
Tracking Long Duration Flows in Network Traffic
Aiyou Chen∗, Yu Jin†, Jin Cao∗, Li Erran Li∗

∗ Bell Laboratories, Alcatel-Lucent † Computer Science Dept., University of Minnesota

Abstract—We propose the tracking of long duration flows as
a new network measurement primitive. Long-duration flows are
characterized by their long lived nature in time, and may not
have high traffic volumes. We propose an efficient data streaming
algorithm to effectively track long duration flows. Our basic
technique is to maintain only two Bloom filters at any given
time. In each time duration, only old flows that appear in the
current time duration get copied to the current Bloom filter.
Our basic algorithm is further enhanced by sampling. Using real
network traces, we show that our tracking algorithm is very
accurate with low false positive and false negative probabilities.
Using multi-faceted analysis, we show that more than 50% of
hosts participating in long duration flows (duration no less than
30 minutes) are blacklisted by various public sources.

I. INTRODUCTION

Network administrators need to monitor their network traffic
timely and effectively to respond to network anomalies and
security problems or help with traffic engineering decisions.
Due to the sheer volume of network traffic, they increasingly
rely on sophisticated data streaming algorithms to characterize
their network traffic or extract a subset of flows of interest,
where a flow is a sequence of packets that share the same flow
identifier (e.g. source/destination IPs, source/destination ports
and protocol). There have been many studies on summary
statistics such as flow distribution [5], packet feature (IP
addresses and ports) distribution [6], and entropy (e.g. entropy
of the packet distribution over various ports) [6], [7], [1].

Prior work on extracting a subset of flows has focused on
tracking heavy hitters and super-spreaders. Heavy hitters are
top ranked hosts by traffic volume [3]. A super-spreader is
defined as the host that communicates with a large number
of peers (at least k) [9]. Little attention has been paid on
long lived flows. A flow is long-lived if it persists for a long
period of time, say 30 minutes. From the interaction with some
operators, it seems that the conventional wisdom is that long
duration flows are not interesting as they mostly belong to p2p
traffic or video traffic of normal Internet hosts. However, as
we show in our analysis, this is not the case. First of all, the
proportion of flows from chat applications increases as flow
duration increases. In the traces we analyzed, long duration
flows from chat applications can be as high as 48%. Second,
more than half of all hosts participating in long duration flows
get blacklisted by real-time black lists. We have identified most
of the blacklisted hosts participate in chat applications (port
5190 for AOL, 1863 for MSN, 5050 for Yahoo and 6667 for
IRC). In one trace where the timing coincides with Storm
worm outbreak, we have also found that 10% of hosts that
generated long duration flows belong to Storm worm botnet.

We propose the use of long-duration flows as a network

monitoring primitive. It is useful for both anomaly detection
and traffic engineering. On the anomaly detection side, long
duration flows which are low in traffic volume have a high
probability of being participating in botnet activities. This has
been confirmed by our analysis on real network traces. Thus,
new appearance of these long duration flows can help quickly
identify botnet traffic, and measures taken can prevent botnet
attack before it is launched. On the traffic engineering side,
long-lived flows are significant in traffic volume, e.g., in one
university trace we analyzed, 23% (bytes) of the traffic are
contributed by long-duration flows, and these flows may not
fall into the category of heavy hitters. Information on these
flows can aid in traffic engineering decisions.

In this paper, we are interested in tracking long-lived flows
in network traffic. Given a duration threshold d, say 30
minutes, what flows last longer than d? Existing data streaming
techniques work on a per-epoch basis. They do not apply to
this problem which tracks flow for many epochs. A naive
approach is to directly track all the flows, i.e., by maintaining
the start time and last time of a packet arrival for each flow in
a hash table, and periodically removing flows with duration
less than d from the hash table, when the corresponding
FIN packets are received or the flows are inactive for some
time. Here, we propose a simple yet effective technique for
identifying long-duration flows. Our basic idea is to only
maintain two Bloom filters (B1 and B2) and one small hash
table at any given time. More precisely, at the starting time
interval t0, we use Bloom filter B1 to record all the flows that
appear during t0. At the next time interval t1, we only add
new flows or flows that appear both in B1 and t1 to B2. We
then iterate the process by switching the roles of B1 and B2

on the subsequent time intervals. When a flow is identified
to be longer than d, we add it to the hash table. Our basic
algorithm is further enhanced by sampling techniques. We
show that our approach can reduce the memory requirement
of the naive algorithm by orders of magnitude. See complete
analysis of false positives and false negatives in our full paper
at http://ect.bell-labs.com/who/aychen/ldfmain.pdf.

