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Abstract—Understanding the aggregate behavior of network
host connectivities is important for network monitoring and
traffic engineering. One characterization of such an aggregate
behavior is the host distributions of distinct communicating
peers or flows. For example, during the worm outbreak, the
port scanning activities would cause many hosts with increasing
number of (one-way) peers (or flows), and hence a change in
the host distributions of distinct communicating peers or flows.
In this paper, we develop an efficient streaming algorithm for
tracking these host distributions of distinct elements, also called
cardinality distributions, for a high speed network with a large
number of hosts. Our approach utilizes the continuous Flajolet-
Martin sketches, which is the minimal order statistics of hashed
values, as a compact data summary and develops maximum
likelihood estimates of these distributions. By leveraging the
aggregation of many hosts, we are able to obtain very accu-
rate estimates of the cardinality distributions by maintaining a
compact statistical summary that is as small as one number (at
most 32 bits) per host. Extensive experimental studies are carried
out to demonstrate their excellent performance.

Index Terms—Network Measurement, Data Streaming, Car-
dinality Distribution, Mixture model, Expectation-Maximization.

I. INTRODUCTION

Network traffic analysis has become increasingly important
for various network management functions such as traffic
engineering and anomaly detection and response. Due to
the high traffic volume in the high speed networks, it is
extremely useful to derive succinct summary information that
can characterize the traffic behavior pattern as a whole. One
of the most useful characterization of the aggregate behavior
pattern is the network feature distributions. Prior work has
focused primarily on distributions concerning traffic volume.
For example, the flow size distribution (given a flow size s,
find the number of flows with size s) is studied in [12], [23],
[28], where a flow is a sequence of packets that share the
same five tuples of (source IP, port, destination IP, port and
protocol), and the inverse distribution of packet contents (given
n, find out the number of strings with frequency n) is studied
in [21]. Distributional aspects such as entropy (e.g. entropy
of the packet distribution over various ports) has also been a
subject of current interest [6], [24], [25].

Despite many work on feature distributions concerning the
traffic volume, little attention has been paid on traffic feature
distributions involving distinct counts, such as the number of
destinations or flows for each host. These distributions are very

useful for characterizing the communication connectivity pat-
terns between hosts inside a network and across the Internet,
which are not captured by the volume data. Understanding
such a pattern is in no doubt useful for network service
providers to manage their network more efficiently.

On the traffic engineering side, if the number of peers
for many hosts increases over time, this may indicate that
the number of peer-to-peer (P2P) hosts is on the rise, which
may further alert the network provider to improve its traffic
engineering solution for the P2P traffic [26]. Statistically, the
distribution of number of peers per host may have changes in
its mode in such scenario: a new mode may appear for the
common number of peers that the P2P hosts are communi-
cating with. On the anomaly detection side, if the number
of peers for many hosts has a sudden increase, this may
indicate attack activities such as port scans. The distribution
will have a shift in its mode. Unfortunately, such distributional
changes cannot be easily detected using marginal aspects
such as entropy, mean or variance. For example, a shift in
the mean of a distribution with no shape change will not
change the entropy. Good estimates of the distributions in
real time will be necessary for capturing all such changes.
Besides estimating the cardinality distribution for all hosts
going through a high speed provider router, or all hosts inside a
stub network, one may also specifically monitor the cardinality
distribution for each group of IP addresses. For example, in
Botnet detection, once the set of candidate bot controllers are
identified [22], there is a need to monitor their behavior. One
may want to monitor the cardinality distribution of the peers
of each candidate controller. This distribution can identify
whether many of them are actively “working for” the bot
controller. New attacks will result in changes of the cardinality
distribution.

In this paper, we are interested in estimating the afore-
mentioned distinct count, or cardinality, distributions in net-
work traffic: given a number n, how many IP addresses
communicate with n different destinations or has n number
of flows as observed in a network. Unfortunately, methods
developed for estimating traffic volume distributions do not
directly apply here, simply because the traffic volume and
cardinality are intrinsically different quantities: the traffic
volume is additive, but the cardinality is not. As a result, it
is easy to compute individual volumes, but hard to compute
individual cardinalities. For example, to obtain the flow count
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for a host, one needs to build either a hash table, bitmap
or Bloom filter that keeps track of existing flows to avoid
duplicate flow records resulting from packets from the same
flow. Let T be the total number of flows of all hosts under
study, then these straight-forward counting methods would
consume O(T ) memory space which is too costly.

