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Abstract. In machine scheduling, a set of n jobs must be scheduled on a
set of m machines. Each job i incurs a processing time of pij on machine
j and the goal is to schedule jobs so as to minimize some global objective
function, such as the maximum makespan of the schedule considered in
this paper. Often in practice, each job is controlled by an independent
selfish agent who chooses to schedule his job on machine which mini-
mizes the (expected) completion time of his job. This scenario can be
formalized as a game in which the players are job owners; the strategies
are machines; and the disutility to each player in a strategy profile is the
completion time of his job in the corresponding schedule (a player’s ob-
jective is to minimize his disutility). The equilibria of these games may
result in larger-than-optimal overall makespan. The ratio of the worst-
case equilibrium makespan to the optimal makespan is called the price
of anarchy of the game. In this paper, we design and analyze scheduling
policies, or coordination mechanisms, for machines which aim to min-
imize the price of anarchy (restricted to pure Nash equilibria) of the
corresponding game. We study coordination mechanisms for four classes
of multiprocessor machine scheduling problems and derive upper and
lower bounds for the price of anarchy of these mechanisms. For several
of the proposed mechanisms, we also are able to prove that the system
converges to a pure Nash equilibrium in a linear number of rounds. Fi-
nally, we note that our results are applicable to several practical problems
arising in networking.

1 Introduction

With the advent of the Internet, large-scale autonomous systems have become
increasingly common. These systems consist of many independent and selfish
agents all competing to share a common resource like bandwidth in a network or
processing power in a parallel computing environment. Practical settings range
from smart routing among stub autonomous systems (AS) in the Internet [14]
to selfish user association in wireless local area networks [15]. In many systems
of this kind, it is infeasible to impose some centralized control upon the users.
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Rather, a centralized authority can only design protocols a priori and hope that
the independent and selfish choices of the users—given the rules of the protocol—
combine to create socially desirable results.

This approach, termed mechanism design has received considerable atten-
tion in the recent literature (see, for example, [22]). A common goal is to design
system-wide rules which, given the selfish decisions of the users, maximize the to-
tal social welfare. The degree to which these rules approximate the social welfare
in a worst-case equilibrium is known as the price of anarchy of the mechanism,
and was introduced in 1999 by Koutsoupias and Papadimitriou [18] in the context
of selfish scheduling games (see below for details). This seminal paper spawned
a series of results which attempt to design mechanisms with minimum price of
anarchy for a variety of games. One approach for achieving this goal [4, 7, 12] is
to impose economic incentives upon users in the form of tolls; i.e., the disutility
of a user is affected by a monetary payment to some central authority for the use
of a particular strategy such as a route in a network. Another approach [3, 17,
23, 27] assumes that the central authority is able to enforce particular strategies
upon some fraction of the users and thus perhaps utilize an unpopular resource.
This action of the central authority is called a Stackelberg strategy.

A drawback of the above approaches is that many of the known algorithms
assume global knowledge of the system and thus have high communication com-
plexity. In many settings, it is important to be able to compute mechanisms lo-
cally. A third approach, which we follow here, is called coordination mechanisms,
first introduced by Koutsoupias and Nanavati [6]. A coordination mechanism is a
local policy that assigns a cost to each strategy s, where the cost of s is a function
of the agents who have chosen s. Consider, for example, the selfish scheduling
game in which there are n jobs owned by independent agents, m machines, and
a processing time pij for job i on machine j. Each agent selects a machine on
which to schedule its job with the objective of minimizing its own completion
time. The social objective is to minimize the maximum completion time. A co-
ordination mechanism [6] for this game is a local policy, one for each machine,
that determines how to schedule jobs assigned to that machine. It is important to
emphasize that a machine’s policy is a function only of the jobs assigned to that
machine. This allows the policy to be implemented in a completely distributed
fashion.

Coordination mechanisms are closely related to local search algorithms. A
local search algorithm iteratively selects a solution “close” to the current solution
which improves the global objective. It selects the new solution from among those
within some search neighborhood of the current solution. Given a coordination
mechanism, we can define a local search algorithm whose search neighborhood is
the set of best responses for each agent. Similarly, given a local search algorithm,
it is sometimes possible to define a coordination mechanism whose pure strategy
equilibria are local optima with respect to the search neighborhood. The locality
gap of the search neighborhood, or approximation factor of the local search
algorithm, is precisely the price of anarchy of the corresponding coordination
mechanism and vice versa. In particular, designing new coordination mechanisms



may lead to the discovery of a new local search algorithms for a particular
problem.