The paper’s structure is as follows. We briefly discuss
related work in Section II. In Section III, we propose our data
streaming algorithm. Performance evaluation and analysis are
presented in Section IV and Section V respectively.

II. RELATED WORK

Our work falls in the broad scope of data streaming al-
gorithms for network traffic analysis. For real time analysis,
streaming algorithms must process the data in one pass as
storing the data would entail a large delay. Most of existing



algorithms are not concerned about flow durations. One no-
table exception is the work of Whitehead on flow duration
tracking [10]. Their problem is on tracking all flow durations.
They use a set of Bloom filters, each of which represents
flows with duration falling in a certain range. An aging
process allows Bloom filters to track longer duration flows.
Our algorithm is much more efficient and exploits the fact
that we are only interested in long-lived flows.

III. DATA STREAMING ALGORITHM FOR TRACKING LONG
DURATION FLOWS

Let ∆ be the predefined time-out value and d∆ be a
threshold value that defines a long duration flow (LDF), where
d is assumed to be an integer. The straightforward solution
mentioned in the introduction needs to track all flows and
thus is not an efficient way due to large memory requirement
and the fact that typically a majority of flows are not LDFs.

In this section, we develop a simple and memory-efficient
algorithm for tracking LDFs. The basic idea is to make use
of two counting Bloom filters to ‘store‘ the candidate set
of LDFs that are active in the past and current unit time
intervals, respectively. The unit time interval is chosen to be
the timeout value ∆, so that past candidate flows that do not
have packets in the current time interval will no longer be
stored in the current Bloom filter. To reduce the false positive
rate of identified LDFs due to collisions in Bloom filters, we
also use a hash table to ’store’ the already identified LDFs so
that new flows that collide with LDFs will not be mistaken as
LDFs. This basic scheme can be enhanced by using a sampling
procedure to filter out a significant proportion of short duration
flows at the expense of affordable false negatives. Our online
flow duration estimation is similar to the Count-Min sketch
devised by [2] for heavy hitter detection (minimum value of
the hashed entries), but our (Bloom Filter) update uses the
maximum of its current hash entry and an estimate from past,
which is different from Count-Min sketch and standard CBF.

A. Basic Algorithm for Tracking LDFs
Let B1, B2 be two CBF each with m counters that are used

to store the durations (in units of ∆) of candidate LDFs of
the past and current interval respectively. Let (hi1, · · · , hiK)
denote K hash functions associated with Bi, i = 1, 2, where
each hash function maps a flow ID to one of the m counter
locations uniformly. Let f denote a flow ID. The duration
estimate of f for each Bi(f), i = 1, 2, is the same as that for
a Count-Min sketch:

Bi(f) = min
1≤k≤K

(Bi[hik(f)]) (duration estimate) (1)

where Bi[h] is the counter-value of Bi at location h1. To
make the counting Bloom filters B1, B2 amenable for duration
counting, during each time interval, B2 is updated from B1 in
the following manner. First, initialize B2 with zeroes. Upon

1For simplicity, we slightly abused the notations, where Bi(f) denotes
duration estimate of flow f , and Bi[h] denotes the counter value at location
h.

Fig. 1. Diagram illustrating the basic flow tracking algorithm with two
counting Bloom Filters.

the arrival of a packet with flow ID f , if B2(f) > B1(f),
then this implies that f already exists in B2 and thus we skip
to next packet. If not, then we update

B2[h2k(f)]← max(B1(f) + 1, B2[h2k(f)]) (update). (2)

The intuition for using the maximum in the above is that if
B2[h2k] exceeds B1(f)+1, then the counter value must reflect
the duration of a flow other than f .

Figure 1 illustrates the basic algorithm with B1 and B2,
using K = 2 hash functions and two flows f1 and f2,
where f1 terminates at the current interval, but f2 spans
both previous and current intervals. At the previous interval,
duration estimates for f1, f2 are 3 and 1 respectively. Since
no packets from f1 appear in the current interval, f1 is not
recorded in B2. However, the duration estimate of f2 is
incremented to 2 by updating corresponding hash entries in
B2 since at least one of its packets appeared in the interval.
Obviously the entry value 25 in B2 is contributed by a flow
other than f2.

To reduce the false positive rate of the identified LDFs
due to short flows colliding with long duration flows, we
use a a hash table T to store the identified long duration
flows (i.e., those whose duration estimates exceed d∆), that
are active in the current interval. The following describes the
implementation of the basic algorithm using both B1, B2 and
hash table T on a case by case basis.

