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ABSTRACT
Information on network host connectivity patterns are im-
portant for network monitoring and traffic engineering. In
this paper, an efficient streaming algorithm is proposed to
estimate cardinality distributions including connectivity dis-
tributions, e.g. percent of hosts with any given number of
distinct communicating peers or flows.
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1. INTRODUCTION
Understanding the communication connectivity patterns

between network hosts, such as the number of distinct desti-
nations or flows for each host, is important for many network
management functions. Often, changes in the connectivity
patterns will be reflected through changes in the cardinality
distributions defined over these distinct counts (a distinct
count is also called cardinality). Such distributions are very
useful in network traffic monitoring and diagnostics. If the
number of peers for many hosts increases over time as a
result of increasing number of peer-to-peer (P2P) hosts, a
new mode of the cardinality distribution may appear for the
common number of peers that the P2P hosts are communi-
cating with. On the anomaly detection side, if the number
of peers for many hosts has a sudden increase as a result
of attack activities such as port scans, the cardinality dis-
tribution may have a shift in its mode. Such distributional
changes cannot be easily detected using marginal aspects
such as entropy.

In this paper, we present a novel statistical approach for
efficient online estimation of the afore-mentioned cardinal-
ity distributions in network traffic: given a number n, how
many IP addresses communicate with n different destina-
tions or has n number of flows as observed in a network.

Copyright is held by the author/owner(s).
SIGMETRICS’08, June 2–6, 2008, Annapolis, Maryland, USA.
ACM 978-1-60558-005-0/08/06.

A naive solution would be estimating the cardinality for
each host, which is memory expensive for a high speed large
network. Instead, our approach maintains only a Flajolet-
Martin sketch (at most 32 bits) [4] per host and then obtains
accurate online estimation using likelihood inference that
aggregates the information from individual hosts efficiently.
We demonstrate its excellent performance using both corpo-
rate and university network traces for detecting anomalies
and P2P connectivity pattern discovery.

Prior work on traffic feature distributions has focused pri-
marily on volume [2, 5]. Marginal aspects such as cardinality
counts (e.g. counting active flows) [3] and entropy men-
tioned above (e.g. entropy of packets over various ports)
have been a subject of great interest.

2. METHODOLOGY
For simplicity, we demonstrate the approach under the

scenario of estimating the host-peer counting distribution in
a network. Let m be the number of hosts to be monitored.
If there are too many hosts, we apply a uniform sampling
procedure to obtain m sampled hosts.

Our approach consists of two modules: 1) online stream-
ing using continuous Flajolet-Martin sketches [1]; 2) distri-
bution estimation at the end of each measurement epoch
using an EM algorithm. The online streaming module main-
tains a record (at most 32 bits) for each host. Let Y be a
hash table of size m initialized with values 1. We are inter-
ested in hosts with attribute t (e.g. internal hosts) from a
packet stream T . Let g be a universal hash function that
maps an IP pair to a uniform random number in [0,1]. Let h
be a universal hash function that maps an IP to a number in
{1, · · · , m}. Given the attribute filter function t, universal
hash functions g, h, and the number of hosts m, the online
streaming module is summarized in Algorithm 1.

Algorithm 1 Algorithm for updating sketches

1: Initialize a hash table Y of size m with values 1.
2: for each new packet with IP pair (s,d) of T do

3: If t(s) == 1, hash s to a bucket i = h(s), and update Y[i]
by min(Y[i], g(s, d))

4: If t(d) == 1, hash d to a bucket i = h(d), and update Y[i]
by min(Y[i], g(d, s))

5: Return Y at the end of a measurement epoch.

Let N be the number of peers that a random host com-
municates with. Since each host-peer corresponds to a uni-
form random number, the record Y for that host is the
minimum of N independent uniform random numbers. Let
Z = − log(1 − Y ), then Z is distributed as ε

N
, where ε is a
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Figure 1: Mode shift in the host-flow counting

distributions during Witty worm outbreak.
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Figure 2: Difference of host-peer counting dis-

tributions between a large corporate network

and a large university network.

unit exponential random number independent from N . The
target is to estimate the distribution of N from the vector
Y, whose components are independent. We parameterize
the distribution as follows: let p = (p0, · · · , pK)T be the
probability vector such that P (N ∈ {2k, · · · , 2k+1 − 1}) =
pk, k = 0, · · · , K, where K is a specified upper bound for
log2(N) and

P

K

k=0
pk = 1. The estimation module for p is

carried out using an EM algorithm and summarized in The-

orem 1. Let fk(z) = q2
k

(1−q2
k

)/2k(1−q) with q = e−z. Let
a(z) be the column vector of −{ d

dz
(fk(z)) : k = 0 · · · , K}.

Theorem 1. Given a hash table Y of size m from the on-
line stream module, the maximum likelihood estimate (MLE)
of p is unique unless the number of distinct values in Y is
less than K+1. The MLE can be obtained from the iteration
below no matter what starting point on the simplex is used:

p ←
1

m

m
X

i=1

p · ai

pT ai

, (1)

where ai = a(− log(1 −Y[i])) and p · ai is a column vector
defined by component-wise products of p and ai.

3. EXPERIMENTAL STUDIES
We now evaluate our algorithm on two real network traces.

The first one is a trace collected at a large corporation’s
gateway router on March 19 and 20 of 2004, during which
the network was hit by the Witty worm. The corporation’s
IP address space consists of two /16 address blocks, most
of which are not used. The second one is one-hour trace
collected at a large university’s gateway router in the day-
time of a weekday in Feb 2006. Its IP address consists of
one /16 address block, about half of which is used. The
corporate trace has about 131,000 internal hosts, and the
university one has about 46,000 internal hosts. The space
requirements of implementing our algorithm for these two
networks are about 0.5M and 0.2M bytes respectively.

1). Distributional change during unusual events. Figure 1
shows the flow cardinality distribution (histogram) of inter-
nal hosts from trace 1 in 4 periods, each lasting for about 6
hours. Before the worm outbreak starting at about 11:45PM
March 19, 2004, the mode is around 8-16. However, after

that, the mode shifts significantly from 8-16 to 16-32, caused
by external worm scanning. A closer look at the trace tells
that the 8, 16 modes before worm outbreak are due to about
10 external hosts that scan at least half of the internal ad-
dresses. The long tail is due to the corporate servers such
as VPN, DNS, etc. The estimation error is within 2%.

2). Connectivity patterns suggest P2P existence. We now
compare the host-peer distributions for internal hosts be-
tween the corporate and university networks. The estima-
tion error is within 2%. For trace 2 (university network), the
bottom panel of Figure 2 tells that the distribution has two
modes around 4 and 256 respectively. There are around 30%
internal hosts for which the number of communicating peers
is around the mode 256. A closer look at the trace reveals
that a large amount of bi-directional traffic is exchanged
among these hosts, which indicates that these hosts are very
likely running P2P applications. In contrast, for the corpo-
rate network, the upper panel of Figure 2 shows that more
than 98% of internal hosts have a single mode, with 4 to 64
communicating peers. This demonstrates that the host-peer
connectivity patterns can vary dramatically among different
organizations, depending on the applications.
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