In this paper, we are primarily interested in the properties of pure strategy
Nash equilibria4 for the selfish scheduling games we define. A pure strategy Nash
equilibrium is an assignment of jobs to machines such that no job has a unilat-
eral incentive to switch to another machine. Although a non-cooperative game
always has a mixed strategy equilibrium [21], it may in general not have a pure
strategy equilibrium. However, by restricting ourselves to pure strategies, we are
able to bound the rate of convergence of the mechanism. That is, if the jobs,
starting from an arbitrary solution, iteratively play their best response strate-
gies, how long does it take for the mechanism to reach a pure Nash equilibrium?
Guarantees of this sort are important for bounded price-of-anarchy mechanisms
to be applicable in a practical setting.

Preliminaries. In machine scheduling, there are n jobs must be processed on m
machines. Job i has processing time pij on machine j. A schedule µ is a function
mapping each job to a machine. The makespan of a machine j in schedule µ
is Mj =

∑
i:j=µ(i) pij . The goal is to find a schedule µ which minimizes the

maximum makespan, Cmax = maxj Mj . Different assumptions regarding the
relationship between processing times yield different scheduling problems, of
which we consider the following four: (i) Identical machine scheduling (P ||Cmax)
in which pij = pik = pi for each job i and machines j and k; (ii) Uniform
or related machine scheduling (Q||Cmax) in which pij = pi

sj
, where pi is the

load of job i and sj ≤ 1 is the speed of machine j; (iii) machine scheduling
for restricted assignment or bipartite machine scheduling (B||Cmax) in which
each job i can be scheduled on a subset Si of machines, i.e., pij is equal to
pi if j ∈ Si and is equal to ∞ otherwise; and (iv) unrelated machine scheduling
(R||Cmax) in which the processing times pij are arbitrary positive numbers.

In selfish scheduling, each job is owned by an independent agent whose goal
is to minimize the completion time of his own job. To induce these selfish agents
to take globally near-optimal actions, we introduce the notion of a coordination
mechanism [6]. A coordination mechanism is a set of scheduling policies, one
for each machine. A scheduling policy for a machine j takes as input a set
S ⊆ {p1j , . . . , pnj} of jobs on machine j along with their processing times on
machine j and outputs an ordering in which they will be scheduled. The policy
is run locally at a machine, and so does not have access to information regarding
the global state of the system (the set of all jobs, for instance, or the processing
times of the jobs on other machines). A coordination mechanism defines a game
in which there are n agents. An agent’s strategy set is the set of possible machines
{1, ..., m}. Given a strategy profile, the disutility of agent i is the (expected)
completion time of job i in the schedule defined by the coordination mechanism.
We study four coordination mechanisms. In the ShortestFirst and LongestFirst
policies, we sequence the jobs in non-decreasing and non-increasing order of
their processing times, respectively. In the Randomized policy, we process the

4 In this paper, we use the term Nash equilibria for pure Nash equilibria.



Makespan ShortestFirst LongestFirst Randomized

P ||Cmax 2− 2
m+1

[11, 28] 2− 2
m+1

[11, 28] 4
3
− 1

3m
[6] 2− 2

m
[11, 28]

Q||Cmax Θ( log m
log log m

) [8] Θ(log m) ([1], *) 4
3
− 1

3m
≤ P ≤ 2− 2

m
* Θ( log m

log log m
)([8])

B||Cmax Θ( log m
log log m

) [13] Θ(log m) ([1], *) Θ(log m) ([2], *) Θ( log m
log log m

) [13]

R||Cmax Unbounded [28] [9] log m ≤ P ≤ m * Unbounded Θ(m) *

Table 1. The price of anarchy for four different policies and scheduling problems. All
the upper and lower bounds hold for pure Nash equilibria. The upper bounds of the
Randomized policy for R||Cmax and Q||Cmax are valid for the maximum of the expected
load on any machine in mixed Nash equilibria. The results marked by * are proved in
this paper.

jobs in a random order.5 In the Makespan policy, we process all jobs on the same
machine in parallel, and so the completion time of a job on machine j is the
makespan of machine j.

