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ABSTRACT
The current Internet architecture supports open connectivity,
i.e., any host can send traffic to any other host. This has re-
sulted in a number of security problems such as Distributed
Denial-of-Service (DDoS) attacks, worms etc. In this paper,
we propose ACACIA—A Certificate-based Access-Controlled
Internet Architecture. In ACACIA, a source must first ob-
tain an access certificate in order to send packets to a des-
tination. This access request is routed through a separate
DDoS-resilient access control infrastructure (ACI). The ACI
is based on Distributed Hash Table-based servers that iso-
lates attack requests using a load-adaptive replication strat-
egy. The ACI only forwards legitimate requests to the desti-
nation node, which then issues an access certificate to the
source. Packets with valid(invalid) access certificates are
forwarded(dropped) and legacy packets with no certificates
are forwarded in a low priority queue. ACACIA is designed
to be mobility friendly with the permission dependent on
source and destination identities and not their locations. Us-
ing analysis and trace-driven simulation, we show that ACA-
CIA is highly DDoS resilient.

1. INTRODUCTION
The current open connectivity nature of the Internet has

been plagued by security problems such as host compromise,
Distributed Denial-of-Service (DDoS) attacks, worms, etc.
In order to tackle these vulnerabilities, there has been many
research proposals recently such as [7, 19, 28, 29]. These ef-
forts propose architectural modifications that enable the net-
work to filter and drop un-wanted packets before they reach
their destination.

In this paper, we present ACACIA1, a certificate-based
access-controlled internet architecture. In ACACIA, each
endpoint specifies an access control list that identifies who
can and cannot communicate with it. This access control
list is stored in Distributed Hash Table (DHT)-based access
control servers. A source that wants to communicate with a
destination would first request for “permission to send” from
the access control servers. If the destination access control
policy allows access from this particular source, the access
control servers would contact the destination that would then
issue a certificate to the source. The source can now send

1Acacia also refers to a family of desert trees whose wood is dense
and resilient to penetration by water, insects and other decay agents.

data packets with this certificate as part of the packet header.
Routers or special filtering nodes in the data path in any of
the administrative domains between the source and the desti-
nation would verify the authenticity of this certificate: pack-
ets with valid(invalid) certificates are forwarded(dropped)
and legacy packets with no certificates are forwarded in a
low priority queue.

One way of looking at ACACIA is that it is the next step in
a series of refinements from [1, 18, 26, 28, 29] for a DDoS
resilient Internet architecture. Resilience to DDoS attacks
must be a first-class service at the IP layer and cannot be
performed purely at an overlay layer. This is because, in any
pure overlay-based solution (e.g. I3), if an attacker somehow
discovers the IP addresses of the destination, the destination
nodes are vulnerable to DDoS. Proposals such as [28, 29]
build DDoS resiliency into the IP layer. The most recent
DDoS resilient proposal called Traffic Validation Architec-
ture (TVA) [29] narrows the attack vulnerability window to
a small fraction of the forwarding bandwidth. However, as
argued in [3] and as we show in Section 5, even narrowing
the attack window to a small fraction of the bandwidth still
allows a DDoS attacker to arbitrarily delay access to legiti-
mate sources. In ACACIA, we move the attack vulnerability
window to a separate DHT-based access control infrastruc-
ture. Given its inherent flat architecture with no single points
of failure, DHT is a good match for dealing with DDoS.
We design a load-adaptive replication strategy that isolates
DDoS close to the source of attack. Furthermore, the pool-
ing of DHT server resources of a third party DHT service
provider to fend attacks to many destination sites results in a
cost-effective and scalable way to handle DDoS attacks. The
need for a shared or aggregated solution for handling denial
of service attacks, similar to the Akamai service for handling
flash crowds, has been argued by Dave Clark in [12].

Another way of looking at ACACIA is that it is a gener-
alization of the open connectivity semantics of the current
Internet. The use of an explicit access control list for each
host enables the network to control reachability according to
the needs of each host. In this light, ACACIA is similar to
the “off-by-default” proposal of [7] where most of the nodes
are unreachable unless traffic is initiated by them. While the
authors in [7] propose to overload routers and routing tables
with access control policies, in ACACIA we separate the ac-
cess control infrastructure from the routing data plane for
scalability since access control policies are inherently non-
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groupable using IP prefixes. ACACIA allows destinations
to pro-actively identify legitimate sources via a white-list,
thereby ensuring that a valid source can obtain access to
the destination with high probability. ACACIA also allows
destinations to re-actively pushback attack source identities
via a black-list: this, in effect, allows the implementation of
push-back based filtering schemes such as [19] without the
scalability concerns.

We believe that network access by mobile nodes will dom-
inate the future Internet and thus, mobility friendliness is
critical in any security architecture. By friendliness, we mean
that the access privilege to a destination should not be invali-
dated due to mobility. In ACACIA, we adopt the well-known
principle of location and identity separation [5, 20]. Thus,
each end point or host has both an IP address as well as an
opaque end point identifier (EID). When a legitimate source
requests permission to send to a destination, the destination
issues an access certificate that consists of two parts, con-
sent and binding. The consent allows the source EID to send
packets to the destination EID, and the binding binds des-
tination EID to a destination IP address. Thus, the consent
or permission to send is independent of the location of the
source and destination.

To summarize, we make the following contributions in this
paper. We present ACACIA, a network architecture that al-
lows nodes to control their reachability by explicitly specify-
ing their access control policies. By separating access con-
trol infrastructure from the routing data plane and using a
common DHT-based infrastructure that stores and replicates
access control policies based on a load-adaptive algorithm,
ACACIA is DDoS resilient in a cost-effective and scalable
manner. Furthermore, ACACIA is designed to be mobility
friendly due to the dependence of consent to send on source
and destination identities and not their locations. Using anal-
ysis and trace-driven simulation, we show that ACACIA is
highly DDoS resilient. Finally, we hope that this paper re-
veals important design principles and architecture entities
that can help shape the future Internet architecture.

The rest of the paper is organized as follows. We first
present the design principles behind ACACIA in Section 2.
In Section 3, we present the design of ACACIA and in Sec-
tion 4, we discuss the protocols and algorithms in ACACIA.
We then present the performance evaluation of DDoS re-
siliency of ACACIA in Section 5. In Section 6, we present
a security analysis of ACACIA. We discuss other issues in
Section 7 followed by related work in Section 8 and conclu-
sion.

2. DESIGN PRINCIPLES
In this section, we describe the design principles behind

ACACIA.
Network-based access control: The network must have

the ability to store and enforce access control policies that
are specified both pro-actively and reactively. Access con-
trol policy can be in the form of white-lists and/or black-

lists. A pro-active policy with white-lists allows a set of des-
tinations to communicate freely without being bothered by
anybody else. A reactive policy with black-lists can enable
the support of functionality of filtering-based such as [19].
The network must be able to enforce access control since
performing this function at the destination cannot prevent
DDoS attacks, given the link to the destination will become
the bottleneck.

Pooling of resources: A shared solution is necessary for
cost-effective scaling of defense against DDoS attacks. Con-
sider a set of destinations that needs to deploy resources to
defend against DDoS attacks. If each of those destinations
allocate resources to handle worst-case DDoS attacks that
could be launched from upwards of 10,000 to even a million
nodes, it would be prohibitively expensive and inefficient. A
cost-effective solution would be for a third-party provider to
allocate enough resources to handle these attacks and offer
this as a service to the destination. The need for such a solu-
tion based on pooling of resources has been argued by Dave
Clark in [12].

