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ABSTRACT
Network monitoring in cellular networks requires the track-
ing of quantiles for data distributions of many evolving net-
work measurements (e.g. number of high signaling sub-
scribers per minute). Most quantile estimation algorithms
are based on a summary of the empirical data distribution,
using either a representative sample or a global approxima-
tion of the entire distribution. In contrast, by viewing data
as a quantity from a random distribution, the stochastic
approximation (SA) for quantile estimation does not keep
a global approximation, but rather local approximations at
the quantiles of interest, and therefore uses negligible mem-
ory even for estimating tail quantiles.

However, the current stochastic approximation algorithm
for quantile estimation tracks each quantile separately, and
this may lead to a violation of the monotone property of
quantiles. In this paper, we propose a stochastic approxi-
mation technique that enables the simultaneous tracking of
multiple quantiles. Our technique maintains the monotone
property of different quantiles, and is adaptive to changes
in the data distribution. We evaluate its performance using
real cellular provider datasets. Our results show that the
technique is very efficient.

Categories and Subject Descriptors
C.2.1. [Computer-Communication Networks]: Net-
work Operations – Network Monitoring

General Terms
Algorithms, Measurement, Theory

Keywords
Stochastic approximation, cellular networks, incremental quan-
tile estimation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MICNET’09, September 21, 2009, Beijing, China.
Copyright 2009 ACM 978-1-60558-753-0/09/09 ...$10.00.

1. INTRODUCTION
Cellular network monitoring tracks many event counts per

time interval, such as number of mobiles running P2P ap-
plications (P2P mobiles), number of mobiles who have gen-
erated high number of signaling messages (high signaling
subscribers), number of battery attacks. Quantiles summa-
rize the cumulative distributions of these event counts. For
example, the 90% quantiles of high signaling subscribers is
the number q where 90% of the time, the number of high
signaling subscribers is smaller than q. Quantiles need to
be tracked continuously over time for monitoring network
health.

The main line of work [4, 3, 6, 1] on continuous quantile
evaluation keeps a representative sample or summary infor-
mation (e.g. random subset sum) of the empirical data.
The quantile is computed from this summary data. How-
ever, to obtain quantile estimates with good accuracy, this
summary information tends to be memory expensive, which
is especially true for extreme quantiles since the accuracy
requirement is much higher. For continuous streams whose
underlying data distribution is changing over time, this also
may lead to a large bias in quantile estimates since most of
the summary information may be out of date.

Rather than maintaining a global approximation of all
quantiles, the other line of work of using stochastic approx-
imation (SA) for quantiles is to view the data as a random
quantity from a unknown distribution, and incrementally
build local approximations of the distribution function only
in the neighborhood of the quantiles. As a result, there is no
additional memory required except a few summary data (1
or 2 number) at the quantiles. This incremental nature is es-
pecially amenable to continuous data updates. It has been
shown by Tierney in [8] that, for stationary distribution,
the estimated quantile behaves nearly the same as sample
quantile (the quantile computed using all data observed so
far; the qM sorted observation for q-th quantile with M
observed data). Asymptotically, SA estimation and sam-
ple quantile are indistinguishable. However, due to the use
of derivative information, SA estimation can be sensitive to
data order or the particular distribution during intermedi-
ate updates. This presents challenges for cellular network
monitoring. For example, cellular providers may monitor
active flow size quantiles; if the quantiles change abruptly,
this may signal network anomaly events. If it is due to inac-
curacy of SA at intermediate updates, this can trigger false
alarms. False positives may just be annoying to network ad-
ministrators. However, false negatives can be very serious
as active measures are not taken to address the anomalies.



For multiple quantiles, current algorithms [8, 2] derive
each quantile estimate in isolation. Due to the multiple local
approximations at quantiles of stochastic approximation be-
fore convergence, it is quite possible that multiple quantiles
estimated independently do not obey the monotone prop-
erty. That is, the value of 90% quantile can be smaller than
the value of 80% quantile. As we show in our evaluation,
these non-monotone cases do happen in practice, and it can
be as high as 20% using our data set. This makes continuous
tracking of quantiles difficult. In addition, if the underlying
distribution is not stationary, this will pose additional chal-
lenges for SA based estimation algorithms.