Instead of the above counting methods for individual hosts,
another solution is to derive the distribution from approximate
counts using distinct counting algorithms such as the well-
known probabilistic counting that employs Flajolet-Martin
(FM) sketches [17], or sampling based methods such as
[7], [16]. Using the Super-Loglog counting algorithm [2], an
improved version of probabilistic counting, it is shown that
for a relative error ε, one needs a memory space of about
1/ε2 log2 log2(n) sketches for a host with cardinality n. For
example, for a host with cardinality n = 1, 000, 000, to achieve
ε = 0.05, even with 5 bits per sketch, this would imply about
10,000 bits. Furthermore, notice that the design needs to be
uniform over all hosts, since one does not know whether any
particular host has a small cardinality or not before the end
of the traffic stream. Although 10, 000 bits seems small for an
individual host, it can become formidable when we multiply
by the number of hosts m, which can be large for a high speed
network. For example, when m is 100,000, the total memory
would be 1G bits of SDRAM or 100Mb even if only 10%
hosts are sampled. Needless to say, using this approach, for
a network with many hosts, we cannot afford to count their
cardinalities accurately.

In this paper, we develop an efficient solution for estimating
the cardinality distributions. Our solution does not rely on
counting the cardinalities of individual hosts accurately, but
rather, we aggregate the information of individual cardinali-
ties in an optimal way using statistical inference. Note that
tracking individual host cardinalities accurately is sufficient
but not minimal sufficient (see [3]) for obtaining accurate
distribution estimation. The key insight of our solution lies
in the fact that for a high speed network with many hosts,
the minimal sufficient statistics for distribution estimation (or
histogram) are groups of hosts whose cardinalities are close
to each other (i.e. within bins). Our solution uses the FM
sketches as summary statistics, but we only need to maintain
one random number (at most 32 bits) per host when the
number of hosts is large. The closeness of cardinalities is of
course not observable, but is probabilistically equivalent to
the closeness of the corresponding hosts’ FM sketches which
can be ’grouped’ from statistical inference. We develop a
maximum likelihood estimate of the cardinality distribution
of network traffic, and analyze its accuracy. Most importantly,
our algorithm is a computationally efficient online streaming
algorithm, thus relieving the burden of storing large volume of
traffic data. For the prior example, we only need one sketch per
host and thus the total memory is at most 3.2Mb as opposed to
1Gb, or 0.32Mb as opposed to 100Mb if only 10% hosts are
sampled. In fact, our algorithm achieves very good accuracy
in both simulation and trace-based evaluation. Even with 10
sketches per host, the straightforward application of sketches

can still have an error more than our algorithm. Therefore,
the space requirement of our algorithm is at least an order of
magnitude smaller than the straightforward approach.

Our major contribution can be summarized as follows.
We propose a simple summary statistics (minimum order
statistics) and the first algorithm for estimating the cardinality
distributions of a large number of hosts in a high speed
network. Maximum likelihood estimate of the distribution is
obtained with discretized bins. The algorithm only requires
updating one number (at most 32 bits) for each host and thus
is both computationally and memory efficient. Simulation and
trace studies are carried out to demonstrate its effectiveness
in network monitoring under a variety of conditions such as
anomaly detection.

A 2-page extended abstract of our preliminary results has
appeared in ACM SIGMETRICS’2008 [9].

A. Outline of the Paper

The structure of the paper is as follows. In Section II, we
propose to use the continuous FM sketches as the summary
statistics which can be updated in real time with cheap
operation and describe the log scale histogram model for
the cardinality distribution. In Section III, we develop the
algorithm for estimating the distribution with discretized bins
and describe how to compute confidence intervals. Simulation
studies and comparison with a naive approach are carried out
in Section IV. Trace studies are carried out in Section V
to demonstrate the effectiveness of our approach in anomaly
detection and identifying connectivity patterns in a large
corporate network and a university network.

II. DATA STREAMING USING SKETCHES

In this section, we first describe our system model. We
then describe the continuous version of FM sketches [8], [17],
[19] that our statistical model is based on. Finally, we derive
statistical models of cardinality distribution from the sketches.

A. System Model

Our overall architecture consists of two modules: the on-
line streaming module and the statistical estimation module.
The on-line streaming module is updated upon each packet
arrival. The estimation module proceeds in epochs. At the
end of each measurement epoch, the sketch values for all
hosts collected will be passed to the estimation module. The
estimation module will produce an accurate estimate of the
cardinality distribution using maximum likelihood.