Attack isolation: An attack on the resources deployed for
DDoS defense must be isolated as close to the source of at-
tack as possible. Isolating an attack close to the source limits
the attacks damage and also helps the pooled resources to be
used effectively. For example, the pooled resources can now
be scaled to handle the largest attack rather than the sum to-
tal of all simultaneous attacks.

Mobility friendly: Nodes should not lose their access
privilege to a destination due to mobility. This principle im-
plies that once a destination has granted access privilege to
a source, the mobility of the source or the destination should
not result in the need for obtaining a new privilege by the
source from the destination (similarly, in the reverse direc-
tion for a bi-directional flow). Note that this principle is one
choice in the design space of trade-offs between security and
mobility. In fact, this principle sacrifices some security for
mobility friendliness since access privileges can no longer be
tied to a specific source location (replay attacks that launch
duplicate packets from many different locations towards the
destination are thus possible: see Section 6 for more discus-
sion).

Scalability: The architecture must be scalable to billions
of hosts with millions of access control policy specifications.
This principle is self-evident given the size and growth rates
of the Internet. Note that this principle argues for separation
of access control policy from routing since access control
policies are non-groupable by IP addresses due to their very
nature while routing tables perforce group and aggregate IP
addresses for scalability.

Consider the two well-known types of DoS prevention
approaches, filtering and capabilities: a filtering-based ap-
proach such as [19] supports network-based access control,
pooling of resources and limited attack isolation (pushing fil-
ters to source domain has security and policy implications),
but is not mobility friendly and has scalability concerns (fil-
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ters are not aggregatable like routing tables). A capability-
based approach such as TVA [29] provides attack isolation,
scalability and limited network-based access control (data
packets are protected while request packets are not) but is not
mobility friendly and does not support pooling of resources.

3. ARCHITECTURE
We first present an overview of ACACIA, followed by the

challenges in its design, and their solutions. The details of
the algorithms and the protocols used in ACACIA are de-
scribed in Section 4.

3.1 Overview
As mentioned earlier, in our architecture, a host or end-

point is identified by its endpoint identifier (EID) rather than
its IP address. An EID is just an opaque bit string. To
facilitate human readability, an endpoint also has a human
readable identifier (HRI). We use a one-way hash function
to map the HRI to EID. For example, the HRI of CNN using
the ACACIA service could be www.acacia.cnn.com.

In ACACIA, only packets containing a valid permission,
called the access certificate or certificate, are forwarded as
high priority. Packets containing invalid certificates are dropped
while legacy packets with no certificate are forwarded as low
priority. Thus, when a source wants to establish a connection
with the destination, it needs to obtain an access certificate
from the destination.

ACI

DHT

PAs
D

D’s white list(1)AUTHREQ
(1) AUTHREQ

(2) AUTHREPLYPA

PKG

S

(3) Data packets

S’s certificate to D
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ACI ’scertificate to S

D’s certificate to ACI

Payload

Figure 1: ACACIA Architecture

A sample signaling flow for a source and a destination
to obtain access certificates to each other for bi-directional
communication in ACACIA is shown in Figure 1. A source
generates an authorization request (AUTHREQ) message2

to the ACI. Our design envisions an ACI service that is of-
fered by third parties, e.g. Akamai. The AUTHREQ mes-
sage includes in its payload, a source access certificate that
2signaling traffic also needs access certificates; this is discussed
later as part of the bootstrapping mechanism.

authorizes the destination to send traffic to the source. The
AUTHREQ gets routed to an ACI node that handles the des-
tination’s access control policy. If the source is in the black-
list(white-list) of the destination, the AUTHREQ is dropped(forwarded
as high priority). If the source is in neither the white-list
or black-list, the AUTHREQ is forwarded as low priority.
Off-by-default is simply implemented by a black-list that in-
cludes a regular expression denoting all nodes. In the given
example, when the destination receives the AUTHREQ, it
constructs a destination access certificate for the source. It
will then generate a AUTHREPLY message which includes
this certificate. The AUTHREPLY message is sent directly
to the source, bypassing the ACI, since the destination al-
ready has obtained a valid access certificate to communicate
to the source from the AUTHREQ message. At this point,
both the source and destination have access certificates for
each other and can communicate freely. Routers or special
purpose filtering boxes along the path between the source
and destination verify the authenticity of the certificate, pre-
venting unauthorized sources from transmitting packets to
the hosts.

3.2 Challenges
In order to support ACACIA, we need to address the fol-

lowing challenges:
DDoS resilient ACI: How do we design the ACI to be DDoS
resilient?
Access certificate: How do we design the access certifi-
cate to be secure while also flexible enough to be mobility
friendly?
Bootstrapping: How do we provide access certificates to
the signaling messages such as AUTHREQ that are needed
to establish access certificates?

3.3 Entities and Solutions
As shown in Figure 1, ACACIA mainly consists of a con-

trol plane called the Access Control Infrastructure (ACI) and
a data plane where routers verify certificates. A key chal-
lenge in ACACIA is to design a certificate that can be se-
curely authenticated by routers in any administrative domain
while also being mobility friendly. Adding a scalability con-
straint to this results in the need for asymmetric cryptogra-
phy based on public and private keys.

In ACACIA, we employ an identity-based signature (IBS)
scheme since it lowers the cost and complexity of a public
key infrastructure significantly (see [4] for background on
this topic). In IBS schemes, a node’s identity (or its hash)
serves as its public key while its private key is obtained from
a trusted third party called the Private Key Generator (PKG).
A message is signed by an originator using its private key
and the message is verified using the public keys of both the
originator (i.e. its identity) and the trusted third party. One
drawback of IBS-based schemes is that they have high com-
putational overhead for verification - we discuss verification
performance in Section 7. If mobility friendliness is not
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critical, we can trade-off mobility for better verification per-
formance by adopting a path-centric capability-based ACA-
CIA that uses the ACI for transporting capability requests
and replies. Section 7 also describes the design of such a
scheme. For now, we present solutions to address each of
the challenges described earlier that satisfies all our design
principles.

3.3.1 Access Control Infrastructure (ACI)

The Access Control Infrastructure has the following two
main functions. First, ACI has to provide each source with a
fair chance of ensuring delivery of its AUTHREQ to the des-
tination, even in the presence of large number of attackers.
Second, the ACI should control the delivery of the request
based on the policy specified by the destination; the desti-
nation can specify its access control policy both pro-actively
and reactively using white-lists and black-lists.

The ACI maintains a record for each host. The record con-
tains its HRI, EID, and access control policy. ACI must be
scalable and DDoS resilient since we have shifted the vul-
nerability to DDoS attack from end hosts to the ACI. Thus,
we use use a distributed hash table (DHT) to implement the
ACI. The record is stored in one or more ACI nodes (us-
ing multiple hash functions). In order to provide a source
with fair access, ACI nodes maintain two queues: a per-
source queue for AUTHREQs that originate locally and a
per-neighbor queue for AUTHREQs that are forwarded by
neighbors of the ACI. Since the number of sources that can
directly access this node is limited by configuration3, im-
plementation of fair-sharing algorithm over these queues is
scalable.