In this paper, we make the following contributions. First,
we proposes a stochastic approximation scheme that esti-
mates multiple quantiles incrementally over time. At any
given time, the monotone property of quantiles are main-
tained. Second, we have validated our algorithm using real
cellular provider data. Our scheme only needs to keep track
of quantiles of interest and has no additional memory re-
quirement. In contrast, non-SA based algorithm’s space
requirement depends on which quantile is estimated (more
samples are needed for extreme quantiles). Our scheme is
extremely light weight. To the best of our knowledge, our al-
gorithm is the first stochastic approximation algorithm that
maintains the monotone property during incremental up-
dates.

The rest of this paper is organized as follows. In Section 2,
we briefly review stochastic approximation for a single quan-
tile. We present our monotoneSA algorithm in Section 3. In
Section 4, we evaluate our algorithms using real network
data.

2. STOCHASTIC APPROXIMATION: A PRE-
LIMINARY

Let {xt} be an incoming data stream with a distribution
Ft. Suppose Ft(·) is a continuous distribution with positive
derivatives on its domain. In this section, we give some pre-
liminaries on incremental quantile estimation of {xt} using
stochastic approximation. We present the algorithm for a
single quantile, and discuss issues arise for multiple quantile
estimations.

2.1 A Single Quantile
A stochastic approximation (SA) for online incremental

quantile estimate is proposed by [7, 8], under the assump-
tion that Ft = F , that is, the data distribution does not
change over time. Let p be a probability whose quantile is
of interest, and let θt be the true quantile of Ft w.r.t. p.
The SA method for estimating θ is as follows. Let St−1 be
the quantile estimate up to time t − 1. With the arrival of
the tth observation xt, the SA quantile estimate is updated
by

St = St−1 + at(p − I(xt ≤ St−1)), (1)

where at > 0 is a pre-defined sequence of positive numbers,
and I(·) is the indicator function. Let ft = F ′

t(θ) > 0 be the
derivative of Ft (density) at the true quantile θt. We can
write at in the form of

at = f−1

t wt, (2)

where wt is refereed as the weight associated with data xt.
When the data distribution is stationary, i.e., Ft = F and

hence the density ft = f , the following two lemmas give the
property of the SA quantile estimate in (1) [7, 8].

Lemma 1. If
P

t
wt = ∞, and

P

t
w2

t < ∞, the SA esti-
mate will converge with probability 1 to θ ([7]).

Lemma 2. When wt = αt−1 (thus satisfy the convergence
condition in Lemma 1), then

√
t(St − θ) will converge to a

normal distribution with mean zero and a fixed variance. In
addition, the variance will be minimized when

wt = t−1, (t−1 weights), (3)

with a variance σ2/f2, where σ is the variance of the sta-
tionary distribution.

Of course, in practice, since the derivative f is not known
exactly, it is estimated from data [8]. However, if the true
value f is close to 0 such as at the tails, the estimate may
become unstable.

When the data distribution Ft changes over time, the di-
minishing weight t−1 is no longer appropriate. In this case,
to track the true quantile θt w.r.t p, Chen et al.[2] suggested
setting wt in Eq. 2 by

wt = w, (constant weights), (4)

where w > 0 is a fixed constant. At the same time, the
derivative ft is estimated from data using an exponentially
weighted average with the same weight w.

In fact, the use of constant weights (4) has been strongly
suggested by Chen et al. [2] even for stationary data, as their
simulation results suggest that it gives a good estimate and
is less prone to bad initial values. This is supported by the
following weak convergence result of the quantile estimate
St for stationary data [5].

Lemma 3. St − θ converges in distribution to a random
variable with mean 0 and fixed variance, as t → ∞.

In fact, one can further reduce the variability and hence
improve the accuracy of the quantile estimates by averaging
St ([5]).

2.1.1 An Alternative Interpretation
Before we move on, we first give an alternative interpre-

tation of the stochastic algorithm that will be used later to
motivate us to improve some of its deficiencies. To simplify
the explanation, let’s assume that ft = F ′

t(θt) is known.
Given observations up to t − 1, St−1 is the approximated

quantile for probability p, i.e. P (x ≤ St−1) ≈ p. Now
with the observation xt and its associated weight wt, the
probability P (x ≤ St−1) can be updated by

P (x ≤ St−1) ≈ (1 − wt)p + wtI(xt ≤ St−1). (5)

Now with the distribution derivative ft, we can approximate
Ft locally at (St−1, (1−wt)p+wtI(xt ≤ St−1)) using a linear
function with slope ft, i.e.,

F̂t(x) ≈ (1 − wt)p + wtI(xt ≤ St−1)) + (x − St−1)ft.