B. Continuous FM Sketch

Below we describe the continuous Flajolet-Martin sketches
for estimating the distribution of N , where N is the number of
distinct peers (as a working example) that a randomly chosen
host communicates with. For simplicity, we assume that a
medium size network (say 10,000 hosts) is under monitoring,
and that we can only afford recording one number, say Y ,
for each of its hosts. For a very large size network, one can
maintain the sketches for uniformly sampled hosts. We are
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only interested in hosts that meet certain criteria (denoted as
t) from the data stream T (e.g. sampled hosts). Let g be a
universal hash function that maps an IP pair to a uniform
random number in [0,1]. Given the criteria filter function t,
universal hash functions g, and the number of hosts m, the
on line streaming module is summarized in Algorithm 1. We
assume that there are a set of at most m hosts of interest that
can pass the filter function t. Let Yi, initialized with 1, be the
number associated with host i. For each packet arrival, let e
denote the (host,peer) IP pair, and update the record of the
host, say i, by

Yi = min(Yi, g(e)), (1)

where g is a uniform random number generator using seed e.
At the end of a measurement epoch, Yi is the minimum of Ni

uniform random numbers associated with host i, which has Ni

distinct peers. In high probability, the larger Ni is, the smaller
Yi is. Thus the magnitude of Yi provides information for Ni.

Algorithm 1 Algorithm for updating sketches
1: Initialize a hash array Y of size m with values 1.
2: for each incoming packet with IP pair (s,d) of T do
3: If t(s) = 1, update Y [s] by min(Y [s], g(s, d))
4: If t(d) = 1, update Y [d] by min(Y [d], g(d, s))

5: Return Y at the end of a measurement epoch.

We call (1) the continuous Flajolet-Martin (FM) sketch,
because the classical Flajolet-Martin sketch uses a geomet-
rical distribution which is discrete. The purpose of using
’continuous’ is to keep technical complexity to minimal. In
actual implementation, discrete random numbers generated by
universal hash are used. The error introduced by discretization
has been studied and found to be ignorable according to [8].

C. A discrete model

To estimate the cardinality distribution for a network, one
can of course estimate the cardinality of each host individually,
using existing probabilistic counting algorithms, e.g. [13] or
[1], [2], [18]. As an example of them, we call the following
one as the naive FM approach for estimating the cardinality
distribution: 1) use a few FM sketches for each host that record
the minimal statistics independently, 2) estimate the cardinality
of each host using the corresponding FM sketches, 3) compute
the histogram as an estimate of the cardinality distribution. We
will show later that this approach is not efficient to derive a
good estimate. We next describe a log scale histogram model
for the cardinality distribution, denoted as F . The estimation
approach and analysis follow in next sections.

Since the goal is to estimate the cardinality distribution, say
Ni ∼ F , the hosts are considered independent and thus the
cardinality of each host can be treated as a random sample
from F .

Notice that the cardinality takes values of positive integers,
and its distribution usually has heavy tails (see extensive
distribution examples from trace studies in later sections). For

simplicity, we model F using histogram in the log2 scale, that
is, we assign bins to

1, {2, 3}, · · · , {2K , 2K + 1, · · · , 2K+1 − 1}
where 2K+1 is assumed to be the upper bound of the cardinal-
ities. One can truncate the right tail into one bin if it is more
than 2K+1. Then assign weight pk to bin {2k, · · · , 2k+1−1},
for k = 0, · · · , K, where

∑K
k=0 pk = 1. In other words, the

log scale histogram model is:

P (N ∈ {2k, · · · , 2k+1 − 1}) = pk (2)

with a total of K + 1 bins. Notice that it is not possible to
track the probabilities of all values within each bin accurately.
As an approximation, we do not differentiate the probabilities
at integers within each bin, and they are modeled with equal
probabilities, i.e. for j ∈ {2k, · · · , 2k+1 − 1},

P (N = j) = 2−kpk.

Thus the cardinality distribution F can be characterized by
parameters p0, · · · , pK . Let p = (p0, · · · , pK)T , then p falls
onto the simplex space pk ≥ 0 and

∑

pk = 1. Since this
simple model is only an approximation to F , estimates of p

may be biased under this model. However, this simple model
is a reasonable approximation and allows us to estimate the
probability of each bin quickly and accurately as we will show
later.

III. STATISTICAL INFERENCE

In this section, we develop the Maximum Likelihood Es-
timate (MLE) of the cardinality distribution under the statis-
tical models discussed in Section II-C. We first derive the
log-likelihood function of the unknown parameter p, and a
computationally elegant EM algorithm for obtaining the MLE.
We then construct the confidence intervals of the estimate.

