CloudFlex: Seamless

Scaling of Enterprise

Applications into the Cloud

Yousuk Seung
ysseung(@cs.utexas.edu

Terry Lam
vtlam@cs.ucsd.edu

Abstract—This paper proposes and studies a system, called
CloudFlex, which transparently taps cloud resources to serve ap-
plication requests that exceed capacity of internal infrastructure.
CloudFlex operates as a feedback control system with two key
interacting components: load balancer and controller. We focus
on operational optimality and stability of the system, highlight
the tradeoffs between cost and responsiveness, and address
important design considerations such as choke point detection
that are critical in avoiding pathological system operations. For
evaluation, we develop a prototype of CloudFlex on our testbed
comprising servers of our enterprise data center and Amazon
EC2 instances.

I. INTRODUCTION

Cloud computing paradigm offers a novel approach for
utility computing with unprecedented resource f exibility,
agility, and scalability [5]. A number of recent market research
reports (e.g., Garner [6]) have predicted that cloud computing
is poised for signif cant enterprise adoption within the next two
to fve years. In this paper, we address an important barrier
to enterprise cloud computing adoption: how to transition
seamlessly from a pure enterprise computing resource model
to one that uses both enterprise internal and cloud-based
resources.

We design a system called CloudFlex to provide this mech-
anism. At its core, CloudFlex leverages a feedback control
system that monitors system performance, and distributes load
onto a heterogeneous set of resources.

We present a study toward the design of a system that allows
enterprise applications to be seamlessly extended into a cloud.
In particular, the paper makes the following contributions:

o We are the frst to study load balancing and auto-scaling
in a hybrid mixture of internal and cloud resources.

o We propose and study novel scaling algorithm designs in
a control theoretic framework with strong emphasis on
stability and optimality, and balancing tradeoff between
cost and responsiveness.

« We implement our design using state-of-the-art open
source components, and evaluate performance on a real-
world cloud provider (Amazon EC2).

« We address important issues for a complete system design
and real-world deployment that include considerations for
security, system choke points, etc.

II. CLOUDFLEX DESIGN

In this section we describe the main modules of the Cloud-
Flex architecture.

erranlli@research.bell-labs.com

Li Erran Li Thomas Woo

woo@research.bell-labs.com

Load Balancer

Y\
Dispatching
Algorithm

Job Dispatching Module

[
Server
Statistics

Performance Monitor

\ Module /

[Communication Module]

=N =R =] (=]
<> ENEEEE B
Redirection — & — 44— 5

Enterprise

Secure
data plane
connection

Control Requests
- Stats Updates
- Server add/removal

Secure

control plane
connection

Scaling
Algorithm

Instance
Manager

Controller

Fig. 1. CloudFlex system architecture

A key design principle of CloudFlex is the separation of the
control and data planes. Figure 1 shows the building blocks
of a CloudFlex system with two fundamental components.
The controller provides auto-scaling intelligence by making
decisions on resource acquisition/release in the control plane.
The load balancer monitors performance and dispatches jobs
in the data plane.

Load balancer: Our design of the load balancer leverages
the multi-tiered architecture commonly deployed in enterprise
applications. In such an architecture, interactions occur mostly
between tiers and individual server instances are typically
hidden behind a reverse-proxy with a single IP address. In
particular, the load balancer includes three major modules. A
performance monitoring module collects server performance
data. A communication module periodically polls on the server
statistics and status updates from the controller and also allows
the controller to register callback functions upon certain con-
ditions. Finally, a job dispatching module decides which server
a request should be dispatched to, based on the information
fed by the communication module.

Controller: Inside the controller, a scaling algorithm decides
on resource scaling given current demand and performance
statistics. The details of the scaling algorithm are discussed in
Section IV. The controller then manages VM instances through

an instance manager. Note that only the instance manager is
aware of cloud provider specifi API and we can easily extend
this to multiple cloud providers by having different “adapters”
that speak the specifi cloud API of a cloud provider.

III. DESIGN CHALLENGES

In this section, we address several important technical
challenges in the design of CloudFlex.

