
iPack: in-Network Packet Mixing for High
Throughput Wireless Mesh Networks

Richard Alimi∗, Li (Erran) Li†, Ramachandran Ramjee‡, Harish Viswanathan† and Yang Richard Yang∗

†Bell Labs, Alcatel-Lucent, Murray Hill, NJ, USA
‡Microsoft Research India, India

∗Yale University, New Haven, CT, USA

Abstract—A major barrier for the adoption of wireless mesh
networks is severe limits on throughput. Many in-network packet
mixing techniques at the network layer [1], [2], [3] as well as
the physical layer [4], [5], [6] have been shown to substantially
improve throughput. However, the optimal mixing algorithm that
maximizes throughput is still unknown. In this paper, we propose
iPack, an algorithm for in-network generation of composite
packets that integrates coding at two different layers of the
protocol stack: XOR-based network coding and physical layer
superposition coding. Using extensive simulations, we find that the
throughput gain of the joint coding iPack algorithm is 30% more
than the better performer of network coding and superposition
coding in a wide range of scenarios, and automatically takes
advantage of the best available coding opportunities. In a typical
wireless mesh network when more traffic is between the clients
and access points, the average throughput improvement of iPack,
our joint optimization scheduler, can be 324%, while there can
be little gain (less than 10%) if network coding alone is used. We
also validate our results by implementing iPack on a small-scale
testbed based on GNU Radio.

I. INTRODUCTION

Wireless mesh networks are becoming a major paradigm for
constructing user access networks that provide community or
city-wide Internet connectivity [7]. However, recent theoretical
analysis (e.g., [8]) and experimental measurements (e.g., [9],
[10]) have shown that the current wireless mesh networks are
severely limited in throughput and do not scale well as they
become large and dense.

Information theoretical analysis has shown that the through-
put of wireless networks can be substantially higher, if the
network mixes packets for multiple flows (e.g., [1], [2], [3]). A
large body of previous work focuses on network-layer coding,
both on theoretical bounds (e.g., [11], [12], [13]), central-
ized algorithms (e.g., [14], [15]) and distributed algorithms
that require “non-local” information (e.g., [16]). In-network
packet mixing can also be performed at the physical layer
using techniques such as superposition coding [17], [4] or
physical/analog network coding [6], [5]. Superposition coding
allows simultaneous transmission of different packets to multi-
ple receivers by a single sender while physical/analog network
coding exploits simultaneous transmission by multiple senders
to deliver different packets to different receivers.

Given that the optimal in-network mixing algorithm that
maximizes throughput is still unknown, it is not clear which
set of in-network mixing techniques to use or how to combine
different mixing techniques such as the physical layer and
network layer coding techniques. The objective of this paper is
to propose novel, simple, distributed, and easily implementable
techniques for general in-network packet mixing that combines

physical and network layer coding, coding schemes at two
different layers of the protocol stack. The basic physical layer
in-network packet mixing technique we consider is super-
position coding [4] because of its implementation simplicity
as compared to the difficult synchronization issues involved
in multiple sender approaches such as physical/analog net-
work coding [6], [5]. We integrate superposition coding with
another simple-to-implement technique, XOR-based network
coding [18], combining information from multiple flows into
a composite packet or c-packet for short. The constructed
c-packets automatically take advantage of the best available
coding opportunities.

In this paper, we make the following contributions. We
first formulate the c-packet mixing problem and show that the
maximum packet mixing problem is NP-hard. Since previous
work on network coding focuses only on single-rate wireless
links, we propose a simple extension that allows XOR-based
network coding to exploit multi-rate wireless links. We then
propose two algorithms, iGreedy and iPack, that combine
coding opportunities using superposition and network coding:
iGreedy simply applies network and superposition coding
in sequence while iPack tightly integrates network and su-
perposition coding. Based on extensive simulations, we find
that that iPack outperforms iGreedy and achieves substantial
throughput gains in multi-rate wireless mesh networks. In a
wide range of scenarios, the throughput gain of iPack is
more than 30% of the better performer of network coding and
superposition coding. There are scenarios where the gains of
our solutions are quite significant. For example, in a typical
wireless mesh network, when more than half of the traffic is
between the clients and an access point, the average throughput
gain ratio of iPack is 4.24, which is 324% higher than without
c-packet mixing. In contrast, there is little gain (1.05) using
network coding alone. Finally, we validate our solution by
implementing iPack on a small-scale testbed based on GNU
Radio. We find that the experimental results from the testbed
are consistent with our simulations.

The rest of the paper is organized as follows. In Section II,
we review related work and introduce background on basic
techniques to construct c-packets. In Section III, we give a
motivating example before we present in Section IV the c-
packet mixing problem and analyze its complexity. Our simple,
distributed iPack algorithm is presented in Section V. In
Section VI, using extensive evaluations, we demonstrate the
throughput gains of our protocol. Our conclusions and future
work are in Section VII.

II. BACKGROUND AND RELATED WORK

The wireless networking community has conducted extensive
research on improving wireless mesh network throughput;
see [7] for a survey. However, such previous studies focus on
the traditional forwarding architecture.

Several new techniques are proposed to increase mesh net-
work throughput. One set of approaches focus on the receiver
and relax the constraint that the received signal comes from a
single transmitter. Instead, multiple distinct nodes may transmit
simultaneously to a node, and the mixed signal is processed
and/or further relayed to extract more information. Examples
of such approaches include relay channels [19], [20], [21],
physical network coding [6], analog network coding [5], and
uplink superposition coding [20]. One potential issue with
receiver-based approaches is that there can be substantial re-
ceiver complexity and synchronization requirements.

The other type of approach mixes signals and/or packets at
the transmitter, and the receiver listens to a single transmitter.
This approach is the focus of this paper. We leave the more
general framework combining both types of approaches as
future work.

There are two basic primitives for in-network packet mixing:
network coding and superposition coding. Below we review the
two primitives.

A. Network Coding for Packet Mixing

The network layer technique for in-network packet mixing
is network coding. Due to its effectiveness, network coding
has received significant attention in the research community
lately. The pioneering work on network coding is by Ahlswede
et al. [22], who showed that having the routers mix information
in different messages allows the communication to achieve mul-
ticast capacity. These performance benefits have attracted many
studies (e.g., [23], [24], [25], [12], [13], [26], [27]). In [18],
Katti et al. proposed COPE, the first practical network coding
implementation for multiple unicast flows. Their experimental
evaluations have shown substantial performance gain.