A. Maximum likelihood Estimation via EM Algorithm

By the Fisher information theory, for a model with fi-
nite parameters, an estimate that maximizes the (logarithmic)
likelihood function (MLE) with given data is most efficient
under regular conditions [3]. Below we derive the likelihood
function of the histogram parameters p given the continuous
FM sketches Y1, · · · , Ym associated with m hosts. We list the
following simple fact for technical convenience.

Lemma 1: Let Y = min(U1, · · · , Un), where U1, · · · , Un

are n independent uniform random numbers. Then − log(1−
Y ) follows an exponential distribution with mean 1

n .
Following [8], we will use the transformed values − log(1−

Yi), for simplicity still denoted as Yi, i = 1, 2, · · · , m, to
estimate the distribution F . Based on Lemma 1, we have that
for the ith host, there exists a unit exponential random number
εi such that

Yi =
εi

Ni
,

where Ni is the cardinality of the i-th host. To be convenient,
we omit the subscript i of Yi, εi and Ni whenever there is no
confusion.
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From the above, the tail probability function of Y can be
written as:

P (Y ≥ y) = E
[

e−yN
]

(3)

Using the log scale histogram model, after some calculus, we
have,

E
[

e−yN
]

= p0e
−y +

K
∑

k=1

pk

2k

2k+1
−1

∑

i=2k

e−yi

= p0q +
K

∑

k=1

pk

2k
× q2k

(1− q2k

)

1− q
,

where q = e−y. Define for k = 0, 1, · · · , K, and y > 0,

fk(y) =
q2k

(1− q2k

)

2k(1− q)

and let f(y) = (f0(y), · · · , fK(y))T be the column function
vector. Then,

E
[

e−yN
]

= pT f(y).

Now the probability density function (PDF) of Y can be
obtained from the derivative of the tail probability function,
1− P (Y ≥ y). This is summarized as follows.

Theorem 1: Given the log scale histogram model (2) with
parameters p for the distribution of N , the probability density
function of Y can be written as

pY (y,p) = pT f
′

(y), (4)

where f
′

(y) = −(f ′

0(y), · · · , f ′

K(y))T , and

f ′

k(y) = −
{

q2k

(1− 2q2k

)

1− q
+

2−kq2k+1(1− q2k

)

(1− q)2

}

(5)

is the derivative of fk(y). That is, Y follows a mixture
distribution with component density functions f

′

(y).
The proof follows from basic calculus and is omitted. It can

be verified that each component of f
′

(y) is nonnegative and
the integral of each component function for y ≥ 0 is 1, and
thus each component of f

′

(y) is in fact a probability density
function, which validates the result of the above theorem. Note
that (4) is a linear function of these density functions, which
implies that Y follows a mixture distribution.

Given observations (Y1, · · · , Ym) for m hosts respectively,
the MLE of p can be defined as below:

p̂ = arg max
p

1

m

m
∑

i=1

log(pT f
′

(Yi)). (6)

There is no closed form solution to the above optimization.
It can be seen that this is a convex optimization problem
with constraints. Standard Primal-Dual interior-point type al-
gorithms can be used to solve the optimization when K + 1
is small. However, when K + 1 is large, the convergence
becomes unstable. In our experiences of the optimization with
constraints routine (fmincon) in MATLAB, the convergence
becomes very unstable even for K + 1 as small as 13, which

of course also depends on the input data of Yi. Below we
develop an efficient algorithm where each step is a closed-form
iteration. This is motivated by the fact that the Y distribution
belongs to the parametric family of mixture models, the MLE
of whose parameters can be obtained conveniently using the
Expectation-Maximization algorithm [11]. We summarize the
result in the folling Theorem, whose proof is included in the
Appendix for completeness.

Theorem 2: Let ai = f
′

(Yi). The objective function
∑m

i=1 log(pT ai) is convex, and it is strictly convex and thus
has a unique maximizer on the simplex space unless that the
number of distinct values of Yis is less than K + 1. The
maximizer can be obtained by using the following iteration:

p ← 1

m

m
∑

i=1

p · ai

pT ai
, (7)

where p · a is a column vector defined by component-wise
products of p and ai, no matter what starting point on the
simplex is used.

The MLE of p, i.e. p̂, is thus obtained by the iteration
algorithm described in the above Theorem. Though EM con-
verges slowly with a linear speed, based on our extensive
numerical studies, 100 iterations usually lead to satisfactory
results. We use the above algorithm to compute the MLE of
the distribution parameters p. We note that there have been
some recent work on EM algorithms that can significantly
accelerate its convergence, see [20] and references therein for
details.