Since there is no hierarchical structure imposed, the DHT-
based implementation of ACI removes any single point of
failure. Attacks on the ACI can be targeted to specific nodes
or specific objects. In the case of a node-based attack, we
isolate the attack request processing on that node itself, thereby
minimizing impact on rest of the ACI. This isolation is also
important to protect legitimate sources that use this node
since these sources will be queued in a per-source queue and
get their fair share; otherwise, these sources have an even
lower chance of being served (see Section 5 for analysis of
isolation and fair queueing). In the case of an object-based
attack from diverse points into the ACI (indistinguishable
from flash crowds), we design a replication algorithm that
enables the pooling of entire ACI resources to service the re-
quest and thus, protects the destination. Thus, the combina-
tion of fair queueing, and the adaptive isolation and replica-
tion algorithm makes the ACI DDoS resilient. We describe
the details of the replication algorithm in Section 4 and eval-
uate its DDoS resiliency in Section 5.

Note that if the ACI also stores the IP address of the des-
tination EID, the ACI supersedes the functionality of DNS.
This has two main advantages: 1) the IP address of the des-

3Each source is provisioned with access certificates to a few nodes
in the ACI infrastructure - see bootstrapping.

tination is hidden from un-authorized nodes; and 2) vulner-
abilities of the DNS to DDoS attacks no longer affect ACA-
CIA. However, for initial deployment, it is also reasonable
to keep DNS separate from the ACI. In this case, the ACI
uses the DNS to resolve the destination endpoints HRI to an
IP address before forwarding the AUTHREQ to the desti-
nation. Note that, the reverse possibility, i.e. extending the
current DNS system to incorporate the role of ACI, is not
attack resilient. This is because the hierarchical nature of
the current DNS has many vulnerabilities. For example, any
root of a subtree can be a single point of failure for all the
descendant servers.

3.3.2 Access Certificate

In IBS, each host requires a PKG to provide it with private
keys. In ACACIA, the ACI issues HRI, EID and the corre-
sponding private key for each host. The specific entity within
ACI that issues private keys for hosts is the aci-PKG. Note
that the aci-PKG only needs to issue keys during host sign-
up and when keys need to be periodically changed. Thus,
the aci-PKG is mostly off-line.

The access certificate contains two IBSs, a consent and a
binding. The consent verifies that the source EID has per-
mission to send to the destination EID while the binding
binds the destination EID to the destination IP address.

The consent is generated by the destination for each AU-
THREQ. The destination has a private key issued by the ACI
PKG (aci-PKG) while the destination EID is its public key.
The consent signature includes the source EID, destination
EID, and the public key (index) of the well-known of ACI
PKG. The router verifies this signature using the two public
keys, the destination EID and the public-key of the aci-PKG.

The destination host by itself cannot generate the binding.
Otherwise, any attacker can impersonate the destination by
generating a valid consent and a valid binding claiming that
they are located at a victim’s IP address. Thus, the binding
must be signed by a trusted entity. In ACACIA, the binding
is generated by the entity that owns the destination address.
This entity is referred to as the Prefix Authority (PA). When
the PA obtains its prefix address space, it is also issued a pri-
vate key by the prefix Private Key Generator (pref-PKG) of
the root authority of IP addresses, ICANN. The PA’s public
key is the prefix itself (its identity). This trust relationship
is similar to the address PKI proposed in [15, 16]. Thus, the
binding signature includes the destination prefix, the pub-
lic key (index) of the well-known public key of pref-PKG,
destination EID and its IP address. The router verifies this
signature using the two public keys, the destination prefix
and the public key of pref-PKG. Note that the binding does
not have to be generated for each AUTHREQ and can be
refreshed periodically.

Thus, the routers only need the well-known and trusted
public keys of the ACI provider and ICANN in order to ver-
ify the authenticity of the access certificate. If verification is
successful, the router will put the packet in a per-destination
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queue with high priority. If verification fails, the router will
drop the packet. The details of the access certificate and
router processing are described in Section 4.

Mobility Friendliness: Our design is mobility friendly.
In a capability-based system [28, 29], the capability is tied
to the path. If path changes, the capability is not valid and
must be renegotiated. There is no way to pre-negotiate a new
capability for an expected path change. In the mean time,
the traffic has to be in a low priority queue contending with
malicious traffic. Furthermore, consider the case of a public
server that serves millions of mobile hosts. The server will
be required to issue new capabilities every time one of these
hosts move, resulting in an unfair and unpredictable burden
on the server.

In ACACIA, the certificate is neither tied to the path nor
to the source’s IP address. The consent depends only on
source/destination identities and thus, remains valid even if
source/destination IP addresses change. An endpoint sim-
ply obtains a new binding whenever its IP address changes
and requests its correspondents to use this new binding for
subsequent communication to this IP address. In the case
of a server serving millions of mobile hosts, the server only
needs to use an updated access certificate (and IP address)
provided by the source to deliver packets to the source at the
new location. If both nodes move simultaneously, commu-
nication is re-established through the ACI. Thus, ACACIA
is fully compatible with an end-to-end mobility solution as
proposed in [25]. If Mobile IP is used as the mobility pro-
tocol, ACACIA can support route optimization without re-
quiring a new consent. Thus, ACACIA is mobility friendly.

3.3.3 Bootstrapping

In ACACIA, we require packets to have valid access cer-
tificates in order to use the high priority channel. Nodes ob-
tain access certificates by sending signaling messages, such
as AUTHREQ. The question remains: how do these signal-
ing messages obtain access certificates?

First consider a single-provider ACI service. Source and
destination nodes that are customers of this service are au-
thenticated and configured with access certificates to com-
municate using the high priority with a pre-specified number
of nodes in the ACI. Now, we only need to ensure that nodes
of the ACI provider can obtain access certificates to each
other. However, this must be achieved dynamically since the
ACI nodes run a distributed protocol implementing the DHT.

In order to prevent malicious nodes joining the ACI, we
require that nodes in the ACI can verify the authenticity of
other nodes in ACI. We use an IBS scheme inside the ACI for
this purpose. Each ACI has an aci-control-PKG that issues
private keys to each of the ACI nodes which enable these
nodes to sign messages and be verified by other ACI nodes
(this is similar to the certifying authority used in [11] to cer-
tify DHT nodes).

Consider the case where the ACI is already operational
(nodes have valid certificates to their neighbors) and one of

the nodes wants to add a new neighbor. The node simply
routes a ACIAUTHREQ message over the already estab-
lished DHT overlay using the high priority channels. The
ACIAUTHREQ includes the nodes identity, a certificate for
the new neighbor to access this node and a signature. The
destination verifies the signature using the public key of the
aci-control-PKG and the public key of the node (i.e., it iden-
tity). Once verified, the destination replies with a ACIAU-
THREPLY containing a certificate for the source. This is
sent directly to the source in a high priority channel using the
access certificate in the ACIAUTHREQ. Thus, normal DHT
operations can continue using high priority without being
subjected to attacks. When a new ACI node is introduced,
we can discover neighbors and obtain access certificates us-
ing low priority channels as the time to obtain certificates is
no longer critical.

In a multi-provider environment, each of the provider ACIs
maintain their own key space. They have arrangements with
each other to store pointers to objects hosted by the other
providers. Certificates for inter-provider communication are
pre-configured, similar to how BGP peering is established
between ISPs today. We can also adopt the techniques pro-
posed in [6] for supporting multi-provider ACIs.