Formally, network coding takes as input K data packets
(x1, x2, · · · , xK) and computes a mixed packet y. Due to its
simplicity and effectiveness, XOR is widely used to compute
the new packet:

y = x1 ⊕ x2 ⊕ · · · ⊕ xK .

B. Superposition Coding for Packet Mixing

A less well-studied but powerful technique for in-network
packet mixing is superposition coding. The concept of su-
perposition coding was first introduced in [17], [28], [29] by
Cover et al. in their information theoretic study of additive
white Gaussian noise (AWGN) broadcast channels. In particu-
lar, Cover showed that simultaneous transmissions to multiple
receivers is more efficient than using orthogonal division of
the channel. He proposed superposition coding as a tech-
nique to achieve simultaneous transmissions. In [30], Bergmans
showed that this technique achieves the optimal capacity for
AWGN channels. Motivated by these promising results, many
researchers have since considered coding and modulation strate-
gies (e.g., [31], [32], [33], [34], [35], [36], [37]), as well as
applications of superposition coding especially in the context
of digital audio and video broadcasting [38]. More recently,

superposition coding has been considered for standardization in
cellular systems for broadcasting [39]. However, the studies on
superposition coding so far have focused mainly on the physical
layer.

Specifically, superposition coding is a technique by which
a transmitter can simultaneously send independent messages
to multiple receivers. In this paper, for simplicity, we restrict
ourselves to the two-receiver case, in which the transmitter
superimposes an additional message destined to a secondary
receiver (receiver 2) on a basic message destined for a primary
receiver (receiver 1). We also refer to the basic message as the
first, primary or lower layer, and the additional message as the
second, or upper layer. It is natural to extend our technique to
more than two layers.

In implementation, a transmitter using superposition coding
splits the available transmission power between the two layers,
selects the transmission rate for each of the layers, then encodes
and modulates each of the packets separately at the selected
rates. The modulated symbols are scaled appropriately to match
the chosen power split and mixed (summed) to obtain the final
packet. For example, if quadrature phase shift keying (QPSK)
is used for modulation of both layers, then the superposed
transmitted signal will have a 16-point constellation.

Formally, superposition coding converts each input packet xi

to its symbol representation S(xi) and then computes a mixed
packet:

y = a1S(x1) + a2S(x2) + · · · + aKS(xK),

where ai reflects the power allocation to the i-th input packet
in the composite packet.

The two receivers decode their received signal using different
schemes. Receiver 1 decodes its packet treating the superim-
posed additional layer as interference. Receiver 2 first decodes
the basic layer, re-encodes it, and then subtracts it from the
original signal. It then decodes the remaining signal. This
process is referred to as successive interference cancellation
(SIC). To allow receiver 2 to decode the basic layer whenever
receiver 1 can and to ensure that the remaining signal after
subtraction has enough strength over noise, the channel quality
to receiver 2 should be better than that to receiver 1; that is,
the two channels should be asymmetric. Thus, we also refer to
receiver 1 as the weaker receiver and receiver 2 the stronger.

A major advantage of superposition coding and SIC over the
traditional schemes is the expanded capacity region [40], [41],
[20]. Consider a superposition c-packet with two layers. Let P
be the total transmission power, and p the power allocated to the
basic layer (i.e., to receiver 1). Then according to the Shannon
capacity formula for an AWGN channel, the achievable rate to
receiver 1 is

log2

(
1 +

p|h1|2
(P − p)|h1|2 + N0

)
bits/s/Hz,

where N0 is the background noise. On the other hand, due to
successive interference cancellation at receiver 2, the achievable
rate to receiver 2 is

log2

(
1 +

(P − p)|h2|2
N0

)
bits/s/Hz.

III. A MOTIVATING EXAMPLE

We first use a simple example to illustrate the benefits and
basic issues of in-network packet mixing. Consider a mesh
network shown in Fig. 1. There are five nodes in the network:
u and v1 to v4. There are 4 unicast end-to-end flows in the
network: v2 → v1; v4 → v2; v1 → v3; and v3 → v4. Assume
all packets are of the same size sz. All 4 flows use u as an
intermediate hop.

v1 v2

v4 v3

2 3 1 4

1 42 3 u

6 6

99

{pkt , pkt } {pkt , pkt }

{pkt , pkt }{pkt , pkt }

Fig. 1. A motivating example. The set at each node shows the packets available
at the node.

The maximum transmission rates from u to other nodes are
shown in the figure. Assume that the channels from u to v1, v2

are similar, at 6 Mbps; those to v3, v4 are similar, at 9 Mbps.
Let T = sz/6Mbps.

Also, two nodes who are close can overhear each other’s
transmission: v1 and v4 can hear each other’s transmission to
u; v2 and v3 can hear each other’s transmission to u. These
overhearing links are represented by dotted links in the figure.

After the source of each flow transmits its packet to u to
relay, node u has packets pkt1, pkt2, pkt3, and pkt4 for the
four flows with final destinations v1, v2, v3 and v4 respectively.
Each one of v1, . . . , v4 has two packets: the one it originates
and another that it overhears. The set of available packets at
each one of v1, . . . , v4 is shown in the figure.

Based on others’ packet caches, u can also apply network
coding and construct:

• c12 = pkt1 ⊕ pkt2: to transmit to v1 and v2; the transmis-
sion rate of this coded packet should be 6 Mbps;

• c13 = pkt1 ⊕ pkt3: to transmit to v1 and v3; the trans-
mission rate of this coded packet should be 6 Mbps to
accommodate the slower channel to v1 even though the
channel to v3 can achieve 9 Mbps;

• c24 = pkt2 ⊕ pkt4: to transmit to v2 and v4; the trans-
mission rate of this coded packet should be 6 Mbps to
accommodate the slower channel to v2 even though the
channel to v4 can achieve 9 Mbps;

• c34 = pkt3 ⊕ pkt4: to transmit to v3 and v4; the transmis-
sion rate of this coded packet should be 9 Mbps.