Choke points: A choke point refers to a dynamic performance
bottleneck that can shift from one place to another as the
system scales out. For example, consider a three-tiered ap-
plication architecture. Tier-2 servers run business logic and
call on tier-3 database servers. Responses from tier-2 servers
are collected and presented by tier-1 servers. Assuming the
current bottleneck is the business logic computation, by scaling
out tier-2 servers to the cloud, the overall system performance
may improve until tier-3 database servers fail to keep up with
the ever expanding set of application servers. At this point,
further scalability gain can be achieved only with scaling out
tier-3. Therefore, an important part of any auto-scaling design
is the ability to detect such scaling choke points. We discuss
our choke point detection technique in Section I'V-E.

Cloud resource responsiveness: There is always a nonnegli-
gible delay between the request and the acquisition of a cloud
resource. This can be viewed as the “boot time” for cloud
resources, and it implicitly serves as a cap for the burst of
requests that can be handled. In our algorithm, due to our
cost model (Amazon charges on an hourly basis), we do not
always release servers immediately, and thus can reuse a server
(if possible) before it terminates.

Load balancing: The micro-operations of a load balancer
can be tricky to implement and get right. We highlight two
examples here. First, naively selecting the “best” server would
direct burst of requests to the “best” server, potentially causing
serious thrashing. To avoid this problem we distribute load
equally among internal nodes and external servers (but not
among all), assuming that statistically requests are equally
heavy and internal/external servers are equally capable. Sec-
ond, in deciding to scale back and release a server, it is im-
portant to ensure that all existing connections would properly
terminate before the VM is actually released. We call this the
bleeding process and the CloudFlex assures that all terminating
nodes have enough time to bleed before actually terminate.

IV. CLOUDFLEX ALGORITHM

In this section we describe our system setup and the details
of our CloudFlex algorithm.

A. System setup

The CloudFlex three-tiered architecture is shown in Fig-
ure 2. In such a system, typically, tier-1 and tier-2 can be
scaled horizontally by adding more servers, while tier-3 scales
vertically by adding resources to existing servers.

Our focus is on horizontal scaling algorithms for tier-1 and
tier-2 servers. We do not attempt to scale tier-3 due to two
reasons. First, tier-3 is tightly coupled with the application

and hold sensitive confidentia information which makes enter-
prises reluctant to migrate tier-3 servers to the cloud. Second,
limited bandwidth to the cloud and very large data size also
hinders tier-3 migration to the cloud.

B. Application performance metric

Our performance metric is system response time, being
define as the interval at the load balancer between accepting a
client request and receiving its corresponding server response.
Note that it is better than other indirect metrics (e.g. CPU load)
since our requests are HTTP-based and hence tight system
response time immediately guarantees application responsive-
ness.

A

cloud

LB (Load balancer)
ﬁ e ———
’R\S'.-"s Ajpt ;’ :.’
L
Tier-1 | |

Severs i

Tier2 Ml E

SEIVETS

Tiers [le o=

severs (s B
Enterprise L

Fig. 2. A standard infrastructure for web service applications with three tiers
of servers.

Hl
i

Cloud
_Resources |

C. System state modeling

We model each VM’s system dynamics in terms of the rela-
tionship between its capacity, load and the resulting response
time. Our system is based on the estimation per time window
t. Note that the duration of each time window can be adjusted
dynamically.

Response time vs load at each server: Let
qRespTime;(pct,t) be the pct%-tile response time of
completed application requests measured between the load
balancer and application server i during the time interval
indexed by ¢. Let A;(t) be the request arrival rate of server i
at time ¢. Denote the maximum resource capacity of server i
at the time interval ¢ as cap;(t). Note that A;(t) and cap;(t)
correspond to the birth (arrival) rate and death (service) rate
in a queuing model at server i respectively.

We use a regression model (a function f) to fi the relation-
ship between the response time and the arrival rate as follows.

()

In our regression model, we fi a linear model between
cap; (t), Ai(t) and 'm. We use the simple least
mean square estimation to estimate parameters a and b below.

1)
gRespTime; (pct,t)

qRespTime; (pct,t) = £(cap;i(t), i(t))

=a-Ai(t)+b-cap(t)

Our empirical formula shows that ————— is a
qRespTime; (pct,t)

quadratic function of A;. Typically, the response time behaves
as shown in Figure 3. The pct%-tile response time increases

as the request arrival rate increases. The increase is drastic as
the arrival rate approaches capacity. T'4,.s, denotes a desirable
quantile response time and A} is the maximum allowable load
to meet the threshold T'4,.q, at server i.

qRespTime(pet. 1)

The

5 Arrive
rate A,(t)

A Capy(t)

Fig. 3. Response time vs. arrival rate at server i.