Now setting this equals to p, we obtained the SA quantile
estimate in (1), i.e.

St = St−1 + wt/ft(p − I(xt ≤ St−1)),

What we have shown above is that the SA quantile es-
timate is essentially derived from a local approximation of



the Ft at the quantile point St. This local approximation
is extremely simple (a linear function), and is incrementally
updated with every new arrival. Such a local approximation
is very different from many of the proposed approaches that
try to build a global approximation using data summaries.
Because of its simplicity, there is essentially no memory re-
quirement even for a tail quantile.

2.2 Issues with Multiple Quantiles
To obtain online quantiles estimates for more than one

probabilities, a naive method is to run the SA algorithm (1)
for each of the probabilities in isolation. However, this sim-
ple method can lead to a violation of the monotone property
of the quantile estimates. That is, if p(1) < p(2), there is
no guarantee that the estimated quantile for p(1) is strictly
less than p(2). We illustrate using the case of two quantiles.

Let p(1) < p(2) be the two probabilities whose quantiles
are of interest to us. Let the corresponding SA quantile
estimates given data up to t − 1 be St−1(1) and St−1(2).
And suppose the densities of distribution Ft are known at
the true quantiles. Denote them by ft(1), ft(2) for p(1), p(2)
respectively. Now with the new observation xt, we update
the quantile estimates by

St(1) = St−1(1) + wt/ft(1)(p(1) − I(xt ≤ St−1(1))), (6)

St(2) = St−1(2) + wt/ft(2)(p(2) − I(xt ≤ St−1(2))), (7)

If St−1(1) < St−1(2), given the relations above, we cannot
guarantee that St(1) < St(2). Figure 1 gives an example of
this violation of the monotone property, using the interpre-
tation of the SA algorithm that is given in Section 2.1.1.

Figure 1: An illustration of the out-of-orderness

problem of SA algorithm for multiple quantiles.

In Figure 1, the two red points represent the quantile es-
timates at time t − 1, whose cumulative probabilities, de-
noted by pt(1) and pt(2), are already updated upon arrival
of the new data xt using (5). The two red lines represent
the local approximation of the distribution at quantile points
(St−1(1), pt(1)) and (St−1(2), pt(2)). However, in this case,
the slope at quantile point at St−1(2) is significantly less
than the slope at St−1(1). Now the SA updates on the two
linear lines result in a violation of the monotone property.

The fundamental reason for the out-of-order phenomenon
is because we are using multiple local approximations to
the distribution, not a global one. Although the local ap-
proximation is good enough for the neighborhood, it is not
a good global approximation. Obviously, such a situation
would not occur when the quantile estimates are very close
to the actual values. For stationary data where the biggest
adjustment occur at the beginning this means the out-of-
orderness maybe restricted to early iterations and thus rare.

However, this may not be the case when the the data is
non-stationary, and hence there is constant adjustment of
the quantile estimates.

Obviously, a quick fix to the monotonicity problem is the
following. Suppose that the SA estimates for the K quantiles
w.r.t. p = (p(1), . . . , p(K)) are St = (St(1), . . . , St(K)).
Then to obtain monotone estimates using St, for 1 ≤ i ≤ K,
we can set

S̃t(i) = max
j≤i

St(j), or S̃t(i) = min
j≥i

St(j).

It is easy to see that S̃t(i) is monotone using either ap-
proaches. However, a drawback of this method is when the
monotonicity fails for St (which is the problem that we are

trying to fix), then the new estimates S̃t will have ties which
does not seem desirable.

3. THE MONOTONESA ALGORITHM
Let {xt} be an incoming data stream with a distribution

Ft, where Ft(·) is strictly monotone, and has positive deriva-
tives on its domain. We are interested in an online algorithm
that is able to track the the quantiles of Ft w.r.t. a set of
K probabilities p = (p(1), p(2), . . . , p(K)). Denote that the
quantile estimates are St = (St(1), St(2), . . . , St(K)). We
require that the quantile estimates are strictly monotone,
i.e. St(1) < St(2) < . . . < St(K).