Note that we require a node to know the topology of its 2-hop
neighborhood.

Now, we calculate the total transmission time for u to relay
the packets. There are the following possibilities:

• No in-network packet mixing. Then, u needs 4 transmis-
sions to relay the 4 packets to reach their destinations,
with two packets at 6 Mbps and two at 9 Mbps, with a
total transmission time of 10/3 T.

• Superposition coding. If u uses superposition coding, it
can transmit the four packets in two transmissions, e.g.,
one transmission of a superposition packet containing pkt1
and pkt3 at overall rate 6 Mbps, and another one a

superposition packet containing pkt2 and pkt4 at overall
rate 6 Mbps. The total time is 2 T.

• Network coding. If u uses network coding, then it can
forward the packets to their final destinations in two
transmissions (c12 and c34) with a total time of 5/3 T.

• Integrated superposition coding and network coding (case
1). Node u can further increase throughput by combining
network coded packets using superposition coding. If u
mixes the two network coded packets c12 and c34 using
superposition coding, it can transmit both using a single
transmission with time duration T.

• Integrated superposition coding and network coding (case
2). If u were to choose c13, then it could not combine
c13 with c24 using superposition coding due to the lower
channel gain to v2. Thus, it could mix c13 only with
pkt4 using superposition coding. Then it would need an
additional transmission for pkt2 to v2 at 6 Mbps. The total
time will be 2 T.

IV. PROBLEM FORMULATION

We now formalize the distributed in-network packet mixing
problem. Since we are interested in distributed algorithms, we
consider a specific node u. Fig. 2 illustrates the setup.

v1

v2 vi
v|N(u)|

u
i

Ai

Q

Fig. 2. Problem formulation.

Let N(u) denote the neighbor set of u. The set of packets
to be transmitted from u to its neighbors is Q. Node u queues
the packets in Q to the output interface queues, one for each
neighbor. Let Qi denote the output interface queue to neighbor
vi. Let pkti,f be the head-of-line packet at Qi for flow f .
Node u also maintains a cache of packets it has transmitted or
received through opportunistic listening. Let this set of packets
be C. Such packets can be used by u to construct packets to
send to its neighbors or by the neighbors to construct packets
to send to u.

Node u also maintains state about its neighbors. Assume
that the channel gain from u to each neighbor vi ∈ N(u)
is measured. Also, u estimates the packet availability at its
neighbors. Let Ai denote the set of packets u knows are
available at neighbor vi.

For implementation simplicity, we use two-layer superposi-
tion coding. Given two packets pkt1 to v1 and pkt2 to v2,
we can determine whether they can be transmitted together
using superposition coding and at which data rate. We allow
an unlimited number of packets in XOR-based network coding
construction.

Given this setup, we would like to implement in-network
packet mixing such that maximal number of packets in Q will
be included (assuming reliable transmission), disallowing out-
of-order packets for each flow. We refer to this problem as the
maximum packet mixing problem. Unfortunately, this problem
is NP-hard.

Theorem 1: The maximum packet mixing problem is NP-
hard.

mnetcode(Q, p)
01. foreach discrete rate ri

02. (Si, Vi)=snetcode(Q, ri, p);
03. endfor
04. i∗ = argmaxi|Si| × ri

05. pkt∗ = XOR(Si∗)
06. return (pkt∗, Vi∗ , Si∗ and ri∗)

Fig. 3. Multi-rate opportunistic network coding at node u.

Proof: We only sketch the proof. The reduction is from
the maximum clique problem. Given a graph G = (V,E) in
the maximum clique problem, we construct an instance of the
maximum packet problem. We first create a node u. For each
node wi ∈ V , we create a packet pkti and a node vi such that
pkti is destined to next hop vi. For each edge (wi, wj) ∈ E,
we assume pkti ∈ Avj

, and pktj ∈ Avi
. We create pkt0 that

is destined to v0. pkt0 is in Avi
,∀i �= 0. Let the index of each

packet be its position in the output queue of node u. pkt0 is
the head of line packet. It is easy to see that we can have a
packet of size k iff G = (V,E) has a clique of size k − 1.

V. PROTOCOL DESIGN

Although the hardness result from the preceding section
shows that the full gains of in-network packet mixing may be
computationally hard to achieve, we can still design approx-
imation algorithms to improve wireless network throughput.
As we will show, there are simple, distributed protocols to
substantially improve network capacity in practical settings.

We present our design in several steps: we first extend net-
work coding to multi-rate networks, as this not only improves
network coding efficiency but also is necessary to integrate
with superposition coding; then we design a greedy algorithm
for in-network packet mixing combining superposition coding
and network coding; finally we present our joint optimization
algorithm iPack.

A. Opportunistic Multi-rate Network Coding

Since the previous work focuses on single-rate network
coding but many wireless mesh networks allow multi-rate adap-
tation, we first present a simple extension to generate network
coded packets in multi-rate mesh networks. The pseudo-code
is shown in Fig. 3.

Recall that Q is the data structure containing the packets
to be transmitted from u. Let p be the maximum transmission
power allowed to transmit the mixed packet. Since the network
allows multiple discrete rates, the algorithm iterates over all
rates and selects the best one.

Specifically, for each discrete rate ri, the algorithm invokes
a single-rate network coding algorithm, snetcode, to maximize
the number of packets coded. The procedure mnetcode can
be based on any standard single-rate network coding algorithm
(e.g., [18]) with two extensions. The first extension is that since
there may be only a subset of the neighbors that can suc-
cessfully decode packets sent with that rate, snetcode should
first prune neighbors. The second extension is to integrate
with superposition coding. Specifically, since each link has a
different data rate, we need to use the minimal rate among
all links that need to receive the coded packet. We try to code
packets in decreasing order of link rates. The idea is that packets
with similar channel conditions should be coded together. This
will give superposition coding more freedom in choosing which

packets to code and at which data rate. If multiple links have
the same data rate, we randomize the order so that each link
will get a fair chance of being selected.