In our algorithm, we assume homogeneous VMs and in-
ternal nodes. Thus we can drop subscript i and denote A, ,
to be the maximum allowable load for any cloud server such
that the pct%-tile response time is within T'/,ep,. Similarly,

we defin A}, for identical internal servers.

System operating regions: Given that systems can have
bottlenecks once we scale up tier-1 or tier-2, we do not scale up
indefinitel . We need to infer the system state and make sure
the system is operating in good regions. We assume the system
designer will provide an input graph depicting the operating
regions as shown in Figure 4. The X-axis is the arrival rate
A; of server i.

qRespTime(pet. 1) .
~Bad region

Good region

Th,

Arrive
rate #;

a

)

Capy(t)

Fig. 4. Operating region of all servers

D. Scaling algorithm

We design the scaling algorithm based on feed-back
control framework. The observed system output is the
application performance metric, i.e. the response time.
Our target is to keep the exponential moving average
of pct%-tile response time below a threshold. We de-
note this metric at time t as qRespTimegys(pct,t). Note
that this is the overall system response time. The con-
troller needs to decide the number of VMs added or re-
leased based on the changes of response time SqRespTime(t)

if qRespTimecioud(Pct™, t) > Thresp
Let 85(t) = je!) _ numCloudS(t — 1) — numMarkDelS(t)
if AS(t)+ numMarkDelS(t) < 0
Mark |AS(t) +numMarkDelS(t)| active servers for deletion
else
for j =1 to AS(t) +numMarkDelS(t)
if !detect_choke_point(numCloudS(t)),
reactivate or create server j
distribute A%, ,.4(t) to server j
else break;
endif
endfor
endif
numCloudS(t) = numCloudS(t — 1) + j
if detect_choke_point(numCloudS(t)), //system choking
instruct load balancer to drop the excessive load,
(AS(t) +numMarkDelS(t) — j) * A% oua(t)
endif

Fig. 5. CloudFlex scaling algorithm: P controller

=qRespTimegys(pct,t)-qRespTimegys(pct,t —1). We dis-
cuss three types of controllers.

Controller with binary feedback: If we cannot infer detailed
system parameters such as A’ ., we will rely on binary
feedback on whether the target response time is met. There
are two general approaches: Multiplicative Increase - Additive
Decrease (MIAD) and Additive Increase - Additive Decrease
(AIAD). MIAD is costly and suitable for applications with
strict requirement on response time target. On the other
hand, AIAD is cheap and suitable for applications with high

tolerance on response time target.

Controller with A%, . estimation(P controller): We now
describe our controller design based on A}, , estimation.

Our approach is based on the relationship of the arrival
rate of the system Agys(t), average system response time
qRespTimegys(t) at the current time interval ¢, and the load
at all individual server in the previous time period ¢t —1 (i.e.
Ai(t —1) for each server i).

Given the total arrival rate to the cloud servers Acioua(t),
assuming a server in the cloud can still handle A% 4(t —1),
we can calculate the number of additional A’S(t) servers
needed to add or shutdown as follows.

Acloud(t)
zloud(.t - 1)

Since there are numMarkDelS(t) number of servers marked
for deletion that are still alive at time t (i.e. these servers are
in the bleeding process), we only need to add or shutdown
AS(t) = AS/(t) —numMarkDelS(t). Our detailed algorithm
for scaling is shown in Figure 5.

A'S(t) = —numcloudS(t —1) (3)

PI controller: Our P controller may be slow in catching the
demand during a period where requests arrive in increasing
rate. To deal with this situation, an integral component to
accelerate the convergence process can be added. The resulting
controller is a PI controller. The integral component is de-
signed to be Icun(t) =KX3 . (Acioua(t’) — Acroua(t’ —1))

where K and T are tuning parameters to control how fast the
system should respond to past cumulated load.

Acloud(t) + :[cu.m(.t - 1)

7"zloud(t)
E. Detecting choke point

AS(t) = —numCloudsS(t—1) (4)

We do not start all the new servers immediately and instead
try to detect if the system is choked first If server j does not
cause bottleneck, we load it up with A%, .4(t —1) requests
per second. We do this one by one. If enough VMs are
operating in bad regions, the choke point detection algorithm
will return true. We base our decision on the fraction of servers
operating in pre-define bad regions. If such a fraction exceeds
a threshold ythen we say the system is choking.