In the next subsection, we describe how to obtain the confi-
dence interval for the estimate that calibrates the performance
of the method.

B. Confidence Intervals of the Cardinality Distribution

There are two ways to characterize the performance of the
estimate. One is through asymptotic theory [3] and the other
through simulation methods using bootstrap [14]. The follow-
ing theorem characterizes the asymptotic error distribution.
This provides a way to compute the confidence interval of
the parameter values for large sample size m. Note that there
are only K free parameters since p0 = 1 −∑K

k=1 pk. Let
θ = (p1, · · · , pK)T .

Theorem 3: Assume that the MLE estimate of θ, say θ̂,
is asymptotically consistent. Then it has an error of order
O(m−1/2) and is asymptotically normal, i.e. as m→∞,

√
m

(

θ̂ − θ
)

→ N
(

0, I−1
)

,

where N
(

0, I−1
)

is the multi-variate Gaussian distribution
with zero means and covariance matrix I−1. Here I is the
Fisher information matrix, equal to E

[

∂L
∂θ

∂L
∂θT

]

, and can be
estimated consistently by

Î =
1

m

m
∑

i=1

b(Yi)b
T (Yi)

(pT f
′

(Yi))2
,
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where b(y) = (b1(y), · · · , bK(y))T with bk(y) = f ′

0(y) −
f ′

k(y). Thus for large m, the 95% confidence interval for pk

is given by p̂k ± 1.96√
m(Î−1)kk

, for k = 1, · · · , K.
We note that if m is not large enough relative to the

number of parameters K, the confidence interval obtained in
the above theorem may be inaccurate, because the inverse of
an approximate K×K Fisher information matrix can be very
unstable especially when the number of bins, i.e. (K + 1),
is large. In such cases, we can use the bootstrap method to
estimate the standard deviation and then obtain the confidence
interval. The parametric bootstrap method works as follows
(see details in [14]).

First, repeat the following many times, say 1000 times: 1)
generate the number of peers from the estimated cardinality
distribution with p̂, 2) compute the continuous FM sketches,
and 3) estimate the weight parameters of the log scale his-
togram model for the cardinality distribution. These 1000
replicates give us a sampling distribution of the parameter
estimates. Second, compute the 2.5% and 97.5% quantiles
from the sampling distribution of each parameter which give
the 95% confidence interval.

Statistical theory [3], [14] tells that the bootstrap can
estimate standard errors for complex models in general more
accurately than traditional methods based on Fisher informa-
tion matrix.

IV. SIMULATION

In this section, we use simulations to evaluate our algo-
rithm and demonstrate its excellent performance by reporting
confidence intervals. In order to investigate the generality of
the results, we have tested our algorithms on a variety of
cardinality distributions that have heavy tails and one or more
modes, and we have compared it with the naive FM approach
mentioned earlier. The simulation results validate our claim
in Section II-C. Due to space limitation, we only report the
simulation case with a Pareto (power law) distribution 1 since
it is most popularly used for network traffic modeling.

A. Algorithm Evaluation

We simulate m = 10, 000 hosts and the number of peers
for each host is generated from the Pareto distribution with
lower bound 1 and α-index 1, rounded into integers. Roughly
speaking, 50% of the hosts have only one communication
peer, 25% of the hosts have 2 to 3 peers, 12.5% of the
hosts have 4 to 7 peers, and so on. The black solid line
in Figure 1 shows that the Pareto distribution after binning
follows nearly a straight line in the log2 vs log2 scale. Note
that the probability is also converted by log2 scale in order to
see the linear property.

The continuous FM sketches are obtained according to (1)
described in Section II. That is. for each host, each (host,peer)
IP pair is used as the seed to generate a uniform random
number, and the minimal statistic obtained by all of its peers

1If X follows a Pareto distribution, then for x ≥ xm P (X ≥ x) =
(x/xm)−α, where xm is the lower bound and α is the index. When alpha =
1, EX does not exist.

(transformed by − log(1−u) where u is the minimal statistic)
is recorded for the host. Then we obtain the MLE of p

that characterizes the cardinality distribution modeled by the
histogram in the log2 scale (2). The number of bins is chosen
to be an upper bound for the maximum number of peers of
all hosts. In the simulation, we fix K = 12 and thus there are
13 bins.

We note that to obtain confidence intervals, the Fisher
information matrix approach is not good enough, because the
empirical information matrix with a sample size 10,000 does
not provide a sufficiently accurate estimate for the inverse of
the 12× 12 information matrix. Instead, we use the bootstrap
method to estimate the standard deviation and then obtain the
confidence interval, which is described earlier.