The result of snetcode at each rate ri consists of two items:
Si, the set of packets that should be XOR-ed together; and
Vi, the set of receivers. Since the throughput of each such
coded packet depends on both the number of packets coded
and the rate at which we can transmit the packet, we compute
the effective throughput as the product of the cardinality of Si

and the rate at which the coded packet is transmitted. We pick
the discrete rate ri∗ that gives the maximum throughput. The
coded packet is the XOR of the packets in Si∗ .

pkt
2

pkt
1

pkt
3

v2v3

v

v v

1

4
5

u

Fig. 4. An example to illustrate mnetcode. Packets are shown at the original
sources.

Now we give a simple example shown in Fig. 4 to illustrate
the basic idea of the algorithm. We assume all packets have
the same size. We ignore header overhead for simplicity.
The network has 3 end-to-end packets pkt1, pkt2, pkt3 to be
transmitted from v2, v4, v5 to their final destinations v1, v2, v3

respectively. Node u is the node relaying traffic for the other
nodes. The paths of the end-to-end packets are labeled with
dashed lines. The overhearing links are labeled with dotted
links. For example, v4 has two dotted links to v1, v3. Thus,
when it transmits to u, v1, v3 can overhear the transmission but
v2, v5 cannot.

After sources v2, v4, v5 transmit, v1, v2, v3 will each have two
of the three packets pkt1, pkt2, pkt3 through either overhearing
or because it sent the packet. Assume the rate of link (u, v1)
is 2r while the rate of other links is r.

Now u iterates over the two rates 2r and r. At rate 2r, it
can send pkt1 only, and the cardinality and rate product is 2r.
At rate r, it can code all three packets together and achieves a
cardinality and rate product of 3r = 3 × r. Thus, u transmits
at rate r.

A property of mnetcode is that it does not guarantee that
the throughput of each flow will be better than its throughput
without using network coding. This may not be obvious, but
can be illustrated by an example. Assume that node u transmits
to three nodes, v1, v2, v3. Assume that the queues to v1, v2, v3

are always backlogged. Suppose one can always send XOR-
ed packets to v1, v2, and to v2, v3. Let the channel rates to
v1, v2, v3 be 2, 1, 2, respectively. Without network coding, and
if u implements equal time sharing among the three queues,
then the throughput to the three receivers will be 2/3, 1/3, 2/3
respectively. With network coding (mnetcode), the throughput
will become 1/2, 1, 1/2.

If a design policy is that the throughput of the flows should
only improve if network coding is used, we can use a simple,
novel technique to achieve the goal. In particular, we can
resolve the issue by introducing a finite-valued lookahead factor
D where each packet is allowed to code only with packets

iGreedy(Q)
01. (pkt, V, S, r) = mnetcode(Q, P)
02. Q = Q − S
03. enqueHead(Q, pkt)
04. call supercode(Q)

Fig. 5. Algorithm iGreedy at node u.

within D distance away. The distance is in terms of arrival
time into the queue in discrete units.

Theorem 2: Given a scheduler that schedules unicast packets
in a certain order at node u without network coding. Assume
that the mnetcode procedure respects that order. In addition,
a packet does not code with packets more than D away.
Assume channel rate does not vary, and the number of coding
opportunities grow unbounded over time. Let the long-term
throughput achieved by the link (u, vi) be tputi and tput′i for
without and with network coding respectively. We claim that
tput′i > tputi.

Proof: We only sketch the proof. Let the total transmission
times without and with network coding be tx(n) and tx′(n),
respectively, when the n-th packet is being transmitted. Given
that each coded packet reduces the overall transmission time
when compared with no coding case, the total transmission time
difference tx(n) − tx′(n) grows unbounded assuming infinite
coding opportunities. At time n, there can be only a finite D
number of future packets that get scheduled in the case of
network coding. Let the time to transmit these packets be TD.
Then, tput′ = n/(tx′(n)−TD) and tput = n/tx(n). We have
that tput′ > tput after a certain n.

B. Packet Mixing Algorithms

We now describe two packet mixing algorithms, iGreedy
and iPack that combine network and physical-layer coding.
Since a network may already have a MAC scheduler (e.g.,
FIFO, round robin, or proportional fairness) to determine
which data packet to transmit next, both algorithms assume
that this scheduler has already picked a head-of-line packet
pkthol. Both algorithms invoke the multi-rate network coding
algorithm from the preceding section. The iGreedy algorithm
applies network and superposition coding in sequence. The
iPack algorithm integrates network and superposition coding
by maximizing the total transmission rate under the constraint
of transmitting the head of line packet, or more generally for
some fairness criterion.

iGreedy: Greedy Packet Mixing
With the preceding mnetcode, it is straightforward to design
a greedy algorithm for in-network packet mixing that incor-
porates both network coding and superposition coding. The
algorithm, named iGreedy, is shown in Fig. 5.

In this algorithm, we first try to find the coded packet pkt∗
using procedure mnetcode defined in Fig. 3. This packet
will be used for the first layer in the SC coded packet.
We then call a superposition coding procedure on the new
queue Q − S. Similar to mnetcode, we need to modify the
supercode procedure to implement pruning of links with
inadequate channel support. We use the Gopp algorithm [4]
as the superposition coding procedure in this paper, which
selects superposition coded packets that take advantage of the

iPack(Q) — pkthol is the packet to schedule next.
01. T ∗ = 0 // Best observed throughput
02. for each discrete rate ri that pkthol supports
03. // Determine first layer packet and power level; snetcode
04. // must select pkthol

05. Q′ = Q
06. (Si, Vi) = snetcode(Q′, ri, P)
07. determine min power p1 s.t. receivers in Vi support ri

08. // Find best rate and packets for second layer
09. (n2, pkt2, r2) = bestSecondLayer(Q′ − S1, ri, p1)
10. // Update best observed throughput if necessary
11. if (n2 + |Si|) × ri > T ∗ then
12. T ∗ = (n2 + |Si|) × ri

13. pkt1
∗ = XOR(Si)

14. pkt2
∗ = pkt2

15. r1
∗ = ri, p1

∗ = p1, r2
∗ = r2

16. endif
17. endfor
18. // Compute throughput without superposition coding
19. (pktm

∗, Vm, Sm, rm) = mnetcode(Q, P)
20. // Transmit with scheme that provides best throughput
21. if T ∗ > |Sm| × rm then
22. transmit encode(r1

∗, p1
∗, pkt1

∗, r2
∗, pkt2

∗)
23. else
24. transmit pktm

∗

25. endif

Fig. 6. Algorithm iPack at node u.

bestSecondLayer(Q, r1, p1) – r1 is rate of the first layer;
p1 is power of the first layer.