F. Partitioning load between internal and cloud
Let numIntS and Ajne*(t) Let numIntS be the number of
internal servers and Ain.*(t) be the load that corresponds to
our threshold response time Thy.s, for internal servers. We

have,
Ains(t) = Aine " (t) X numIntsS

®)

If Aipne(t) stays unchanged for several previous time win-
dows but the response time of gqRespTime;,;(t) of internal
servers is still above or below Thyegp, then it means that our
A (t) estimation is not accurate. We will reduce or add

int
N (t+1) by 81 where 8; can be x% of A, (t) for the next

int

time window t + 1. Subsequently, 8; = 8, /1.
V. EMULATION EXPERIMENTS

We firs evaluate the effica y of CloudFlex design in
an emulation environment where the workloads are tightly
controlled. Due to space constraints, we only describe the
evaluation of the choke point detection algorithm.

A. Emulation Design

The emulation system has two components: load generator
and simulated servers. The load generator creates multiple
threads, each of which sends requests to the server simultane-
ously. Each thread emulates a client and thus the number of
threads reflect the emulated load. Additionally it calculates
the amount of time the server sleeps to simulate choking as

number of active threads ©6)

The server is implemented as an Apache DSO module that
locally executes heavily CPU-intensive operations and sleeps
for the amount of time given as an HTTP argument. We used
P controller described in Section IV-D.

desired number of threads chokes the system—1

B. Choke points simulation

We start with linear increase in the load as shown in
Figure 6. The number of handled requests scales up linearly
until the system reaches a choke point and our choke point
detection algorithm successfully detects the choke point and
stops scaling up cloud nodes. In the middle of the curve,
we observe a slight decrease in throughput due to additional
workload that exceeds the desired system capacity.

60 T

T
., Throughput({reqg/sec)—

50

30 - I

1 1
1000 1500

Time

2500

Fig. 6. System throughput vs number of cloud VMs

Public

Private I
Cisco Router

x VPN Concentrator
DMZ Firewall @ Test Bed
n f Internal Server:

Corporate
Enterprise
Network

Fig. 7. Physical test bed for CloudStone deployment. Cloud resources are
integrated into enterprise network with Amazon VPC. VPC resources are
isolated from the Internet.

VI. CLOUDSTONE EXPERIMENT

In this section we describe our Cloudstone experiment setup
and the results.

A. Experiment Setup

We collaborate closely with our IT department to de-
velop a testbed that reflect the enterprise environment. The
testbed leverages our enterprise production resources inside
our network. We virtualize the servers with Linux-based
VMWare Workstation and set up Amazon Virtual Private
Cloud (VPC) [1] to integrate enterprise and cloud resources
securely and place the entire testbed behind our corporate
fir wall for security. Figure 7 shows the topology of our
testbed.

We deploy CloudStone [10], a benchmark for evaluating the
performance of a web service. CloudStone includes three main
components: a Faban Markov-chain-based load generator, an
Olio Web 2.0 social networking application, and a structured
database. We use P controller described in Section IV-D.

B. Maximum allowable load \},, and A}, ,

In this experiment, we attempt to determine the maximum
allowable load for both internal and cloud physical servers. In
particular, we pick a server (either internal or cloud worker)
and configur the Faban load generator to gradually increase
the workload toward it. The tuning knob is in terms of the

number of concurrent users. Figure 8 plot the cdf of service
response time versus different workloads for internal and cloud
workers.

We observe the tradeoff between service response time
versus workload as in our model in Figure 3. For example,
with threshold T4, = 1000ms and percentile of 95%, the
allowable loads of internal and cloud nodes are 50 and 30
users respectively. By examining the service request logs, we
found that these are equivalent to A}, = 80 requests/sec and
Nioua = 600 requests/sec. Note that the requests are not homo-
geneous, i.e. certain requests are more expensive than others;
however we experimentally observe that these parameters are
conservative and reasonably consistent.

We measure the RTT between any two internal and cloud
nodes to be 27 ms. In Figure 8b, the minimum response time
of a cloud worker is at least 54 ms, i.e. 2-RTT. We found
the reason is that both the load balancer and the database
stay inside the enterprise network; any requests directed to the
cloud would incur an additional RTT to query the database.