In this section, we present our monotoneSA algorithm for
quantile estimation. Our algorithm relies on an incremental
approximation F̂t, to the distributional function Ft, upon
new data arrivals. The quantile estimates are just the quan-
tiles of the approximation F̂t w.r.t. probabilities p. Our
quantile estimates are not out of order since the approxima-
tion is a globally increasing function constructed from local
approximations at each of the estimated quantiles.

3.1 The Algorithm
The algorithm goes as follows. Suppose that from some

initial samples, we obtain an initial estimate of the distri-
bution function, denoted by F̂0, From it, we obtain the
initial quantile estimates S0 w.r.t. probabilities {p(i), i =
1, . . . , K}, and their respective derivatives f0 = (f0(1), . . . ,

f0(K)) of F̂0 at the quantiles. Now at each time t, with the
new arrival xt, we shall update the distribution approxima-
tion by

F̂t(x) = (1 − wt)F̂t−1(x) + wtI(x ≥ xt), (8)

where wt is the weight associated with xt, and I(·) is the
indicator function. Evaluating the above at the estimated
quantile points at time t − 1, and using the fact that for
1 ≤ i ≤ K, F̂t−1(St−1(i)) ≈ p(i), we have

F̂t(St−1(i)) ≈ (1 − wt)p(i) + wtI(St−1(i) ≥ xt).

Denote the updated probability by pt(i), i.e.,

pt(i) = (1−wt)p(i)+wtI(St−1(i) ≥ xt), (probability update),
(9)

and let pt = (pt(1), pt(2), . . . , pt(K)). With the updated
quantile probabilities St−1 and derivative estimates ft−1,
we use linear interpolation to construct a globally increasing
function as an approximation of F̂t such that at in the neigh-
borhood of each St−1(i) it is a linear function with the slope
specified by ft−1(i), and these linear segments around the



quantile points are extended as much as possible under the
constraints of monotonicity of the interpolation function.

For each 1 ≤ i ≤ K − 1, denote

rightt(i) = (St−1(i) + ∆t(i), pt(i) + ft−1(i)∆t(i)), (10)

which is the point right to the quantile point (St−1(i), pt(i))
with a slope ft−1(i), and

leftt(i+1) = (St−1(i+1)−∆t(i), pt(i+1)−ft−1(i+1)∆t(i)),
(11)

which is the point left to the quantile point (St−1(i+1), pt(i+
1)) with a slope ft−1(i+1). Then we obtain a value ∆t(i) >
0 such that these two data points are non-decreasing in their
coordinates, i.e.,

St−1(i) + ∆t(i) ≤ St−1(i + 1) − ∆t(i),

and

pt(i) + ft−1(i)∆t(i) ≤ pt(i + 1) − ft−1(i + 1)∆t(i).

It is obvious that these indicate that

∆t(i) ≤ min

„

St−1(i + 1) − St−1(i)

2
,

pt(i + 1) − pt(i))

ft−1(i) + ft−1(i + 1)

«

.

(12)
In our algorithm, we choose ∆t(i) to the be maximum pos-
sible value on the right hand side.

Now the distribution approximation F̂t is obtained by
connecting the quantile point (St−1(1), pt(1)), the points
rightt(i), leftt(i), i = 1, . . . , K − 1, and the quantile point
(St−1(K), pt(K)), and finally extending the piece-wise func-
tion beyond the two boundary points so that it reaches the
extreme y-values 0 and 1. The new quantile estimates St is
just the quantiles that corresponds to the updated distribu-
tion function, i.e., for each i, 1 ≤ K,

F̂t(St(i)) = pi. (quantile update). (13)

To derive the derivative estimate ft at estimated quantiles
St(i), we use a similar approach as in [8, 2], i.e.,

ft(i) = (1 − wt)ft−1(i) + wt(2c)−1I(|xt − St(i)| ≤ c), (14)

where c > 0 is a tunable parameter representing the window
size around St(i) used to estimate the derivatives. In our
implementation, we use a value of c that is a fraction of the
estimated inter-quantile range, and the window size c is the
same for all quantiles. It may be advantageous to choose
window sizes that are not uniform across all quantiles, but
we have not explored that.