01. n∗ = 0; pkt∗ = ∅; r∗ = 0
02. foreach second-layer discrete rate r
03. Q′ = Q
04. pkt = ∅ // set of network-coded packets
05. n = 0 // number of raw packets can be packed
06. repeat to select � r

r1
� network-coded packets

07. (S, V) = snetcode(Q′, r, P − p1)
08. n = n + |S|
09. pkt = pkt ∪ {XOR(S)}
10. Q′ = Q′ − S
11. endrepeat
12. if n > n∗ then
13. n∗ = n, pkt∗ = pkt, r∗ = r
14. endif
15. endfor
16. return (n∗, pkt∗, r∗)

Fig. 7. Algorithm to select second layer packets by packing the largest number
of raw packets.

discrete rates currently supported by the receivers.

iPack: Integrated Packet Mixing
A key advantage of iGreedy is its simplicity. However, it leaves
some coding opportunities unexplored. An example can be seen
in Section III. We now present iPack, an algorithm that jointly
optimizes the use of superposition and network coding. The
algorithm is shown in Fig. 6.

iPack computes rates for the first and second layers of
superposition coding with each layer composed of a set of
appropriate network coded packets. Specifically, iPack iterates
over each rate ri that the head-of-line packet can support,
finding the network coded packet XOR(Si) for the first layer
(line 6) and computing the minimum power p1 required for
it to be received by all of its intended receivers Vi (line 7),
assuming P − p1 is treated as noise.

For the remaining power P − p1, the algorithm calls
bestSecondLayer to find the rate r2 which can pack the max-

imum number of packets in the second layer. The pseudocode
for bestSecondLayer can be found in Fig. 7. The result of
bestSecondLayer consists of three items: n, the number of raw
packets packed; pkt, the set of network coded packets to encode
the n raw packets; and r, the rate of layer 2 (line 9). Given
the coded packets for the two layers, the algorithm calculates
the total number of packets transmitted, normalizes according
to the rate of the first layer, and selects the superposition coded
packets with the highest rate (line 11-16). Finally, the algorithm
compares the throughput using superposition coding and that
without superposition coding using mnetcode and selects the
one with the higher throughput (line 19-25).

VI. EVALUATIONS

We use ns-2 (Ver. 2.31) as our simulation evaluation envi-
ronment. We have also conducted experimental evaluations on
a small-scale testbed implemented using GNU Radio.

A. Simulation Methodology

Physical-layer encoding and decoding
For our simulation setup, we use the 2-ray ground model with 0
dBi antenna gains and antenna heights of 1 meter. To implement
a realistic packet decoding model, we use a lookup table for
packet error rates (PER) [42] given an observed SNR. There is
a separate PER curve for each 802.11g OFDM data rate. The
SNR depends on the received signal power Pr, noise power
N0 = −86 dBm, and implementation margin Im = 5 dB
specified in the 802.11g standard. These parameters produce
maximum transmission ranges similar to those of the Cisco
Aironet 802.11g in a typical outdoor environment [43].

When a packet is received in the physical layer, we decode
it as follows. If the packet is not a superposition c-packet, we
compute SNR = PrIm

N0
and look up the PER corresponding to

the data rate at which the packet was transmitted. The packet
is dropped with a probability equal to the PER.

If the packet is a superposition c-packet, we compute the
SNR for the basic layer as SNR = Prp1Im

Pr(1−p1)+N0
where p1 ∈

[0, 1] is the fraction of power allocated to the basic layer packet.
The SNR lookup and decoding for the basic layer are done in
the same way as a non-superposition c-packet. If the basic layer
is decoded successfully, we compute the SNR for the additional
layer as SNR = Pr(1−p1)Im

N0
. SNR lookup and decoding for

the additional layer are also done in the same way as the non-
superposition c-packet.

To handle channel estimation, the physical layer calculates
the channel gain h = Pr

P for each received transmission. This
value along with the transmission source address is passed up
to the MAC layer, which manages a table of channel gains for
each link. These channel gains are used to compute SNR values
in the scheduling and routing layers.

Link and network layer and processing
We assume that all transmitted packets are 1500 bytes. We also
disable RTS/CTS.

Note that there may be multiple packets packed into the
additional layer of a superposition coded packet. These are
unpacked in the MAC layer before being delivered further up
the protocol stack.

Network coding requires nodes to operate in promiscuous
mode and buffer overheard packets. Each overheard packet

times out after 1 second and is discarded. Decoding of c-
packets using network coding is implemented at the network
layer. The packet addressed to the node is passed to the upper
layers only if all other packets that had been coded together
had been previously overheard.

Topology, traffic demands and routing
We deploy the clients and access points (APs) in a 500 meter
by 500 meter region. When there is a single access point,
it is located in the center. Clients are distributed uniformly
random within the square. Note that non-uniform distribution
of nodes can increase channel diversity and thus may improve
the effectives of superposition coding based in-network packet
mixing. Access points always have their total transmit power
set to 200 mW (maximum transmission range 335 m). Unless
otherwise specified, all clients have total transmit powers set
to 100 mW (maximum transmission range 281 m) and all
traffic flows are between client nodes relayed through the
access points. When there are multiple access points, they
form a wireless mesh network to relay traffic. Then, a static
shortest path routing is computed with link metrics inversely
proportional to the maximum supported data rate along the link.
A client associates with the access point with the best channel
and communicates through that access point.

Evaluated protocols
We evaluate the following c-packet construction protocols.

• Gopp: the c-packet construction protocol based only on
superposition coding [4];

• mnetcode: presented in Fig. 3, which is an extension of
the XOR-based network coding technique to handle multi-
rate network coding (COPE [18] is used for single-rate
network coding);

• iGreedy: presented in Fig. 5;
• iPack: presented in Fig. 6.

Performance metrics
We use the FIFO scheduler with no c-packets as the base case.
Our primary metric is throughput gain ratio (or throughput gain
for short) which is defined as the aggregate throughput achieved
by any of the four c-packet construction protocols divided by
the throughput achieved by the FIFO scheduler. We also discuss
loss rate and fairness.