0.8 / 0.8
0.6
10 usefs
20 use
0.4 4

§ / [30 usefs 047
0.2 0.2

0 400 800 1200 1600 2000 0 400 800 1200 1600 2000
time (ms) time (ms)

10 usefs
20 use
[30 usefs

cdf
@

cdf
@

A
A
/

(a) Internal worker (b) External worker

Fig. 8. CDF of service response time of a single worker

C. Controller evaluation

Figure 9 shows that our controller converges in terms of
the number of cloud usage. The total number of internal and
cloud nodes are 5 and 20 respectively. In particular, with 100
concurrent users, the system scales out to 3-4 cloud nodes
within 4 minutes. With 200 concurrent users, the system uses
8-9 cloud nodes after 6 minutes.

VII. RELATED WORK

Load balancer design from L2 to L7 for server, fir wall
and cache is a mature technology [7]. However, load balancer
typically assumes a fi ed set of servers in normal conditions.
Load balancing and Auto-scaling exclusively using cloud
VMs has been offered as a service by Amazon [3], [2]
and Rightscale [9]. Lim et al [8] and Demberel et al [4]
have proposed controller designs for applications using only
cloud resources. Cloud-aware load balancing and scaling using
both enterprise internal and cloud resources has not been
studied as far as we know. Using both internal and external
resources introduce new challenges such as secure connection
between enterprise and cloud, and its throughput penalty;
performance difference between enterprise servers and cloud
servers. Whether to use internal or external servers depends

0 -
4 !
. L Nt
w
-]
°
g 7
T 6
2 [P 100 usprs
2 5 ¥ 200 U
5 200 U
s 4 J——_\
=]
§ 3 e o S
2
1
] t
0 5 10 15 20 25
tima {min)
Fig. 9. Convergence in usage of cloud nodes

on the performance and cost tradeoff. We also detect system
choke points and dropping requests when the system reaches a
choke point. Our control target is response time of application
request while [4] uses CPU load.

VIII. CONCLUSION

We have built a system called CloudFlex. CloudFlex enables
enterprise to seamlessly use both internal and cloud resources
for handling application requests. Our system addresses issues
with system choke points, cloud resource responsiveness, and
load balancing. Our scaling algorithm is general and does not
depend on application details; it is based on general feedback
control principles. We have built a testbed that consists of
internal machines and Amazon EC2 instances. Our evaluation
shows that CloudFlex react effectively to changing system
loads; it properly scales out to the cloud as load increases and
scales back in as load fades. CloudFlex operates in a stable
manner with no observed instability.

IX. ACKNOWLEDGEMENT

We are very grateful to the indepth discussion on conver-
gence with Sem Borst and Sasha Stolyar at Bell Labs.

REFERENCES

] Amazon AWS. Amazon virtual private cloud.

2] A. AWS. Amazon auto-scaling. http://aws.amazon.com/autoscaling.

] A. AWS. Amazon elastic load balancing. http://aws.amazon.com/
elasticloadbalancing.

[4] A. Demberel, J. Chase, and S. Babu. Reflect ve control for an elastic
cloud application: An automated experiment workbench. In First
Workshop on Hot Topics in Cloud Computing (HotCloud), June 2009.

[5] M. A. et al. Above the clouds: A berkeley view of cloud computing.
Technical Report UCB/EECS-2009-28, UC Berkeley, 2009.

[6] G. Inc. Gartner says worldwide cloud services market to surpass $68
billion in 2010. http://www.gartner.com/it/page.jsp?id=1389313, 2010.

[7]1 C. Kopparapu. Load Balancing Servers, Firewalls, and Caches. Wiley,
2002.

[8] H. Lim, S. Babu, J. Chase, and S. Parekh. Automated control in cloud
computing: Challenges and opportunities. In Workshop on Automated
Control for Data Centers and Clouds (ACDC), June 2009.

[9] Rightscale. Rightscale adaptable automation engine. http:/www.

rightscale.com/products/features/adaptable-automation-engine%.php an-

note = .

W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen, H. Wong,

A. Klepchukov, S. Patil, O. Fox, and D. Patterson. Cloudstone: Multi-

platform, multi-language benchmark and measurement tools for web 2.0,

2008.

[10]

