, the
result should be identical to our analytical and Monte-Carlo
simulation results. However, due to the burstiness of the traf-
fic, some groups will have more packets hashed to it and some
will have less. We would like to evaluate the impact of this
burstiness on the robustness of our greedy algorithm.

The Internet packet header trace we used in our experi-
ments was collected at an outgoing link that connects a data
center to a tier-1 ISP’s backbone network. The trace con-
tains a total of 150 million packets, and the traffic load was
very bursty. To generate the 2D-bitmap corresponding to this
“bursty traffic”, we use the traffic segments from the same
trace in different epochs to simulate the traffic from multi-
ple interfaces because we do not have the actual traffic traces
from multiple points. After we generate a 2D-bitmap of size
1,024,000 × 1,024, we insert patterns of various sizes into it
to evaluate our detection algorithms. Refer [16] for more de-
tailed description of this procedure.

We found that the detectability using this “bursty traffic
bitmap” is slightly lower than that obtained through Monte-
Carlo simulation assuming even traffic distribution. For exam-
ple, to find more than 50% of core when there are 100 pack-
ets in the common content, we need about 121 vertices in the
pattern. In comparison, with the same parameters, our Monte-
Carlo simulation suggests that 125 vertices in the pattern are
needed. Clearly, in this case the burstiness comes to our ad-
vantage. This is because, due to the Zipfian nature of the Inter-
net traffic [6], a small number of rows that large flows (small
in number) are mapped to, absorb a large percentage of traffic,
so that the other rows become very lightly loaded. Although
signals contained in the rows that large flows are mapped to
are mostly lost, signals contained in other rows, which is the
vast majority, are amplified.

5. Related Work
The closely related works to ours in theoretical computer

science and database communities are [7, 1]. In [7], Feigen-
baum and Kannan proposed to ship “synopses” of the raw data
from physically separated network elements to a central oper-
ations facility. They presented a space-efficient one pass algo-
rithm to compute the L1 differences between two data streams.
In [1], Babcock and Olston proposed techniques to answer
top-k queries for values continuously updated from distributed
monitoring stations by compensating the local skew with fac-
tors that make the local top-k appears as the global top-k val-
ues. This reduces the update that needed to send to the central
station. However, none of these techniques are applicable in
our context.

In the networking literature, many techniques using a sin-
gle observation or vantage point are proposed. In [12, 13],
obtaining relevant traffic characteristics using Bloom Filter or

synopsis data structure have been focused. In [15, 11, 14],
techniques exploiting properties of specific common content
such as worm have been proposed. For example, Singh et
al. [15] have proposed the EarlyBird system for automated
worm fingerprinting. However, these techniques cannot be
applied in our common content detection problem since the
“signal” in each local station can be too weak to be detected.
Our techniques required to detect common content from mul-
tiple vantage point with high traffic volume is quite different
from theirs.

Gigascope [4] is a stream database designed for distributed
network measurement and monitoring, which is capable of
processing general database-style queries to the network data
stream. However, the problem of detecting common content is
a specialized functionality that is well beyond this capability.

6. Conclusion
In this paper, we propose a set of novel data streaming tech-

niques detecting common content in the Internet traffic based
on the digests shipped back to the operation center with three
order of magnitude data reduction from the raw traffic. Our
algorithms exploit the fact that the common content signal is
hidden in the background of random noise. We rigorously for-
mulate our detection problem and present efficient algorithms
to detect aligned and unaligned common content. Our algo-
rithms are shown to be very effective through extensive simu-
lations and experiments on traffic traces collected from a tier-1
ISP.

References
[1] B. Babcock and C. Olston. Distributed top-k monitoring. In Proc. ACM

SIGMOD, 2003.
[2] B. Bloom. Space/time trade-offs in hash coding with allowable errors.

CACM, 13(7):422–426, 1970.
[3] B. Bollobas. Random Graphs. Cambridge University Press, 2001.
[4] C. Cranor, T. Johnson, and O. Spatscheck. Gigascope: a stream

database for network applications. In Proc. ACM SIGMOD, Jun 2003.
[5] C. Estan and G. Varghese. New directions in traffic measurement and

accounting. In Proc. ACM SIGCOMM, Aug. 2002.
[6] W. Fang and L. Peterson. Inter-as traffic patterns and their implications.

In Proc. IEEE Global Internet Symposium, Dec. 1999.
[7] J. Feigenbaum and S. Kannan. Streaming algorithms for distributed,

massive data sets. In Proc. IEEE Symposium on Foundations of Com-
puter Science, 1999.

[8] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rock-
ell, T. Seely, and C. Diot. Packet-level traffic measurements from the
sprint ip backbone. IEEE Network, 2003.

[9] H.A.David and H.N.Nagaraja. Order Statistics. A Wiley-Interscience
Publication, 2003.

[10] D. S. Hochbaum. Approximation algorithms for NP-hard problems.
PWS Publishing Co., 1997.

[11] H. A. Kim and B. Karp. Autograph: Toward automated, distributed
worm signature detection. In Proc. 13th Usenix Security Symposium,
2004.

[12] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based change
detection: methods, evaluation, and applications. In Proceedings of the
3rd ACM SIGCOMM IMC, pages 234–247, 2003.

[13] A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li. Space-Code Bloom
Filter for Efficient per-flow Traffic Measurement. In Proc. IEEE INFO-
COM, Mar. 2004.

[14] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically gener-
ating signatures for polymorphic worms. In Proc. IEEE Symposium on
Security and Privacy, 2005.

[15] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm
fingerprinting. In Proc. Operating Systems Design and Implementa-
tion(OSDI), Dec. 2004.

[16] M. Sung, A. Kumar, L. Li, J. Wang, and J. Xu. Scalable and efficient
data streaming algorithms for detecting common contents in internet
traffic. Technical Report GIT-CC-06-04, College of Computing, Geor-
gia Institute of Technology, Jan. 2006.