4. ALGORITHM AND PROTOCOLS
In this section, we present a detailed description of the

algorithm used for load-adaptive replication in the ACI and
the data plane protocol that enforces access control policies.

4.1 Algorithm
The ACI infrastructure must (1) pool resources to fend off

DDoS attacks and (2) isolate the impact of an attack from in-
fluencing other entities, while providing legitimate sources
fair share of being serviced by the ACI. Note that, load bal-
ancing mechanisms for DHT in the literature [13, 22] sup-
port pooling of resources with the objective of serving max-
imal number of requests. However, these do not have the
attack isolation property. The attack isolation property is
very important as the ACI provides a service, and normal
behaving request patterns should not be severely impacted
by attacks. There is a tradeoff between load balancing and
attack isolation and we use attack isolation to protect legit-
imate sources and load balancing to protect destinations by
pooling the ACIs resources.

Requests to an ACI node from locally associated endpoints
are referred to as local requests while other requests routed
to this ACI node are referred to as remote requests. For scal-
ability reasons, we perform per-source queuing for local re-
quests while we only perform per-neighbor queuing for re-
mote requests. In addition, an ACI node gives local requests
higher priority so that local requests can be served even dur-
ing excessive remote requests.

We now describe our replication algorithm. We assume
DHT routing (computing a hash function and forwarding)
involves minimal overhead and thus, define load in terms of
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the number of AUTHREQs that needs to be processed. For
ease of description, let all objects have identical load and
all nodes have identical capacity. At each ACI node, let us
define node and object thresholds,

���
and

���
, in terms of

number of requests to that node for all objects and a given
object, respectively.

The replication algorithm is triggered if the locally orig-
inated requests exceeds

���
for any object � or if the total

requests of a node exceeds its node threshold. In the former
case, the attack is isolated and in the latter case, load bal-
ancing is performed. Attack isolation is achieved as follows.
When the object threshold is exceeded (i.e. potential local
attack), then object � is replicated to this ACI node. Fur-
ther, the node does not forward any of its local requests for
this object (it continues to forward remote requests). Since
a legitimate local source will be fair-queued with the attack
traffic, it gets its fair share of being served (if local requests
are forwarded, then the legitimate source gets an even lower
chance of being served - see the queueing analysis in the
next section).

When the node threshold is exceeded, the node starts with
the object with the maximal request rate to replicate. Our
replication algorithm minimizes the number of replicas needed
while guaranteeing no node thresholds are exceeded (if it is
possible to do so). Unlike [22], we do not replicate to nodes
which do not have any object requests passing through it.
This is important for attack isolation.

Our algorithm is a dynamic programming based recursive
algorithm. Note that, the request path for an object forms a
tree rooted at the original node with the object. Lets define�	��
���������

to be the minimal number of replicas determined
by the optimal algorithm in subtree


��
given that the sub-

tree needs to process
���

requests. Denote � � as the request
rate for object � originated from node � , � � the total request
rates under the subtree


��
(including � � ), and � � the load in

terms of request rate for all objects processed before repli-
cation starts. Let � � be the depth of subtree


��
. A leaf has

a depth of zero. For ease of description, we describe the al-
gorithm assuming the tree is a binary tree. Our algorithms
work for general trees. Lets denote


���
the left subtree of


 �
,

and

���

the right subtree of

 �

. We have the following recur-
sive relationship

� ��
 � �!� � �#"%$'&)(*�+��,-�+
 � ��� � �.����/0��
 � ��� � ���
where

��,0��
 � ��� � �
denotes the optimal when the root � does

not need a replica and
� / ��
�������1�

denotes the optimal when
the root � needs a replica.

2�354�687:9;6+<�=
>???????@ ???????A

B 7 C 6 =ED�FHG 6�IKJMLOND-7 C 6 =ED�FHG 6�PKJML FH9 6 =ED NB 7 C 6 =ED�FHG 6�PKJML FH9 6MQSR�6�PTJVU F9 6�I D NW 7 C 6 =ED�FHG 6�PKJML FH9 6MQSR�6�ITJVU0NXZY\[ 32�]^354�6_7_9;6+<�72a`b354 6 7_9 6 <_<
Otherwise c

(1)

Lets look at the base case of the recursion (Eqn. 1). For a
leaf node, if object threshold is exceeded, an object will be

replicated (first line); if no request needs to be handled (all
done by upstream nodes towards the root), then no replica is
needed (second line); if the node needs to handle requests
and no thresholds are exceeded, then a replica is needed
(third line); if handling the request exceeds node threshold
and the algorithm insists the node to handle it, then the algo-
rithm returns infinity which means this recursion is infeasi-
ble.

The relation when root � does not need a replica is

2�]^354�6_7_9;61<�= >@ A W
7 9 6�IKde6�f G 6hg G 6�IKJMLON

XZY\[Vij kblnmpoq�r s q1tu!v iw8xbl\y r s q8z mp{q t 3�2�354}|6 78~�< Q2�354}�6 7:9 6�f ~�<_<
Otherwise c

(2)

Node � ’s subtree has a total request rate of � � , of which� ��� � � are from its children ( � �� from right, � �� from left).
It is infeasible to ask its children to process

�Z��� � �M� � � as
they can not process request not going through them. Node� should request a copy if � �	� ��� . This is the base case
(line 1 of Eqn. 2). The recursion finds the best split of load
among its children. To speed up, one can define a minimal
split threshold.

Let � " � � if � � � � � , and � "�$'&�(p� � � � � � � � � ��� � �
otherwise; that is, if root � of subtree


 �
is placed a replica,� is the maximal request rate it can process. Note that, if � �

is greater than the object threshold, the local request will be
handled locally; that is, no local requests will be forwarded,
and remote requests for object � will be forwarded. The re-
cursive relation when root � needs a replica is given in Eqn. 3.

2 ` 354�6_7_9;61<�= >@ A W
7 9;6 ITd 6 N

XZY\[ ij kblnmpoq�r s q_zM� tu!v iw8xbl\y r s q zV�^z m {q t 3�2�354}|6 7_~�< Q2�354 �6 7:9}6 f ~�< Q B <
Otherwise c

(3)

If the algorithm returns infinity, then there is no feasi-
ble solution; this means that, even if every node receives a
replica, the request for object � still can not be processed
without overloading all nodes.

Note that, since each triggered replication does not in-
crease the maximal load among nodes in ACI, if request rates
do not change and replication is done one at a time, even-
tually our algorithm will be quiescent, i.e. no more repli-
cation will be triggered. If multiple replications are con-
ducted at the same time, then we could use atomic commits
to avoid unnecessary replication. As long as a node contin-
ues to serve a threshold number of requests

������ � �
for the

object, the time-to-live field of the object is refreshed.
We now discuss the state that needs to be maintained for

implementing our algorithm. Our algorithm can be imple-
mented in a distributed or centralized manner. In the former
case, the only state needed are the number of local requests
and total requests per object. Communication only occurs
between neighboring nodes. To speed up the process, the
root can limit the depth of the tree that participates. If all
nodes’ load are balanced, then a node keeps � �����+���� � ��� � �
state where � is the number of ACI nodes and

�
is the total
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number of objects. In the centralized implementation, repli-
cation decision can be computed quickly at the root node of
each object. However, this requires each ACI node period-
ically piggyback its load information (local and forwarded
load per object) when forwarding AUTHREQs. This infor-
mation is propagated to within a few hops of each node to
minimize monitoring and state overhead. In our simulation,
we implement the centralized version.