In Figure 1, the dashed line is the estimated value for the
log scale histogram which is very close to the solid line for the
ground true values. The dotted lines are the confidence interval
estimated using the bootstrap method with 1000 replications.
Note that the lower confidence interval after bin 7 is not shown
since it becomes negative while the probability is plotted in
log2 scale. Here we have 13 bins, and the standard error for
the weight estimates for these bins is no more than .002. This
is very small compared with the probability of most bins in
the body distribution.

B. Comparison with the Naive Approach

Here we compare our approach with the naive FM approach,
where the naive FM approach is defined as follows: 1) use a
few FM sketches for each host that recording the minimal
statistics independently, 2) estimate the cardinality of each
host using the FM sketches, 3) compute the histogram in
the log2 scale. Given L independent sketches for a host with
cardinality n, say y1, · · · , yl, then the maximum likelihood
estimate of n is l

P

l
j=1

yj
. Note that for n, the standard method

(e.g. [17]) uses stochastic averaging to avoid multiple hashing
for generating FM sketches, but its performance is not as good
as independent hashing as a compromise.

We generate the cardinality random number for m =
10, 000 hosts from the Pareto distribution the same as in
Figure 1. To apply the naive FM approach, we have tried
a variety number of l. In Figure 2, the solid line shows
the empirical cardinality distribution based on the cardinality
random numbers, the dashed line marked with ’0’ is the
estimate using the MLE method, the dashed line marked with
’1’, ’2’, and so on, are the naive approach with l = 1, 2,
and so on, respectively. The results show that the estimates
using the naive FM approach converge to the true values as
l increases to infinity. We note that it converges quickly for
the right tail distribution part, for example, for bins greater
than 64, the naive FM approach with l = 3 gives similar
accuracy to our approach. However, it converges very slowly
in the body of the distribution, especially for smaller values
of cardinalities, while the memory requirement grows linearly
with l. Even with l = 9, the L1 norm of the estimation errors
is still a little larger than that of the MLE method. Since we
only use one sketch, with the same accuracy, our MLE method
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Fig. 1. Estimating a cardinality distribution and its confidence
curves with simulated m = 10, 000 hosts, where the number of
distinct peers for each host follows a Pareto distribution with lower
bound 1 and alpha index 1.
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Fig. 2. Comparison with the naive FM approach with simulated
m = 10, 000 hosts, where the number of distinct peers for each
host follows a Pareto distribution with lower bound 1 and alpha
index 1.

reduces space requirement by at least an order of magnitude
when compared with the naive approach, and computationally
is also much simpler.

V. EXPERIMENTAL STUDIES

We now evaluate our algorithms using two real network
traces. The first one is a trace collected at a large corporation’s
gateway router in March 19 and 20 of 2004 (trace1), during
which the network was hit by the Witty worm. The corpora-
tion’s IP address space consists of two /16 address blocks, and
most of the addresses are not used. The other one is one-hour
trace collected at a large university’s gateway router in the
daytime of a weekday in Feb 2006 (trace2). Its IP addresses
consist of one /16 address block, about half of which is used.
We use the first one to illustrate the distributional change
before and after the worm outbreak, and use the second trace
to highlight differences in cardinality distributions between
different organizations. The first one has very little peer-to-
peer traffic where the latter has a significant amount of peer-
to-peer traffic. We also report the accuracy of our estimation
algorithms. For all estimation cases below, we randomly
sample 10,000 hosts from each corresponding network or
subnet and the continuous FM sketches are obtained for the
sampled hosts.

A. Changes in Cardinality Distribution During Unusual
Events

Figure 3 shows the flow cardinality distribution (histogram)
of internal hosts in four consecutive time periods, each around
6 hours. The x-axis shows the number of flows; the y-axis
is the fraction of internal hosts in a given bin (a range of
flow cardinalities). Before the worm outbreak, we see that the
distribution has two modes centered at cardinality 8 and 16.
For example, if we look at the bottom histogram for the period
from 6AM to 12PM of March 19, 2004, there are 50% internal
hosts, each of which has between 8 and 15 flows, and there are

40% internal hosts, each of which has between 16 to 31 flows.
A closer look at the trace shows that this is due to background
scanning activities. For example, for the first period, we have
10 external hosts which scan at least half of the address range.
Notice the distribution also has a long tail, which means there
are a few internal hosts with a large number of flows. These
hosts are the servers of this organization such as VPN servers,
DNS servers, etc.