B. Simulation Results

A single access point
We start our evaluations with a simple scenario: a single access
point in the network. We place 10 clients uniformly random in
the network and setup 8 random flows between the clients. We
vary the UDP traffic rate of the flows. This changes the traffic
demand to the network. It is intuitive that the main advantage
of the c-packets is that they extend the capacity region of the
network.

Fig. 8 confirms the intuition. In this plot, each point repre-
sents the result of one particular instance of an experiment.
Each experiment is performed with 30 randomly-generated
topologies. We also show the average highlighted by a bold
horizontal line. From the figure, we observe that when the
traffic demand is low, the gain of c-packets is low. This can
be explained since the algorithms depend on the availability of

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

0.50 1.00 1.50 2.00

T
hr

ou
gh

pu
t G

ai
n

UDP Rate (Mbps)

Gopp
mnetcode

iGreedy
iPack

Fig. 8. Throughput gains with varying flow rate.

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5

4 8 12 16

T
hr

ou
gh

pu
t G

ai
n

Number of Inter-client Flows

Gopp
mnetcode

iGreedy
iPack

Fig. 9. Throughput gains with increasing numbers of flows between clients.

packets in the queues for constructing c-packets. However, since
the traffic demand is low, the network can handle the demand
well and thus the queues are mostly empty, presenting low
opportunities for c-packet construction. As demand increases,
without c-packets, the queues grow and the network approaches
congestion collapse. With c-packets, however, the packets in
the queues present construction opportunities and the gain
increases. For example, for Gopp and mnetcode, the average
gain increases from slightly above 1 at low demand to above
1.4 at high demand.

However, the four algorithms achieve different levels of
gains. From Fig. 8, we observe that the gains of general c-
packet construction is consistently higher than using superpo-
sition coding or network coding alone. At per-flow demand
rate 2 Mbps, the gain of iPack is 30% and 38% higher than
Gopp and mnetcode, respectively. We observe the maximum
throughput gain of iPack to be 3.6, representing a 2.6 times
throughput increase over the case with no c-packets.

Another way to vary network traffic demand is to vary the
number of flows. We use 1 access point and 20 clients, but vary
the number of flows between the clients. All flows are infinitely
backlogged. Fig. 9 shows the result. For Gopp and mnetcode,
the average gain increases from 1.31 and 1.33 to 1.66 and
1.68, respectively. For iGreedy and iPack, the average gain
increases from 1.56 and 1.73 to 2.14 and 2.66, respectively.
The gain of iPack is 58% more than Gopp and mnetcode,
and is 24% more than iGreedy.

In a typical wireless mesh network, most of the traffic
demand might be between the clients and the access points,
which are connected to the Internet, rather than between clients.
Fig. 10 shows the results for this setting. The network has 1
access point and 20 clients. There are 16 flows in each scenario,

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

0 20 40 60

T
hr

ou
gh

pu
t G

ai
n

Percentage of Flows from Access Point

Gopp
mnetcode

iGreedy
iPack

Fig. 10. Throughput gains with increasing flow from the access point.

 0

 1

 2

 3

 4

 5

 6

50 100 200

T
hr

ou
gh

pu
t G

ai
n

Client Transmit Power (mW)

Gopp
mnetcode

iGreedy
iPack

Fig. 11. Throughput gains with varying client transmit powers.

 1

 1.5

 2

 2.5

 3

 3.5

 4

500 1500 2500 inf

T
hr

ou
gh

pu
t G

ai
n

Lookahead Factor

Gopp
mnetcode

iGreedy
iPack

Fig. 12. Throughput gains with increasing lookahead factor.

but we vary the percentage of the flows with the source at the
access point. If there is no client to client traffic, then there
are no network coding opportunities. Thus, as the percentage
of flows from the access point increases, mnetcode’s average
throughput gain drops from 1.68 to almost 1. On the other
hand, the opportunities for superposition coding increase as the
percentage of flows from the access point increases. Gopp’s
average throughput gain increases from 1.66 to 3.71. iPack’s
average throughput gain increases from 2.66 to 4.24, which is
an increase of 324%. This result demonstrates that our solutions
are able to exploit both network coding and superposition
coding opportunities effectively.

Transmission power may have impacts on the loss rate and
the probability of overhearing. Fig. 11 evaluates the algorithms
as we vary the transmission power of the clients. The network
has 1 access point, 10 clients, and 8 flows. We observe that at
a low transmission power, the gain spreads over a wider range
than that at a high transmission power. However, the average
gains are relatively stable.

It is also important to evaluate the performance of individual
flows. As shown before, the lookahead factor has an impact on
per-flow performance. Fig. 12 plots the throughput gain with
varying values of D. There is no lookahead constraint imposed
on the scenarios with D = ∞. The network has 1 access
point, 10 clients, and 8 flows. The plot shows that there are
additional throughput gains as D increases since more coding
opportunities are available.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

500 1500 2500 inf

Pe
r-

Fl
ow

 L
os

se
s

Lookahead Factor

Gopp
mnetcode

iGreedy
iPack

Fig. 13. Per-flow losses with increasing lookahead factor.

Fig. 13 shows the effect on the throughput of individual
flows. Per-flow losses are calculated as the lost throughput on
individual flows summed over the flows that performed worse
than under the FIFO scheduler. The resulting lost throughput
is then normalized by the aggregate throughput of the FIFO
scheduler. The plot shows that even as D increases, there is no
noticeable impact on individual flows. We have also evaluated
the impact on per-flow throughput using the fairness index
proposed by Jain, Chiu, and Hawe [44]. We observe similar
results.

Mesh network of access points
We next evaluate the performance as we increase the size of
the access-point mesh network. Fig. 14 plots the aggregate
throughput achieved by each of the schedulers as we increase
the size of access-point mesh network. When there are 2 access
points, they are located at (250, 125) and (250, 375) and there
are 20 clients and 16 flows. When there are 4 access points, they
are located at (125, 125), (125, 375), (375, 125), and (375, 375)
and there are 40 clients and 32 flows. We observe that, as
the size of the access-point network increases, the amount
of opportunities for superposition coding and network coding
increases. Therefore, all four algorithms show a throughput
increase. For Gopp and mnetcode, the average gain increases
from 1.47 and 1.53 to 1.88 and 1.81, respectively. For iGreedy
and iPack, the average gain increases from 1.88 and 2.02 to
2.36 and 2.60, respectively. iPack’s throughput is more than
30% more than Gopp and mnetcode in all cases.