4.2 Protocols
ACACIA consists of two protocols, a control protocol de-

scribed in the previous section that uses the AUTHREQ and
AUTHREPLY messages to obtain access certificates and a
data plane protocol that is represented by the access certifi-
cate carried in IP packets. The control protocol is straight-
forward and can be implemented at the application layer us-
ing UDP just like the DNS system. In this section, we first
describe the data plane protocol in detail. We then discuss
router functions for processing the data packets.

4.2.1 IP Packets with access certificate

334 4

ConsentBindingSPI_binding

7216162 11

Dest EIDSrc EIDReserved

31

SPI_consent

Access Cert

208

Exp time

21208 14

Index
PKGSignatureExp time

LenNext Hdr

SignatureCount
Byte

Index
PKGPrefix

Figure 2: ACACIA shim header

We denote the packet sender as � , destination as � , desti-
nation ACI provider as � , prefix owner as � . They each has a
public/private key pair

�+�Z�S�!���K�
. The

�Z�
is the same as

the EID. Other than legacy traffic, all packets carry an access
control header that extends the behavior of IP. The protocol
id field in IP is set to ACACIA. A router detecting an ACA-
CIA protocol type can begin to process the ACACIA header
shown in Figure 2. The beginning of the header identifies
the next header field (corresponding to the transport proto-
col such as TCP), and a length field. This is then followed
by thee EID of the source and destination and the access cer-
tificate. The certificate includes two security parameter in-
dex (SPI) values denoting the crypto algorithm and param-
eters used in the binding and the consent portions respec-
tively. Binding ��� is made up of destination prefix, desti-
nation prefix-PKG’s index, expiration time (the time that the
binding stops being valid) and a signature

� �
. The signature

certifies the destination EID: ���V��� , destination IP address:� � � , and expiration time:   � , using the prefix private key��� �
. � � "¡� � � ��¢V£¥¤ � ���V� � � � � � �   � �

Note that, the IP address is not duplicated in the binding or
the shim header. The consent ¦ � consists of the aci-PKG

index, the expiration time :  h� , bytes allocated to sender:� , and a signature
� � that certifies source EID: ������§ and

destination EID: �	����§ , expiration time (the time that the
consent stops being valid):   � using the destination’s private
key

��� � . � � "¨� � � � ¢V£O© � �����'§ � ���V�'� �  :� � � �
Borrowing the host identifier tag from the Host Identity

Protocol, EIDs are 16 bytes long. The expiration time is en-
coded using the Network Time Protocol (NTP)’s timestamp
format which is 8 bytes long. The signatures are 20 bytes
long. Thus the binding and consent together takes 68 bytes
and the full ACACIA header is 104 bytes. This compares
reasonably with a 8-byte capability per router-hop used in
TVA [29]. Also, we can adopt the header overhead reduc-
tion techniques described in [29] for long flows. If ACACIA
did not include the identity and address separation (i.e., we
use IP addresses also as identities), the header size can be
reduced to 40 bytes as the binding and EIDs are no longer
necessary. This overhead is comparable to IPSEC Authenti-
cation Header size of 24 bytes that includes a 96-bit message
authenticate code.

4.2.2 Router processing

Each router maintains two queues: a high priority queue
and low priority queue. Routers at the edge maintain a per-
destination high priority queue and a flow state cache as
well; this is needed for fine-grained fair queuing which pre-
vents a source with an access certificate from overwhelming
a destination in a short period of time. The flow state cache is
also used to cache verification results. The flow state cache
design is similar to the one in TVA (see [29] for details on a
scalable way to implement this).

When receiving a packet, if the packets protocol id is not
ACACIA, the packet is treated as a legacy packet, and the
packet is processed in the low priority queue. Otherwise, the
router first looks up its flow state cache. If an entry exists, the
router then checks whether the byte count has not exceeded
and the certificate time has not expired. If the checks pass,
it then checks whether the access certificate is the same as
the cached one. If yes and the access certificate was verified
to be correct before, then the router will per-destination fair
queue the packet in the high priority queue. If the flow state
cache does not have an entry, then it will create an entry and
initialize the byte count allowed and expiration time field.
The router then finds the public key

�Z��ª ��« of the pref-PKG
using the PKG index in the binding. It then uses

�Z�¬ª ��« and
the prefix to verify the binding signature. The router then
uses the aci-PKG of the destination (found using the PKG
index) and the destination EID to verify the consent signa-
ture. If the binding and consent are both valid, the packet
will be processed in a per-destination high priority queue. If
any check fails, then the packet will be dropped.

Note that we assume that the router verifying the access
certificate has global weak clock synchronization on the or-

7



der of few seconds. This is easily achievable if the routers
run a protocol such as network time protocol (NTP).

5. EVALUATION
In this section, we evaluate the DDoS resiliency of the ACI

in ACACIA. We start with an analytical comparison between
the ACACIA and the TVA [29] where we demonstrate that
ACACIA can survive significantly more intense attacks. Us-
ing simulations driven by the traces collected from the In-
ternet, we then examine the DDoS resiliency of ACACIA
as a number of factors such as utilization, the origin of at-
tacks, the distribution of victim, and the intensity of attack
vary. Lastly we investigate the overhead due to replication
and policy updates.

5.1 Comparison with TVA
In both TVA and ACACIA, a source has to obtain an au-

thorization in order to send data packets to a destination.
The DDoS resiliency thus is determined by the available
bandwidth for a legitimate source sending authorization re-
quests4. We now compute the available request bandwidth
for both schemes.

Each router in TVA reserves a fixed fraction of capacity,
e.g., V® for request traffic that is shared among all capabil-
ity requests through fair queuing. The packets of the same
path identifiers are placed in the same queue where a path
identifier is a 16-bit tag that is derived from the incoming
interfaces of the current domain using a hash function. Note
that the number of path identifiers may be greater than the to-
tal number of interfaces in the current domain since ingress
routers only re-tag the incoming packets when the upstream
domains are trusted; otherwise the old tag remains.

Consider Figure 3(a) where there are ¯ domains along the
path between a source and a destination. The number of
queues and capacity of outgoing link in egress router of Do-
main � are ° � and ¦ � respectively. The � attackers are as-
sumed to be uniformly distributed in the network such that
there are � � ¯ attackers joining the legitimate source at each
domain along the path towards the destination. The attack-
ers are evenly distributed in the other ° ����± queues with
at least one attacker per queue if � � ¯ �Z� ° �h�_² � . We fur-
ther assume that attackers always generate enough requests
to keep their queues from being idle.

Let � � denote the available bandwidth for the source af-
ter traversing through domains

±
to � . We assume that the

legitimate source is fairly queued with other � � ¯ attack-
ers in the originating domain. Therefore we have � ,³"¦ ,-±´�µ�:±e¶ � � ¯ ��" ¦ , ¯ �·� � ¶ ¯ � . From here, � � � ¦ � is the
fraction of source traffic among all traffic domain � forwards
to domain � ¶¸± . At most ¦ ��¹ ,�� ° ��¹ , of this can be for-
warded to the next domain since the egress link bandwidth is
equally shared among all the ° ��¹ , queues. If ¦ ��¹ , � ° ��¹ , �
4Unlike ACACIA, in TVA, the destination also has to send capa-
bility response over a low priority channel but we ignore this for
now.