Now let us look up the distributional change around the time
of Witty outbreak. Before the Witty outbreak, the distributional
modes jitter between the bin 3 (cardinality range 8-15) and
bin 4 (cardinality range 16-31) and the top two modes are
the same. As shown in the Figure 3, however, the mode of
the distribution shifts much more significantly when the Witty
worm outbreaks, where the top two modes shift from the bins 3
and 4 (cardinality range 8-31) to bins 4 and 5 (cardinality range
16-63). The figure also tells that our estimate is reasonably
accurate and that the distribution body shift is captured by
the estimate. Errors on all bins are within 4% except for
the distribution after Witty worm outbreak (the top panel).
We also observe that the estimation errors are dominated
by the bias. As a result, the confidence intervals described
earlier are not good measure of the estimation errors. Further
investigation shows that the bias is introduced by the equal
weight assumption within each bin since the bias is reduced
when finer bins are used and then probabilities are merged
according to the logarithmic bins.

B. Cardinality Distributions of Different Organizations

We also obtain estimates of the distribution of the number of
distinct communicating peers for each internal host in trace2,
where the total number of internal hosts is about 44,600.
Figure 5 shows the estimated distribution along with empirical
observations, where the x-axis is the number of peers in log
base 2 scale and the y-axis is the fraction of internal hosts.



7

bins

P
ro

ba
bi

lit
y

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0

0.2

0.4

0.6

0

0.2

0.4

0.6

03/19/2004 6am−12pm

03/19/2004 12pm−6pm

03/19/2004 6pm−11:45pm

03/20/2004 11:45pm−6am

Fig. 3. Change of the cardinality distributions (flow counts) for about 131,000 internal IP addresses before and after the Witty worm outbreak. The panels
bottom-up show the cardinality distributions and their estimates for about six-hour time interval from 6AM, March 19, 2004 to 6AM, March 20, 2004. The
dotted lines show the true distributions and the boxplots show the estimates in 100 simulations. The two thick vertical lines in each panel are the top 2 modes.

We observe that the largest error is less than 2%, which is
contributed mostly by the bias caused by the equal weight
assumption within each bin as above.

We now compare the cardinality distributions of trace1
and trace2. For trace2, we see that there are around 30%
internal hosts with communicating peers ranging from 64 to
1024. A closer look at the traces reveals a large amount of
bidirectional traffic are exchanged between these hosts, which
indicates that these hosts are very likely running peer-to-
peer applications. In contrast, for trace1, from the cardinality
distribution shown in Figure 4, we see that more than 98% of
internal hosts have from 4 to 64 communicating peers. This
demonstrates that the communication patterns in terms of peer
cardinality distributions can vary dramatically among different
organizations, depending on the applications.

C. Cardinality Distributions using traffic subsets

We have presented cardinality distributions where we make
use of both incoming traffic and outgoing traffic. We now
show that, by looking at distribution from incoming traffic
and outgoing traffic separately, interesting observations can be
made. Figure 6 and 7 shows the peer cardinality distribution of
university hosts calculated from incoming traffic and outgoing
traffic respectively. We see that there are around 55% hosts
with number of peers between 1 to 15 for incoming traffic.
The number is 40% for outgoing. This suggests a significant
number of hosts in the first distribution have fewer hosts

than the second one. This is caused by unused IP addresses
which are scanned from external hosts. A closer look at the
trace shows that we have 44,600 hosts in the distribution
of incoming traffic, the number is 29,600 in the distribution
of outgoing traffic. So a significant fraction of unused IP
addresses get scanned. Since the cardinality is small (< 15)
for an hour long trace, the amount of scanning activity is not
very severe.

VI. RELATED WORK

Our work falls in the broader scope of data streaming
algorithms for network traffic analysis. For real time analysis,
streaming algorithms must process the data in one pass as
storing the data would entail a large delay. Such algorithms
have been developed for tracking heavy hitters (top ranked
hosts by traffic volume) [4], [15] and superspreaders [5], [27],
estimating frequency moments [1] and entropy [6], [25], flow-
size distribution [12], [23], and inverse distribution [10], [21].