Upon the arrival of a new packet with flow ID f in the
time interval t, suppose that we first obtain B1(f) and check
whether f ∈ B1. Then we obtain B2(f) and check whether
f ∈ B2. Bi(f) = 0 iff f /∈ Bi. If B2(f) > B1(f), f already
exists in B2 and thus we skip to next packet. Otherwise,
B2(f) ≤ B1(f), i.e. f has not been updated in B2, then there
are four possibilities:

(C1) If B1(f) = 0, f is a new flow. Insert it into B2 and
update B2[h2k(f)] by max(1, B2[h2k(f)]) for each k.

(C2) If 0 < B1(f) < d − 1, f may already exist (collision
may occur) and we update B2[h2k(f)] by max(B1(f) +
1, B2[h2k(f)]) for each k.



(C3) If B1(f) = d−1, f has duration d (collision may occur),
update B2[h2k(f)] by max(B1(f) + 1, B2[h2k(f)]) for
each k, and insert f into T with value d;

(C4) If B1(f) ≥ d, f may be an existing LDF (collision may
occur), and so we check whether f ∈ T . If yes, insert f
into T with value B1(f) + 1 (existing LDF); Otherwise,
skip to next packet (f may not be a new flow, in which
case, its previous information is lost).

By the end of the time interval, replace B1 by B2, reset
B2 with 0s, and eliminate any flows in T that do not have
packets in the interval. If the next packet arrives at or after
t + 2 intervals, both Bloom filters are reset to 0s.
B. Enhancements using Sampling

The majority of network flows have very short duration. For
example, web transactions are typically short, most less than
one minute. In addition, one packet flows due to for example
scanning also has a significant presence in network traffic.
Since the counting Bloom filters B1 and B2 have to record all
active flows, these flows waste lots of resources. Therefore, the
basic LDF tracking algorithm outlined above can be further
enhanced by using a flow sampling procedure described below
to filter out a significant proportion of the short duration flows.

Let r be a pre-specified sample rate. Let t be the index of
the time interval. For each flow f , we sample the pair (f, t)
independently with the rate r until f is picked. Once f is
picked, the flow ID will be recorded by its current CBF and
all later packets will be picked by the counter Bloom Filters
B1 and B2. It is easy to see that for a flow with a very short
duration, the chance that it will be picked is small, and hence
we can save space without recording these flows in B1 or
B2. On the other hand, if the sampling rate is high enough,
LDF will almost always be picked. The following extends
the algorithm description (C1) under the proposed sampling
scheme.

(C1’) If B1(f) = 0, f is a new flow and with probability r it
is inserted into B2 and update its buckets B2[h2k(f)] by
max(1, B2[h2k(f)]) for k = 1, · · · , K.

An outline of the algorithm with sampling is given in Figure
2, where the time unit is the predefined timeout value ∆.

Notice that the memory requirement of our algorithm can
be further reduced by applying count truncation techniques
such as Counter Braids [8], or making use of FIN information.
We note that sampling may cause under-estimation of flow
durations and thus results in false negatives for the identifica-
tion of LDFs. Figure 3 (a,b) shows a simulation regarding the
tradeoff between false positives and false negatives with dif-
ferent sampling rates where flow duration follows a geometric
distribution.

IV. PERFORMANCE EVALUATION

In this section we evaluate the performance of the proposed
LDF tracking algorithm with real network traces. We report
the false positive and false negative errors with given memory
requirements. The first trace is based on a one-day packet trace
of a large corporation network, and the second one is based
on a one-hour packet trace of a large university network.

1. Initialize an empty hash table T , two counting Bloom filters
B1, B2 with 0s, t0 = 0, and threshold d (assume ∆ = 1)

2. For each incoming packet with flow ID f and arrival time t
3. Switch (t − t0),
4. Case t − t0 ≥ 2:
5. reset B1, B2 to 0s and T to be empty
6. Case 1 ≤ t − t0 < 2:
7. update B1 by B2 and reset B2 to 0s, and

remove time-outed LDFs from T
9. Case 0 ≤ t − t0 < 1:
10. look up v1 = B1(f), v2 = B2(f)

(set 0 if no match)
11. If v2 ≤ v1,
12. Switch (v1),
13. Case v1 = 0: # C1’ #
14. insert f into B2 with sampling rate r
15. Case 0 < v1 < d − 1: # C2 #
16. update B2[f ] by (2), and

OUTPUT f, T [f ]
18. Case v1 = d − 1: # C3 #
19. update B2[f ] by (2), and

insert T [f ] = d
20. Case v1 ≥ d: # C4 #
21. If f ∈ T ,
22. update T [f ], B2[f ] by (2)
23. Endif
24. Endswitch
25. Endif
26. Endswitch
27. update t0 = t0 + bt − t0c
28. Endfor
29. OUTPUT T at the end of a measurement epoch.