¦ � , then � �)¹ ,º" � � since domain � is the bottleneck and
can not even output enough traffic to obtain its fair share of
bandwidth in domain � ¶»± . Otherwise, we have � ��¹ ,T"� � �_� ¦ �1��¼�� ¦ �)¹ , � ° �)¹ , � . In the best case where

² � , ¦ ���¦ �)¹ , � ° �)¹ , , we have the available bandwidth along the en-
tire path to be

��½ " ¯
� ¶ ¯

¼ ¦;½¾ ½�)¿ / ° � (4)

where ¦a½ is also the server capacity for processing capabil-
ity requests.

In the case of ACACIA, an attacker can choose to attack
an ACI node (referred to as local attack) or an ACI object
(referred to as infrastructure attack). Let � be the maximum
number of sources that are provisioned with access certifi-
cate to reach any ACI node. The attacker must first compro-
mise � � � of these sources to launch a node attack. Since
our replication algorithm isolates the attack source, the � at-
tackers will simply share the capacity of the ACI node, ¦ � .
Thus, available bandwidth is simply ¦ �_�·� � ¶À±�� for local
attacks.

In the case of infrastructure attacks, the available band-
width for ACACIA is also straightforward since a policy ob-
ject will eventually be replicated to all ACI nodes by the
replication algorithm as � becomes large. If we assume all �
attackers are uniformly distributed and each originating ACI
node performs per-source fair queuing, the available band-
width for a legitimate source sending its request to ACI node� is

�
� ¶¡± ¦

�
(5)

where � is the total number of ACI nodes and ¦ � is the
capacity of ACI node � . We thus avoid the product term
in the denominator of Equation 4 in ACACIA by actively
replicating the access control policy at the originating ACI
node and isolating the attack right there.

Figure 4 plots the fraction of successful requests versus
the number of attackers in a log-log scale when the legiti-
mate requests are sent once every second. We assume a TVA
server and one ACI node have the same capacity of

±0��Á�Á0Á
re-

quests/sec. In addition, we assume ¯ "  , ° ��"�Â  �_² � , and� "Ã±�Á�Â-Ä
. We observe that the ACACIA is significantly

more resilient to DDoS attacks. The success rate for TVA
request starts to drop steeply before the number of attack-
ers reach

±ÅÁ�Á
(note that we assume attackers are uniformly

distributed with respect to path identifiers which is the worst
case for TVA). In the case of ACACIA, the success rate is
maintained at

±ÅÁ�Á ® until the number of attackers reach a
thousand (million) for local (infrastructure) attacks and then
decrease linearly as more attackers come in.

Figure 5 shows that the success rate drops sharply as ¯ ,
the number of domains between source and destination, and° , the number of unique interfaces, increases This can be
explained by Equation 4 where the success rate is inversely
proportional the product of ¯�° values.
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Figure 4: Request success rate
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Figure 6: ÆÈÇ.É delay ratio
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Figure 7: ÊÈÊ�Ë ÊÈÊ.Ì delay ratio
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Figure 8: Object attack
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Figure 9: Node attack

5.2 Simulation evaluation
We simulate a Pastry network of ÍÅÎVÏÑÐ with our replication

algorithm as described in Section 4. We set the base to beÍÅÒ and the length of identifiers to be Í�Ï-Ó as recommended in
[23].

In today’s Internet, before a source initiates a connection
to a destination, it needs to perform a DNS lookup for the
destination IP address. Therefore, the arrival pattern of DNS
domain name lookups should be very close to that of the
AUTHREQ in ACACIA. We use the DNS traces collected
from a campus network between April 26 and May 9, 2004
for a total of 291 hours. The trace includes 3,693,728 do-
main name lookups with a total of 283,474 unique names.
The lookup frequency of the trace follows an approximate
Zipf-like distribution with gradient of ÔZÍ�Õ Î·Ö´Ó on a loglog
plot.

Metric: When an attack occurs, it would cause delay in
the processing of legitimate AUTHREQs. We focus on the
service delay (including queueing) of the AUTHREQ at the
destination ACI node, since forwarding and propagation de-
lays are small and relatively insignificant. We can measure
the resiliency of an ACI configuration by evaluating how
much extra delay is incurred due to an attack. The smaller
the extra delay, the more resilient a configuration. We de-
fine the ratio between the delays with and without attack as
our primary metric of interest. A lower (higher) delay ratio
denotes a more(less) attack resilient configuration. Unless
otherwise specified, we will use a 99.99% quantile of delay
values for comparison as it is very sensitive to higher load.

5.2.1 Infrastructure, Object and Node attacks

Let us first examine how our replication scheme reacts to
an infrastructure attack where attackers are uniformly dis-
tributed in the network and the targeted objects are also ran-
domly picked. We simulate the attacks for three network
configuration with the average utilization before attack at×VØ

, Ï ×MØ , and
× Î Ø respectively. The average utilization is

defined as the ratio between the total request arrival rate dur-
ing normal operation and the total capacity of all nodes; thus,
this utilization represents the average load at each of the ACI
nodes during normal operation5.

Figures 6 and 7 plot the delay ratios using delays at
× Î Ø

and Ù0Ù�Õ Ù�Ù Ø quantiles respectively. Let us focus on the Ù0Ù�Õ Ù�Ù Ø
quantile figure since at

× Î Ø quantile, the nature of the curve
remains the same but with decreased steepness. When the at-
tacking requests increase from zero to one times legitimate
traffic load, the delay ratios increase for all three curves.
However, the rates of increase are different; the higher the
normal utilization level, the faster the increase as the number
of attackers increase. Note that these three curves demon-
strate that ACACIA can support multiple ACI providers that
provide different degrees of attack resilience - a government
or enterprise customer may prefer an ACI that provides high
degree of resilience while a consumer may be fine with an
ACI that is provisioned at 50% utilization.

Infrastructure attacks may also target a particular object
(e.g. webserver). The worst case is when the attack is tar-
geted to the most popular object in the ACI. We simulate
this by increasing the number of requests from attackers for
5Since the trace size is fixed, we change server capacity to vary
utilization levels.
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the most popular object from zero to ten times the normal
amount. We simulate the attacks for average utilization ofÂ �® and  Á ® and plot the delay ratios in Figure 8. In both
cases, the increase in the delay ratio is not at all significant
as the number of attackers grow. This is because the victim
object is replicated to more and more nodes as its popularity
(attack intensity) grows and thus, the resources of the entire
ACI can be pooled to handle large attacks on a single web-
site.

Attacks may also break out from a local area where all
attacking requests are initiated to the same ACI node. The
worst case for a legitimate local source is when the attack re-
quests target the same object (otherwise, DHT routing would
distribute most of the attack traffic along different paths away
from the source after the original node). We simulate this
local attack and plot its impact on both the local node and
the rest of the network. Figure 9 shows the delay ratios.
Thanks to the replication scheme that replicates the object
to this node and then isolates the processing here, legitimate
sources still have reasonable chance of getting served. Fur-
ther, the attack isolation results in no impact to the rest of the
ACI.