Our algorithm can be summarized Figure 2.
At the ith iteration, the line segment around the ith quan-

tile point, (St−1(i), pt(i)), determined by the neighborhood
points leftt(i) and rightt(i) is a line with slope 1/ft−1(i).
This is the same approximation that the simple SA algo-
rithm uses. (see Section 3.1.1). Therefore, if the solution

to the quantile updating equation, F̂t(St(i)) = pi (Equation
13) occurs in this line segment, then we would obtain the
same SA quantile estimates as in (1). Obviously, such an
situation occurs when the adjustment from p to pt upon the
new data arrival xt is sufficiently small.

As was done in [2], we can also update the quantile esti-
mation for every batch of M new data arrival. In this case,
the only change here is that we do not perform the steps
in 2-4 in the algorithm (Figure 2) until we have M data
arrivals.

monotoneSA Algorithm

0. Initialization:
Let the initial quantile estimate be S0 and
density estimate be f0

Let xt be an incoming data at time t ≥ 1

1. Probability update for quantile St−1:
pt(i) = (1 − wt)p(i) + wtI(St−1(i) ≥ xt), i = 1, . . . , K

2. Compute ∆t using (12)

3. Interpolate to construct an approximation to Ft, F̂t:
connecting the first quantile point (St−1(1), pt(1)),
the points rightt(i) and leftt(i), i = 1, . . . , K − 1
and the last quantile point (St−1(K), pt(K)).
Extending this piece-wise function beyond the two
boundary points to reach extreme y-values 0 and 1.

4. Update the quantile estimate St:

1 ≤ i ≤ K, F̂t(St(i)) = pi

5. Update the density estimate ft:

ft(i) = (1 − wt)ft−1(i) + wt(2c)−1I(|xt − St(i)| ≤ c)

Figure 2: Algorithm for incremental tracking of mul-

tiple quantiles

3.1.1 An Illustration
Figure 3 give an illustration of our algorithm for finding

two probability quantiles. The black smooth curve represent
the hypothetical smooth approximation of data distribution
Ft, and the red curve is our piece-wise linear approxima-
tion using the estimated quantile points (St−1(1), pt(1)) and
(St−1(2), pt(2)) and their respective derivatives. The two fig-
ures correspond to different scenarios for the value of ∆t(1)
defined in (12): the top figure illustrates the case when ∆t(1)
takes the second value in the equation, and bottom figure
illustrates the case when ∆t(1) takes the first value in the
equation.

3.2 The Choice of Weights
We consider two types of data: data with stationary dis-

tributions and data with non-stationary distributions. We
also consider two types of weights: wt = 1/t or constant
wt = w.

When Ft is stationary, it has been shown that the simple
stochastic approximation (SA) algorithm will lead to conver-
gence for both kinds of weights [5]. For 1/t, the convergence
is to the true quantile in probability 1, and for constant step
sizes, the convergence is in distribution to a random variable
with mean of the true quantile. We extend the convergence
result for our modified SA algorithm with 1/t weights.

Theorem 1. As t → ∞, our Algorithm (Figure 2) with
1/t weights will converge almost surely to true quantiles.
Furthermore, results in Lemma 2 hold true for our quan-
tile estimates.

The convergence can be intuitively understood as follows.
At each iteration, our algorithm will result in a quantile up-
date similar to that of (1), but now with a more complicated
{at} sequence for each quantile. In fact it can be shown
that our {at} sequence is asymptotically the same that of



Figure 3: Illustrations of the algorithm for two quan-

tile points with probability p(1) and p(2). The two

figures correspond to different cases of ∆t(1) values

in 12.

the simple SA algorithm. Therefore, with probability 1, our
estimates will be the same as the conventional ones.

For fixed weights, we do not have a formal proof but it
has been observed empirically that the same weak conver-
gence result holds as in the case of the simple SA algorithm
(Lemma 4). For non-stationary data, the diminishing weight
1/t is no longer valid. In this case, we have to choose a fixed
weight to be able to track the quantiles over time.