Fig. 2. Tracking LDF

A. A corporate network

The corporate trace covers 12 hours on a weekday in
January of 2007. There are about 31.5 million packets and
0.61 million flows, most of which are one-directional flows.
Figure 4 (b) shows the distribution of flow durations across
the 12 hours, and Figure 4 (a) shows the distribution of active
flow durations in a one-minute time interval randomly picked
from the last 8 hours. The number of active flows in each one-
minute interval varies from 800 to 1500. We apply m = 2, 048
buckets and K = 3 hash functions to each CBF. Without
sampling we obtain 103 LDFs, where we have only 5 false
positives and no false negatives. Here a flow with duration
greater or equal to d = 30 minutes is called a LDF.

We also calculate the number of false positives and number
of active LDF flows for each time interval, see Figure 3 (c),
which shows the time series of both sequences (the first 30
minutes are not included since there are no false positives).
The number of active LDFs falls into the range [30,45], while
the number of false positives is mostly 0, except occasionally
1 and rarely beyond 1.

We then apply the sampling algorithm with r = 0.5. With
m = 2, 048 and K = 3, we obtain only 4 false positives
and 1 false negative. Our investigation finds that the 1 false
negative flow in fact has duration 31 minutes but estimated to
be 29 minutes due to delay caused by sampling. When we set



10 15 20 25

−1
5

−1
0

−5

Duration of a non−LDF flow

lo
g2

(F
al

se
 p

os
itiv

e 
pr

ob
ab

ilit
y) r= 0.4

r= 0.6
r= 0.8
r= 1

30 40 50 60 70 80 90 100

−3
5

−2
5

−1
5

−5
0

Duration of a non−LDF flow

lo
g2

(F
al

se
 n

eg
at

ive
 p

ro
ba

bi
lity

)

r= 0.4
r= 0.6
r= 0.8
r= 1

Time (minutes)

N
um

be
r o

f L
D

Fs
/F

al
se

 p
os

iti
ve

s

0 100 200 300 400 500 600 700

0
10

20
30

40
50

Time (minutes)

Nu
m

be
r o

f L
DF

s/
Fa

lse
 p

os
itiv

es

0 5 10 15 20 25 30

0
1
3
7

15
31
63

127
255
511

1023
2047
4095
8191

16383
32767

(a) false positive probability (b) false negative probability (c) false positives (corporate) (d) false positives (university)
Fig. 3. (a,b): How sampling affects false positive and false negative probabilities; (c,d): Time series of the number of active long duration flows (in ’+’ with
the dotted line) and the number of false positives (in circles with the solid line) for a large corporate network with no false negatives but 3 false positives
over the whole trace time period with m = 2048 and K = 3 (c), and for a large university network with 36 false positives and only 1 false negative over
the whole trace time period with m = 262, 144 and K = 3 (d) (no sampling)

Active flow duration (log2 scale)

Fr
eq

ue
nc

y 
(lo

g2
)

1 3 7 15 31 63 127 255 511

1

3

7

15

31

63

127

255

511

1023

Flow duration (log2 scale)

Fr
eq

ue
nc

y 
(lo

g2
)

1 3 7 15 31 63 127 255 511

1
3
7

15
31
63

127
255
511

1023
2047
4095
8191

16383
32767
65535

131071
262143
524287

Active flow duration (log2 scale)

Fr
eq

ue
nc

y 
(lo

g2
)

1 3 7 15 31

63

127

255

511

1023

2047

4095

8191

16383

Flow duration (log2 scale)

Fr
eq

ue
nc

y 
(lo

g2
)

1 3 7 15 31 63

63
127
255
511

1023
2047
4095
8191

16383
32767
65535

131071
262143
524287

1048575

(a) Active flows (corporate) (b) Flow durations (corporate) (c) Active flows (university) (d) Flow durations (university)
Fig. 4. Flow duration distributions of a corporate network with a one-day packet trace (a,b) and a university network with a one-hour packet trace (c,d)

d = 60 minutes, there is no LDF whose duration is around d.
Applying sampling rate r = 0.5 does not introduce any false
negatives but decreases the number of false positives from 4
to 3. In this case, we only have 69 flows with duration greater
or equal to 60 minutes. Note that the memory requirement in
the above is only about 2.5K bytes.