Finally, we evaluate the performance on a larger mesh net-
work with a subset of the access points acting as gateways to the
Internet, which is typical of deployed mesh networks. Fig. 15
plots the aggregate throughput of for networks over an area with
12 access points, 5 of which are randomly-selected as gateways.
There are 50 clients and 40 flows, and we vary the percentage
of flows from gateways to clients. The remainder of the flows
are between clients within the mesh network. The results show
that the schedulers are able to provide significant gains even as
the size of the network increases. In particular, the average gain

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 4

T
hr

ou
gh

pu
t G

ai
n

Number of Access Points

Gopp
mnetcode

iGreedy
iPack

Fig. 14. Throughput gains of mesh networks with increasing access-point
mesh network.

for iPack is as high as 2.65, while iGreedy achieves average
gains as high as 2.24. One possible explanation for the limited
gains of mnetcode is that there is a limited amount of traffic
amongst the clients of a particular access point.

 0

 1

 2

 3

 4

 5

 6

20 40 60 80

T
hr

ou
gh

pu
t G

ai
n

Percentage of Flows from Gateway Nodes

Gopp
mnetcode

iGreedy
iPack

Fig. 15. Throughput gains of mesh networks with 12 access points, 5 of
which are gateways.

C. Testbed Results

In addition to simulation, we also implement the coding
schemes in a small-scale testbed using GNU Radio [45] to
observe their performance on real wireless links. Our imple-
mentation consists of about 4000 lines of C++ code and about
3000 lines of Python code and includes an implementation
of the DCF mode of the 802.11 MAC. Different from the
simulations which transmit UDP packets with no link layer
reliability, the testbed implements link layer reliability so that
we can measure the expected transmission time for each coding
scheme. For simplicity, we consider persistent retransmission;
that is, we repeat the same c-packets until each receiver is
able to recover its packet. This may not be necessary as the
transmitter can adapt the coding scheme after some receivers
have received their packets.

Our testbed evaluation uses the network shown in Fig. 1, with
5 nodes and 4 unicast flows. Nodes v1, . . . , v4 send normal data
packets, while u incorporates packet mixing. For superposition
coding, u allocates 70% of its power to the basic layer and the
remaining 30% to the additional layer.

We report in Table I the mean normalized total transmission
time for all four receivers to recover their packets, where one
unit of time is the time to transmit one packet at 6 Mbps.
The throughput gains are largely consistent with our preceding
simulation results.

Scheme Norm. exp. trans. time Gain ratio
No Coding 3.92 1
Superposition 2.88 1.4
Network coding 2.30 1.7
iPack 2.07 2.0

TABLE I
TESTBED PERFORMANCE FOR THE NETWORK SHOWN IN FIG. 1.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have designed a new wireless mesh network
algorithm based on in-network packet mixing. We demonstrated
that our practical and simple protocols are highly effective in
improving wireless mesh network throughput. It consistently
outperforms the better performer of network coding and super-
position coding. We also validate our solutions on a small-scale
testbed implemented using GNU Radio.

There are many avenues for future studies. First, we would
like to build a large-scale network consisting of prototype
nodes to evaluate the performance of our system. Such eval-
uations may reveal further opportunities to improve network
throughput. Second, the focus of this paper is on in-network
packet mixing at the transmitter. It is possible to mix pack-
ets/signals during the receiving process. Integrated design may
further improve performance. Third, we use single-hop packet
mixing. That is, a composite packet can be decoded in one-
hop. It is possible to allow multi-hop packet mixing. Multihop
network coding has already been well studied. Evaluating
the performance of multihop network coding integrated with
superposition coding is an interesting topic.

REFERENCES

[1] K. Jain, V. V. Vazirani, and G. Yuval, “On the capacity of multiple unicast
sessions in undirected graphs,” IEEE/ACM Trans. on Networking, vol. 14,
2006.

[2] Z. Li and B. Li, “Network coding: The case of multiple unicast sessions,”
in Proc. of the 42nd Annual Allerton Conference on Communication,
Control, and Computing, 2006.

[3] L.-L. Xie and P. Kumar, “Wireless network information theory,”
IEEE/ACM Trans. on Networking, 2006.

[4] L. E. Li and et al., “Extended abstract: Superposition coding for wireless
mesh networks,” in Proc. of MobiCom, Sep. 2007.

[5] S. Katti, S. Gollakota, and D. Katabi, “Embracing wireless interference:
Analog network coding,” in Proc. of ACM SIGCOMM ’07, Kyoto, Japan,
Aug. 2007.

[6] S. Zhang, S.-C. Liew, and P. P. Lam, “Hot topic: Physical-layer network
coding,” in Proc. of MobiCom, Sep. 2006.

[7] I. F. Akyildiz and X. Wang, “A survey on wireless mesh networks,” IEEE
Communications Magazine, vol. 43, no. 9, 2005.

[8] P. Gupta and P. R. Kumar, “The capacity of wireless networks,” IEEE
Trans. on Information Theory, vol. 46, no. 2, pp. 388–404, Jan. 2001.

[9] “Ugly truth about mesh networks,” http://www.dailywireless.org/2004/06/
28/ugly-truth-about-mesh-networks/.

[10] J. Li, C. Blake, D. S. J. D. Couto, H. I. Lee, and R. Morris, “Capacity of
ad hoc wireless networks,” in Proc. of MobiCom, Rome, Italy, Jul. 2001.

[11] N. Harvey, R. Kleinberg, and A. R. Lehman, “On the capacity of
information networks,” IEEE/ACM Trans. on Networking, vol. 52, no. 6,
2006.

[12] J. Liu, D. Goeckel, and D. Towsley, “Bounds on the gain of network cod-
ing and broadcasting in wireless networks,” in Proc. of IEEE INFOCOM
’07, Anchorage, AK, May 2007.