3.3 Further Discussions
We have several comments here. First, our quantile up-

dating scheme is based on an incremental distribution ap-
proximation by interpolating at the updated quantile points.
Local to the quantile points, our approximation is the same
linear function as in the case of straightforward SA (see Sec-
tion 3.1.1). Yet globally, it is an increasing function. This
interpolation scheme is designed to be simple so that the
updated quantiles can be easily computed, and at the same
time lead to good approximations as in the case of straight-
forward SA (Theorem 1). Our approach here opens up the
possibility of using other more elaborate interpolation (or
approximation) schemes given the local approximations at
the quantiles. For extreme tails, we can also use an asymp-
totic model to overcome some of the instabilities of SA (due
to a very small derivative, see Lemma 2). However, we
should be careful in choosing a such interpolation or ap-
proximation model since it may lead to biases in estimates.
For example, our experimental studies have shown that if we
use the linear interpolation by connecting the quantile points
directly (without using the local derivatives), the quantile
estimates converges for stationary data but with a bias.

Second, on computational cost. Since the distribution ap-
proximation is piecewise linear, it is trivial to find the quan-
tile points of the function for updating (see Equation 13).
All we need to do is to first find out which line segment each
p(i) falls into, and then solve p(i) for that line segment.

Third, the derivative ft is a vector of estimated derivatives
(density). It is not crucial to obtain exact values of the
derivatives. In fact, if we replace ft by a vector of fixed
positive constant, that the quantile estimates derived from
the algorithm still give good approximations. However, it is
more efficient to use a value of ft that is close to the actual
derivatives of the distribution function since the quantile
estimates will stabilize faster around the true value.

Last, we have assumed that Ft(·) is a strictly increasing
continuous function. For a discrete distribution, we can not
apply the algorithm unmodified since the derivative estimate
may become infinite. However, a simple fix is to add a small
random noise to the data, which can be chosen in a data de-
pendent fashion. Obviously, by doing so, we may introduce
a small bias for the estimated quantiles.

4. EXPERIMENTAL RESULTS
In this section, we demonstrate our proposed algorithm

using data collected from one 3G wireless network of a US
national-wide provider using a proprietary measurement prod-
uct. For privacy consideration, the data shown here are san-
itized by a multiplication with a unspecified constant.

The data are collected for wireless network security pur-
poses, and many reflect different kinds of faults (such as bat-
tery attacks, worm outbreaks, port scans, number of flooded
mobiles etc). There are 18 event counts over a period of a
week under our study, and the counts are collected every
minute. The behavior of these event counts varies: some
show a clear daily trend but some show a subtle trend, and
some have a large variability but others vary little.

Since these are network counts, and they are discrete. To
break the ties, we add a small random noise to the data. The
random noise is generated from a uniform distribution on
the interval [0,1]. We compare three kinds of quantile esti-
mates: SimpleSA (simple stochastic approximation method
that treats each quantile separately), MonotoneSA (Algo-
rithm in Figure 2), and movingQuantile (empirical quantile
estimates using data in the left neighborhood). The prob-
abilities under consideration is p = 0.5, 0.7, 0.9, 0.95, 0.99.
Since the data is non-stationary, we choose a fixed weight
w = 0.05 for both SimpleSA and MonotoneSA, and use a
window size of 100 for the moving quantiles. The window
size is chosen to be compatible with the weight 0.05 given to
the data1; it is probably also the maximum possible value
since we are also interested in the 99% quantile.

On average, the out-of-orderness of SimpleSA occurs for
5% of the time. However, there is a wide variation between
different count series. For example, for two time series, this
occurs more than 20% of the time, but for many others, it
occurs about 1% of time. Close inspection shows that most
of the out-of-orderness occur at the tails for p = 0.95 and
p = 0.99.

Figure 4 and 5 shows the result for two probability quan-
tiles 0.5 and 0.95, for two of these network event counts:
number of observed P2P mobiles (subscribers who run P2P
applications), and number of high signaling subscribers (sub-
scribers who generate high number of control messages such
as call setup). It is interesting to see that for both datasets,
the two estimates are almost indistinguishable.

1The equivalent window size for an exponentially weighted
moving average scheme with weights w is 2/w.
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5. CONCLUSION AND FUTURE WORK
Tracking quantiles for evolving continuous streams is very

important for real-time monitoring of cellular networks. We
present a stochastic approximation technique that enables
accurate tracking of multiple quantiles at the same time.
Our space requirement is constant. Our technique enables
incremental updates. This avoids the delay and computa-
tional overhead of periodic computation. Our algorithm also
maintains the important monotone property.

We evaluate our algorithm using real cellular provider net-
work data. Our evaluation shows that our algorithm con-
verges very fast and can accurately track changing quantiles
over time.

For future work, we are interested in extending our algo-
rithm to the distributed setting.
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