5.2.2 Impact of Replication

In this section, we evaluate the replication algorithm, its
benefits and overheads. We also evaluate the impact of up-
dates of policy objects on the replication algorithm. From
now on, we assume average utilization of 25% and delay
values are 99.99% quantiles. Consider a generic infrastruc-
ture attack that issues AUTHREQ to random objects stored
in the ACI. As the number of attackers increase, more repli-
cations are done to compensate the load increase due to the
attacks. Assuming a utilization of

Â V® , we plot the replica-
tion ratios versus attack intensity in Figure 10. The number
of replicas per object increase from

±0Ú Á  to
±0Ú  as the attack

load grow from zero to one times of legitimate load, illus-
trating that not much replication is needed in the case of a
generic infrastructure attack.

Our replication scheme not only mitigates the impact of
DDoS attack by distributing load more evenly among all ACI
nodes, it also helps to load balance the request even when no
attack exists. Due to the heavy-tailed nature of the request
distribution over objects, the load of nodes in the ACI are
not uniform. Our scheme replicates an object when its re-
quest rate exceeds a threshold, thus offloading the hot-spots.
Figure 11 demonstrate the benefit of our replication scheme.
We plot the ratio of the delay without and with replication at
different loads. At higher loads, the benefit of replication in-
creases. Note that while a solution such as Beehive [22] can
address this aspect, our replication algorithm handles both
popular objects/flash crowds and DDoS attacks in a unified
manner.

Replications put load on the ACI and thus impact the serv-
ing delays. We evaluate the slow down of service due to
replication in Figure 12. We plot the delays with different

replication overheads (relative to the cost to serve a request),
normalized to the delays assuming that replication overhead
is zero. When the overhead is

Â
and

Ä
times the service cost,

the increased service delay due to replication is negligible.
On the other hand, service delay almost doubles for the over-
head value of 8, during high intensity attacks.

We finally evaluate the impact of updates to the access
control policy. For example, destinations can dynamically
update their access control policy to block requests from ma-
licious sources. The ACI may update it either in real time or
in batches. Real time update minimizes the impact of mali-
cious sources whereas the batched approach reduces the up-
date overhead in the ACI. The larger the interval between
updates, the lower the update overhead. The hosted ACI
node first updates its local policy database and then pushes
the updates to the replicas, if any. Since popular objects are
likely to have more updates than others, we simulate update
object distribution by assuming updates are proportional to
object requests in the ratio of 1:1000. Note that, due to
replication, the update node distribution is very unbalanced
since updates to all nodes may be needed for popular objects
whereas one node update may be sufficient for unpopular
objects. Figure13 plots the service delay versus the batch in-
terval. The delays are all relative to the one assuming zero-
overhead updates. As the batching interval approaches 7000
units of service time, the update overhead approaches zero
(ratio close to one). This implies that batching is effective
in controlling update overhead. For an ACI node that can
process 1000 requests per second, an update delay of 7 sec-
onds has very little impact on the service delay and after this
delay, AUTHREQs from those malicious nodes no longer
reach the destination.

6. SECURITY ANALYSIS
Trust model: In ACACIA, each endpoint can authenti-

cate to the prefix authority, and trust the PA to issue correct
bindings for it. The endpoint also trusts the ACI to faithfully
execute its access control policy. The endpoint trusts its aci-
PKG will not reveal its private key. Routers trust the public
key of aci-PKGs and the pref-PKG. These public keys are
distributed to routers by some network management entity.

The security of ACACIA is based on the inability of an
attacker to get access certificate from a destination that does
not want traffic from the attacker. Here we briefly analyze
how ACACIA counters various threats.

Forging or stealing certificate attack: An attacker may
know the EID and IP address of the destination. However,
an attacker can not forge the access certificate because an at-
tacker has neither the prefix private key nor the private key
of the destination. An attacker may steal a legitimate access
certificate belonging to a sender. If the attacker can spoof
the sender EID, then the attacker can use the certificate to
send traffic to the destination (changing the sender EID will
cause the consent verification to fail). All packets with the
same certificate will be queued in the same destination queue
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Figure 10: Replication ratio
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Figure 11: Benefit
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Figure 12: Overhead
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Figure 13: Update overhead

with byte count limits enforced for the given source EID.
Thus, stealing certificate attacks only impact the legitimate
source, not the destination. If the attacker domain imple-
ments source EID spoofing prevention mechanism, then the
attack is limited to the same domain. In addition, certifi-
cate replay is ineffective if the certificate expires. To prevent
certificate replay attacks entirely, each ACACIA packet can
be optionally signed by the sender, and verified by routers.
However, this crypto operation can be very expensive for
endpoints if done on a per-packet basis.

Stale information attacks: An attacker may gain old pri-
vate keys of a legitimate endpoint. So it can forge the con-
sent. However, since it does not have the corresponding
binding, it can not launch attacks to that endpoint or any
other endpoint since the binding and consent will not be con-
sistent. If an endpoint moves, its old binding to the old IP ad-
dress may not have expired. So it can issue a valid consent.
This will direct any sender’s traffic to the old IP address.
However, we require the prefix authority to refrain from re-
allocating old IP address if the old binding has not expired.
In this way, such an attack can be thwarted.

Various attacks from compromising entities in ACA-
CIA: If a legitimate host gets compromised, the host can
only send as much traffic as it has been authorized to send
but it can launch attacks on the ACI. A compromised router
can mount replay attacks or drop legitimate packets. Be-
cause routers do not have the private key of the sender, re-
ceiver, or prefix authority, attacks from compromised routers
are limited.

If an ACI node gets compromised, a number of attacks
are possible. Note that ACI node compromise should be ex-
tremely rare since these are provider-hosted nodes and not
generic hosts. First, the ACI node can attack the underlying
DHT routing protocol. Security mechanisms to handle mis-
behaving DHT nodes are discussed in [11]. The ACI node
can obviously impact the hosts whose records are stored there
by not sending legitimate AUTHREQ to its endpoints. How-
ever, since the record is maintained in multiple ACI nodes
and system randomly chooses on of those, its impact on
endpoint will be limited. Sending unwanted AUTHREQ or
abusing its access certificate privilege by directly attacking
destination will still not result in DDoS since the ACI node
has consent to send only at a limited rate but this will re-

sult in the detection of the compromised node. If the mali-
cious ACI node generates unwanted AUTHREQ to DDoS a
victim ACI node, we can isolate this attack if we use a per-
originating ACI node queue. The node which first receives
an AUTHREQ from a host should append its signature be-
fore forwarding and the final ACI node verifies this signa-
ture and places this request in the queue for the original ACI
node, thereby isolating the impact of a compromised node
attack. If the ACI node generates AUTHREQ with itself as
the source to DDoS a destination host, it does not have any
more power than a compromised regular host.

If a prefix authority gets compromised, the attacker can
issue valid bindings to access hosts whose IP address share
the prefix. This will draw traffic to the domain of the prefix
authority. However, PA compromise should be very rare and
its impact is localized to its own domain.

7. DISCUSSION
In this section, we discuss verification performance, alter-

native designs and other relevant issues.