Most of these algorithms are traffic volume-based summary
information. Even the inverse distribution is volume-based:
given a volume x, how many hosts nx have such x volume
of traffic in a given period of time? Conceptually, one can
maintain a counter per volume denote f(x), and a counter per
IP address i denote g(i). When a new packet with IP address i
and size s arrives, f(g(i)) will be subtracted by 1, f(g(i)+s)
will be incremented by 1 and g(i) will be incremented by s.
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Fig. 4. The peer cardinality distributions of internal hosts of a
large corporate network (in trace1), where the solid and dashed
lines are the true and MLE estimated distributions, respectively.
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Fig. 5. The peer cardinality distributions of internal hosts of a
large university network (in trace2), where the solid and dashed
lines are the true and MLE estimated distributions, respectively.
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Fig. 6. The peer cardinality distributions of internal hosts of a
large university network from incoming traffic (in trace2), where
the solid/dashed lines are the true/MLE estimated distributions.
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Fig. 7. The peer cardinality distributions of internal hosts of a
large university network from outgoing traffic (in trace2), where
the solid/dashed lines are the true/MLE estimated distributions.

These counters do not count distinct elements. Therefore, their
problems are very different from ours.

One notable exception is the work on tracking individual
superspreaders [27]. A superspreader is defined as the host
that communicates with a large number of peers (at least k).
This consists of the right tail part only of the distribution we
are estimating in this paper. Their solution requires two hash
tables, each of size c1N/k where c1 is constant, N is the
number of unique source destination pairs. In contrast, we
maintain a sketch (< 32 bits) per source. In addition, they only
consider supspreaders in terms of communicating peers, not
in terms of flows. Our algorithms deal with flows gracefully
without increasing the space requirement.

VII. CONCLUSION AND FUTURE WORK

Real time tracking of summary information in network
traffic is crucial for many network functions such as network
monitoring and traffic engineering. If these summary informa-

tion changes, network operators may want to understand the
causes and respond accordingly. Previous work has focused
on flow size distribution, entropy of various packet feature
(IP addresses and port numbers) distributions. In this paper,
we investigate the cardinality distributions of communicating
peers or flows of hosts. Cardinality distributions can capture
events in the network traffic that may not register in volume-
based distributions. We propose a simple summary statistics
and an efficient algorithm for estimating cardinality distribu-
tions. It is efficient in both space and computational time. In
terms of space, we only require one (at most 32 bit) random
number per host. For each packet arrival, we only needs one
random number generation and one comparison for updating
one of the sketches. Our estimation approach is based on the
maximum likelihood method and thus is optimal in terms of
statistical efficiency. We have also developed a simple and
fast algorithm derived from Expectation-Maximization which
can be computed quickly. Notice that our approach is scalable
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due to the nice property of continuous FM sketches even
when some hosts have a huge number of cardinalities. This
is advantageous over purely sampling based methods, which
requires a good but hard to design sampling rate (see [7]).

For future work, we would like to classify cardinality
distributions in terms of the traffic direction. The motivation
is that two-way traffic are usually legitimate, which consists
exchanges between clients and servers, or between P2P hosts.
One-way traffic is typically illegitimate, which consists of
mostly failed connections due to port scanning. Therefore,
it is more useful to separate the traffic into different classes
and study their cardinality distributions separately. Inside a
provider network, routing may not be symmetric, therefore, it
is challenging to obtain these directional distributions. Another
technical difficulty is that separating traffic into different
directions cannot be easily done without a peer (or flow)
lookup table which may consume a large amount of memory.

VIII. APPENDIX

Proof of Theorem 2.
Proof: We only need to derive (7). Let C ∈ {0, · · · , K

be a random number with probability P (C = k) = pk,
k = 0, · · · , K. Then Y can be obtained as follows: generate a
random number from the C distribution, if it is k, then generate
Y from the distribution corresponding to density function f

′

k.
The likelihood function of (Y, C) can be written as

p(Y, C) =
K
∏

k=0

p
I(C=k)
k f

′

k(Y ).

Thus given complete data {(Yi, Ci) : i = 1, · · · , m}, the
logarithmic likelihood function is

L =
m

∑

i=1

K
∑

k=0

I(Ci = k) log pkf
′

k(Yi).

Since Cis are not observed, the EM algorithm first estimates
the expectation of L given Yis and p(old), for which we need
to compute P (Ci = k|Yi,p

(old)) (E-step). and then maximize
the expected L with respect to p to obtain p(new)(M-step).
By the Bayes rule, the E-step is equivalent to computing

πik = P
(

Ii = k|Yi,p
(old)

)

=
p
(old)
k f

′

k(Yi)
∑K

k=0 p
(old)
k f

′

k(Yi)
.

Then the expected L becomes
∑m

i=1

∑K
k=0 πik log

(

pkf
′

k(Yi)
)

, for which the optimization
has closed form. That is, the M-step becomes

p
(new)
k =

∑m
i=1 πik

m
.
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