[13] S. Song, D. Goeckel, and D. Towsley, “Collaboration improves the
connectivity of wireless networks,” in Proc. of IEEE INFOCOM ’06,
Apr. 2006.

[14] D. Traskov, N. Ratnakar, D. S. Lun, R. Koetter, and M. Medard, “Network
coding for multiple unicasts: An approach based on linear optimization,”
in Prof. of ISIT, 2006.

[15] Y. Wu, P. Chou, and S.-Y. Kung, “Minimum-energy multicast in mobile
ad hoc networks using network coding,” IEEE Trans. on Communications,
2005.

[16] D. Lun, N. Ratnakar, R. Koetter, M. Medard, E. Ahmed, and H. Lee,
“Achieving minimum-cost multicast: A decentralized approach based on
network coding,” in Proc. of IEEE INFOCOM, Mar. 2005.

[17] T. M. Cover, “Broadcast channels,” IEEE Trans. on IT, vol. IT-18, pp.
2–14, 1972.

[18] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft,
“XORs in the air: Practical wireless network coding,” in Proc. of ACM
SIGCOMM ’06, Pisa, Italy, Sep. 2006.

[19] G. Kramer, M. Gastpar, and P. Gupta, “Cooperative strategies and capacity
theorems for relay networks,” IEEE Trans. on IT, Feb. 2004.

[20] D. Tse and P. Viswanath, Fundamentals of Wireless Communication.
Cambridge University Press, May 2005.

[21] Y. E. Liu, “A low complexity protocol for relay channels employing
rateless codes and acknowledgement,” in Proc. of ISIT, Seattle, WA, Jul.
2006.

[22] R. Ahlswede, N. Cai, S. R. Li, and R. W. Yeung, “Network information
flow,” IEEE Trans. on IT, 2000.

[23] S. Bhadra, P. Gupta, and S. Shakkottai, “On network coding for interfer-
ence networks,” in Proc. of ISIT, Seattle, WA, Jul. 2006.

[24] T. Ho, R. Koetter, M. Medard, M. Effros, J. Shi, and D. Karger, “A
random linear network coding approach to multicast,” IEEE Trans. on
IT, vol. 52, no. 10, 2006.

[25] J. Jin, T. Ho, and H. Viswanathan, “Comparison of network coding and
non-network coding schemes for multi-hop wireless networks,” in Proc.
of ISIT, Seattle, WA, Jul. 2006.

[26] S. Sengupta, S. Rayanchu, and S. Banerjee, “An analysis of wireless
network coding for unicast sessions: The case for coding-aware routing,”
in Proc. of IEEE INFOCOM ’07, Anchorage, AK, May 2007.

[27] C. Wang and N. B. Shroff, “Beyond the butterfly - a graph-theoretic
characterization of the feasibility of network coding with two simple
unicast sessions,” in Proc. of ISIT, Nice, France, Jun. 2007.

[28] P. P. Bergmans and T. M. Cover, “Cooperative broadcasting,” IEEE Trans.
on IT, vol. IT-20, pp. 317–324, 1974.

[29] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York: John Wiley & Sons,, 1991.

[30] P. P. Bergmans, “A simple converse for broadcast channels with additive
white Gaussian noise,” IEEE Trans. on IT, vol. IT-20, pp. 279–280, 1974.

[31] M. Airy, A. Forenza, R. W. Heath, and S. Shakkottai, “Practical Costa
precoding for the multiple antenna broadcast channel,” in Proc. of
GLOBECOM, vol. 6, 2004.

[32] A. R. Calderbank and N. Seshadri, “Multilevel codes for unequal error
protection,” IEEE Trans. on IT, vol. 39, no. 4, pp. 1234–1248, 1993.

[33] M. B. Pursley and J. M. Shea, “Multimedia multicast wireless communi-
cations with phase-shift-key modulation and convolutional coding,” IEEE
Journal of Selected Areas in Communications, vol. 17, Nov. 1999.

[34] ——, “Nonuniform phase-shift-key modulation for multimedia multicast
transmission in mobile wireless networks,” IEEE Journal of Selected
Areas in Communications, vol. 5, May 1999.

[35] S. Shamai, “A broadcast approach for the multiple-access slow fading
channel,” in Proc. of ISIT, 2000.

[36] S. Vishwanath, N. Jindal, and A. Goldsmith, “Duality, achievable rates,
and sum-rate capacity of Gaussian MIMO broadcast channels,” IEEE
Trans. on IT, vol. 49, no. 10, 2003.

[37] W. Yu and J. Cioffi, “Trellis precoding for the broadcast channel,” in
Proc. of GLOBECOM, vol. 2, 2001.

[38] K. Ramachandran, A. Ortega, K. M. Uz, and M. Vetterli, “Multiresolution
broadcast for digital HDTV using joint source channel coding,” IEEE
Journal of Selected Areas in Communications, vol. 11, pp. 6–23, 1993.

[39] 3rd Generation Partnership Project 2, “Physical layer for ultra mo-
bilebroadband (UMB) air interface specification,” 3GPP2 C.P0084-001,
Available from www.3gpp2.org, Feb. 2007.

[40] P. Gupta, “Towards an information theory of large networks: An achiev-
able rate region,” IEEE Trans. on IT, vol. 49, no. 8, Aug. 2003.

[41] S. Toumpis and A. Goldsmith, “Capacity regions for wireless ad hoc
networks,” IEEE Trans. on Wireless Comm., vol. 2, no. 4, Jul. 2003.

[42] K.-Y. Doo, J. young Song, and D.-H. Cho, “Enhanced transmission
mode selection in IEEE 802.11a WLAN system,” in Proc. of Vehicular
Technology Conference, Sep. 2004, pp. 5059–5062.

[43] “Cisco Aironet 802.11a/b/g,” Available from http://www.cisco.
com/application/pdf/en/us/guest/products/ps5818/c1650/ccmigration
09186a00801ebc29.pdf.

[44] R. Jain, D. Chiu, and W. Hawe, “A quantitative measure of fairness and
discrimination for resource allocation in shared computer systems,” DEC,
Tech. Rep. TR-301, 1984.

[45] “GNU Radio: The GNU Software Radio,” http://www.gnu.org/software/
gnuradio/.