7.1 Verification Performance
Ideally each router should be able to verify the authentic-

ity of the access certificate at line speed. This requires fast
signature verification algorithms. IBE-based cryptographic
algorithms has been a very active area of research in the
past few years. Consequently the performance of IBE-based
crypto has been improving quite dramatically. For exam-
ple, signature verification time in software has been reduced
from seconds [10] to milliseconds [9] in the last few years.
Signing requires point multiplication in elliptic field, while
verification also requires a pairing operation that is a few
times more expensive. Pairing is very amenable to paral-
lelization in hardware. Recent hardware implementations [17]
can perform pairing operation in 0.7 milliseconds at a clock
speed of 20MHZ. With an ASIC operating at 1GHz pro-
cessor speed, verification using the algorithm in [9] can be
done in about 30 microseconds [8]. With a minimal ACA-
CIA packet size of 168 bytes, this will give us a verification
speed of about 40Mbps. While 40Mbps verification per chip
is reasonable for initial deployment, it is definitely far short
of the needs of the future Internet. On the other hand, the
rate of progress in IBE-based research in recent years holds
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promise. In order to achieve more speedup today, the ver-
ification has to be done in parallel, albeit at increased cost
(e.g. if there are 10 security processors, then verification can
be 10 times faster as packets can be queued independently).
Further, we can use pipelining by letting the routers cooper-
ate in the verification where each router stamps intermediate
results and the full verification is done at the egress of the
domain. All these techniques can drive per-signature verifi-
cation into sub micro seconds, driving verification speed up
to 10Gbps per line-card.

7.2 ACACIA with Capabilities
While we described ACACIA with an access certificate-

based solution in this paper, we can also design a capability-
based system that uses only the ACI of ACACIA. Such as
system will have the superior line-rate verification perfor-
mance of a capability-based system and inherit the follow-
ing features of the ACI: 1) network-based access control 2)
pooling of resources and 3) higher DDoS resiliency on the
request channel. However, this system will no longer be mo-
bility friendly as the capability is tied to the path.

The design of such a system can be achieved based on the
proposal in [2]. The ACI provider now also deploys veri-
fication points (VPs) in the domains6 of its customers. A
source issues a capability request through the ACI. The ACI
filters the request based on the destinations access control
list. When/if the destination receives the request, the capa-
bility reply is sent back to the source through the ACI. The
reply contains a token that is the last hash value of a one-
way hash chain and a random sequence number. This token
is installed into the source and destination domain VPs by
the ACI. Thus, when the source includes this token in its
packets, the VPs can verify them. The one-way hash chain
enables the destination to renew the capabilities and the VPs
to automatically verify the new capabilities without any sig-
naling.

7.3 Incremental deployment and incentives
In order to support ACACIA, we need to deploy an ACI

and upgrade hosts and routers. While this may appear daunt-
ing, fortunately, even a limited deployment of ACACIA pro-
vides some benefits and this can help bootstrap a full migra-
tion to an access-controlled Internet. Initially, an ISP may be
willing to deploy an ACI with upgraded routers in order to
offer a premium access-controlled network service (similar
to the VPN service today) to some of its customers. For ex-
ample, a customer (e.g. enterprise, bank) may provide an ac-
cess control white-list (e.g. EID of employees, account hold-
ers). As long as the destination ISP is well-connected to the
Internet, this would allow these customers to communicate
freely without receiving unwanted traffic or being subjected
to DDoS. Once this service gets deployed, other customers
such as e-commerce sites or public servers with registered

6This has policy implications; strictly speaking, signaling to VPs
deployed in these domains is sufficient

users may be interested since they can provide a white-list
of prior customers, ensuring priority access for them. An
ISP that does not want to offer the premium service may still
upgrade in order to drop packets early and cut costs since
ISP billing is often traffic volume or percentile-based. Fi-
nally, hosts have an incentive to upgrade as otherwise, they
are delegated to the use of low priority channels.

7.4 Key management
Key escrow: For identity-based crypto, the PKG knows

the private key issued to each entity. However, this is not
an issue in our architecture. In the case of hosts, since the
provider also issues the EID for the subscriber, and the pri-
vate key of an EID is only used to attest the EID, whether
the provider has the private key or not is not an issue. For
pref-PKG, the PKG is ICANN, the root authority that allo-
cates prefixes. It is trusted by all PA. The prefix private key
of each PA is only used to attest that the PA owns the prefix
and not for any other purpose.

Key revocation: Since the binding expires periodically, if
an endpoints key (or EID) expires, the endpoint will notify
the PA and the PA will stop issuing bindings for the old EID.
Revoking the EID is not a problem since EID is a hash of
its HRI. The endpoint can just update its record in the ACI
with a new EID. The default EID mapped from HRI using
a well-known hash function can point to the updated EID.
By using hashes of HRI rather than HRI itself, we avoid the
problem of revoking the identity in IBE based crypto.

8. RELATED WORK
We have earlier discussed the most closely related work [7,

19, 28, 29]. Here we briefly describe other related work. The
related work is loosely divided into two categories; one is on
DDoS prevention techniques and the other is on architectural
design.

Source address filtering [14] deployed at network ingress
can prevent attackers from putting arbitrary source address
in the header. It has been generalized to filtering any packet
that can not have legitimately arrived even at the middle of
the network [21]. However, this does not prevent spoofing
within the same prefix of the network. Because it is easy to
gain access to a large number of compromised hosts (Zom-
bies), source address filtering does not work for attacks from
legitimate sources.

To defend against DDoS attacks, one can trace the attack
sources and punish the perpetrators [24]. Due to the large
number of Zombies used in the attack, finding the attack ori-
gin can be very difficult. In addition, it is too late to prevent
the attack.

SOS [18] and Mayday [1] have focused on designing over-
lay network architectures to protect destination from unwanted
traffic. Incoming packets must be authenticated through over-
lay nodes. Then a secret is added to each packet header
before forwarding to the destination. This secret is shared
among all traffic through the overlay to the same destination.
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Downstream routers are configured to discard all packets do
not contain the secret. However, this approach is vulnerable
to an attack discovering the shared secret.

The separation of endpoint identifier from address is bor-
rowed from [5, 20]. This separation seamlessly accommo-
date mobility and multihoming. This separation naturally
results in flat names for endpoint identifiers. As the current
DNS relies on the use of hierarchical names, an infrastruc-
ture unlike the current DNS is needed. The use of DHT to
replace the current DNS has been proposed in [5, 27]. Our
use of DHT to provide DDoS resilient signaling builds on
them.

9. CONCLUSION
The open nature of the current Internet architecture has

given rise to many security problems and patched solutions
such as firewalls and middleboxes that are alien to the origi-
nal architecture. In this paper, we explore an alternative de-
sign of the Internet architecture that is based on a fundamen-
tally different philosophy: hosts should be able to specify
their access control policy to the network, and the network
should enforce it. Entities in the architecture should have
incentives to participate, and the impact of any compromise
of any entity should be limited and isolated. The architec-
ture should also be friendly to the ever increasing number
of mobile hosts. A scalable design satisfying all these prop-
erties requires the use of asymmetric keys because shared
keys are either not scalable in terms of router state or suffers
from the peril of transitive trust. Although signature verifi-
cation algorithms based on elliptic curve cryptography are
improving rapidly, we recognize verification can be a poten-
tial performance issue. By sacrificing some desired architec-
tural property such as mobility friendliness and the ability of
every router enforcing the policy, we point out an alterna-
tive design without using asymmetric keys. We reckon that,
by no means this paper represents a complete and compre-
hensive design in the space of new Internet architecture. It
does reveal important design principles, architectural entities
needed, and potential mechanisms required. These findings
hopefully can help shape the design of the next generation
Internet architecture.
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