B. A university network
The university trace covers about one hour on a weekday

in Sept 2008. There are about 314.1 million packets and 1.37
million flows, most of which are one-directional flows. Figure
4 (d) shows the distribution of flow durations over the whole
trace, and Figure 4 (c) shows the distribution of active flow
durations in a one-minute time interval randomly picked from
the second half hour. The number of active flows in each one-
minute interval varies from 30,000 to 55,000. The active flow
duration distribution shows that there are many flows with
durations around d = 30 and thus sampling will introduce a
lot of errors from boundary effects. We apply m = 262, 144
buckets and K = 3 hash functions to each CBF. Without
sampling we obtain only 36 false positives and only 1 false
negatives. (Again a flow with duration greater or equal to d =
30 minutes is called a LDF.) Note that the memory requirement
is only about 330K bytes.

We also calculate the number of false positives and number
of active LDF flows for each time interval, see Figure 3 (d),
which shows the time series of both sequences for the second
half hour. The number of active LDFs falls into the range
[7900, 8190], while the number of false positives is mostly
below 7. Note that the sum of false positives is much greater

than 36, this is because that a flow that has duration less than
d and becomes a false positive will continue to be a false
positive until it ends. Our investigation in details found that
99% of such false positives have durations either 28 or 29
minutes and part of the false positive flows with duration 29
minutes are caused by rounding errors since all packet arrival
times are discretized and rounded into minutes.

V. ANALYZING THE CAUSATION OF LDFS

In this section, we investigate the causation of LDFs from
the associated applications and participants. We conduct exper-
iments on real Internet traffic traces from two heterogeneous
sources: a large university campus network and one major
ISP. Traces from the university include two day-long data
sets, u-tr1 and u-tr2. Both traces consist of unsampled packets
captured at the border router of a large campus network. Each
data set contains above 300 million flows2. Close examination
of these traces reveals a significant amount of p2p traffic
from campus hosts and scanning traffic from remote hosts.
In comparison, ISP traces are provided by one of the major
ISPs. Three ISP traces (isp-tr1, isp-tr2 and isp-tr3) consist of
packet sampled traffic data from three contiguous days. There
are around 80 million flows in each ISP trace. The ISP traces
contain much more variety of traffic types, such as traffic
related to large commercial websites, or global malicious
activities like botnets, worms and DDoS attacks, etc. All these
traces are different from (in fact much larger than) those used
for performance evaluation in Section V.

2A flow is an aggregation of bidirectional packets with the same 5-tuple.



TABLE I
PERCENTAGE AND NUMBER OF LDFS

u-tr1 u-tr2 isp-tr1 isp-tr2 isp-tr3
#. LDFs 20,462 18,619 820 915 854

Flow pct. (%) 0.0611 0.0739 0.0011 0.0010 0.0011
Byte pct. (%) 23.6 24.6 0.41 0.44 0.45

TABLE II
PERCENTAGE AND NUMBER OF BLACKLISTED (RBL) HOSTS

u-tr1 u-tr2 isp-tr1 isp-tr2 isp-tr3
#. RBL hosts 8,650 9,091 862 956 801
Percentage(%) 54.46 61.44 71.1 72.8 70.1

A. Characteristics of LDFs
We extract TCP flows longer than 30 minutes from all 5

data sets. From the university traces, we identify 15K out of
50K hosts participating in LDFs everyday, while in the ISP
traces, around 1.3K out of 4 million hosts are associated with
LDFs per day. Such difference is likely due to the packet
sampling strategy for collecting the ISP traces, which leads
to missing LDFs (note the probability that the packets from
a LDF are always captured in every 5-minute time interval
decreases exponentially as the flow duration increases)3.

We observe in Table I that the LDFs only account for a
extremely small proportion of flows in each data set e.g.,
around 20K LDFs everyday in the university traces and around
700 LDFs per day in the ISP traces. Despite the small number
of occurrence, these LDFs account for a relatively large
proportion of bytes in the traffic. For example, LDFs account
for around 0.4% bytes in the ISP traces and above 23% bytes
in the university traces, respectively.

In addition to the large byte proportion, these LDFs often in-
dicate interesting persistent network activities. We investigate
the applications that cause LDFs using the ISP traces, where
we have the ground truth in terms of the application associated
with each flow. Such information is obtained by matching the
application header against predefined expert rules. In the ISP
traces, p2p traffic and video traffic account for the majority
of flows with duration less than 5 hours (90.12% in total),
while the proportion of such traffic drops quickly when the
flow duration becomes longer. For example, only 56.83% of
the flows with duration from 6 hours to 12 hours are p2p or
video flows. Instead, the proportion of the chat flows increases
to 24.46%. For the flows with duration more than 12 hours,
the proportion of chat flows further increase to 47.76%. The
p2p and video traffic totally account for 82.9% of the total
traffic volume. Similar observation is made for the university
traces using port numbers, which we omit due to space limit.

B. Analysis of LDF participants
We next study the participants of LDFs. We utilize infor-

mation from two independent sources, the real-time black list
(RBL) and a list of bots from the Storm worm botnet.
Querying RBLs. RBLs are publicly available lists of ad-
dresses associated with reported spamming activities. We build

3We argue that, due to the low computational cost, our method can be
directly applied to high speed links to identify LDFs from unsampled packets.

a RBL query tool to check against 147 public RBLs for the
participants of LDFs. We label a host as suspicious if it is listed
in at least one of the RBLs. The percentages of blacklisted
hosts are illustrated in Table II. The results are very surprising.
More than half of all the LDF participants are blacklisted!
Most such blacklisted LDF participants are involved in chat
applications, where the port 5190 (AOL), 1863 (MSN), 5050
(Yahoo) and IRC (6667) rank the top. It is very likely that these
hosts are members of specific botnets which utilize existing
chat applications as communication channels to keep persistent
connections with the botmaster.
Matching Storm worm botnet list. The ISP traffic traces are
captured in 2007, when the Storm worm botnet first becomes
publicized as a giant botnet consisting millions of bots and
operating in a way as a p2p network. We use a list of bot
addresses which is obtained by collecting and decoding the
p2p queries in the botnet (similar as the approach in [4])
to match the LDF participants. Interestingly, around 10% out
of all the 1.2K LDF participants belong to the Storm worm
botnet. Admittedly, Storm worm bots may also participate
in normal p2p and video streaming activities. However, the
average packet size of the LDFs associated with the Storm
worm bots is below 300. This indicates these LDFs are mainly
used for persistently transferring small amount of data. We
suspect these LDFs are due to continuous queries from storm
worm bots for the supernode addresses. In addition, unlike
normal p2p activities, there is no dominant port in the flows
associated with storm worm bots. This fact coincides with
nature of Storm worm botnet, where bots communicate with
each other through a p2p network, and random port is chosen
for communication between peers to avoid detection.

REFERENCES

[1] A. Chakrabarti, G. Cormode, and A. McGregor. A near-optimal
algorithm for computing the entropy of a stream. In SODA, 2007.

[2] G. Cormode and S. Muthukrishnan. What’s new: Finding significant
differences in network data streams. In Proc. IEEE Infocom, pages
1534–1545, 2004.

[3] C. Estan and G. Varghese. New directions in traffic measurement and
accounting. In Proc. ACM SIGCOMM Internet Measurement Workshop,
Nov. 2001.

[4] C. Kanich, K. Levchenko, B. Enright, G. M. Voelker, and S. Savage.
The heisenbot uncertainty problem: challenges in separating bots from
chaff. In LEET’08, 2008.

[5] A. Kumar, M. Sung, J. J. Xu, and J. Wang. Data streaming algorithms
for efficient and accurate estimation of flow size distribution. In ACM
SIGMETRICS/Performance, pages 177–188, 2004.

[6] A. Lakhina, M. Crovella, and C. Diot. Mining anomalies using traffic
feature distributions. SIGCOMM Comput. Commun. Rev., 35(4):217–
228, 2005.

[7] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang. Data streaming
algorithms for estimating entropy of network traffic. ACM SIGMETRICS
Perform. Eval. Rev., 34(1):145–156, 2006.

[8] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani.
Counter braids: a novel counter architecture for per-flow measurement.
In SIGMETRICS, pages 121–132, 2008.

[9] S. Venkataraman, D. Song, P. Gibbons, and A. Blum. New streaming
algorithms for superspreader detection. In Proc. of Network and
Distributed Systems Security Symposium, Feb. 2005.

[10] B. Whitehead. Binned duration flow tracking and symmetric connection
detection. Master Thesis, Carleton University, Canada, Jan 2007.