We are interested in the properties of the solution imposed by the selfish
strategies of the agents in a pure Nash equilibrium, in particular, the price of
anarchy. In this setting, the price of anarchy is the worst-case ratio (over all
instances) of the maximum makespan in a (pure) Nash equilibrium to the op-
timal makespan. For each policy and each scheduling problem, we prove upper
and lower bounds on the price of anarchy. Some of these bounds are already
known as the approximation factor of some local search algorithms or the price
of anarchy in some selfish load balancing games. All bounds, known and new,
are summarized in Table 1.

Related work. The Makespan policy [8, 13, 18] is perhaps the best known policy
among the above policies. Czumaj and Vocking [8] give tight results on the
price of anarchy for the Makespan policy for mixed Nash equilibria and Q||Cmax.
Gairing et al. [13] study the Makespan policy for B||Cmax and give a polynomial-
time algorithm for computing a pure Nash equilibrium with makespan at most
twice the optimal makespan. They also give a tight bound for the price of anarchy
of the Makespan policy for pure Nash equilibria and B||Cmax. Azar et al. [1, 2]
proved that the greedy list scheduling algorithm is an O(log m)-approximation
algorithm for Q||Cmax and B||Cmax. Their proof can be used to bound the price
of anarchy of the LongestFirst and ShortestFirst polices for B||Cmax and Q||Cmax.

Coordination mechanism design was introduced by Koutsoupias and Nana-
vati [6]. In their paper, they analyzed the LongestFirst policy for P ||Cmax and
also studied a selfish routing game. As we have mentioned before, the price of
anarchy for coordination mechanisms is closely related to the approximation fac-
tor of local search algorithms. The speed of convergence and the approximation
factor of local search algorithms for scheduling problems were studied in sev-
eral papers [9–11, 16, 24, 25, 28]. Vredeveld surveyed some of the results on local

5 The Randomized policy is also known as the batch model [18].



search algorithms for scheduling problems in his thesis [28]. The jump model in
his survey [28] is similar to the Makespan policy. Moreover, the push model in his
survey is related to the LongestFirst policy. It is known that the jump local search
algorithm is an Θ(

√
m)-approximation for Q||Cmax [24, 28]. Cho and Sahni [24]

showed that the approximation factor of the shortest-first greedy algorithm is
not better than log m for Q||Cmax.

Ibarra and Kim [16] analyzed several greedy algorithms for R||Cmax. In par-
ticular, they proved that the shortest-first greedy algorithm is an m-approximation
for R||Cmax. Davis and Jaffe [9] showed that the approximation factor of this
greedy algorithm is at least log m. Our lower bound example for the ShortestFirst
and the LongestFirst policy is the same as the example in [9]. Davis and Jaffe [9]
also gave a

√
m-approximation for R||Cmax. The best known approximation fac-

tor for R||Cmax is given by a 2-approximation algorithm due to Lenstra, Shmoys
and Tardos [19].

Even-Dar et al. [10] considered the convergence time to Nash equilibria
for variants of the selfish scheduling problem. In particular, they studied the
Makespan policy and bounded the number of required steps to reach a pure
Nash equilibrium.

Our Contribution. We give almost tight bounds for the price of anarchy of pure
Nash equilibria for the Randomized, the ShortestFirst, and the LongestFirst poli-
cies. We give a proof that the price of anarchy of any deterministic coordination
mechanism (including ShortestFirst and LongestFirst) for Q||Cmax and B||Cmax is
at most O(log m). This result is also implied in the results of Azar et al [1, 2] on
the approximation factor of the greedy list scheduling algorithm for Q||Cmax and
B||Cmax. We also prove that any coordination mechanism based on a universal
ordering (such as ShortestFirst and LongestFirst) has a price of anarchy Ω(log m)
for B||Cmax. Moreover, we show that the price of anarchy of the LongestFirst
policy for Q||Cmax is at most 2 − 2

m . In addition, we analyze the Randomized
policy for R||Cmax machine scheduling and prove a bound of Θ(m) for the price
of anarchy of this policy. We further study the convergence and existence of pure
Nash equilibria for the ShortestFirst and LongestFirst policies. In particular, we
show that the mechanism based on the ShortestFirst policy is a potential game,
and thus any sequence of best responses converges to a Nash equilibrium after
at most n rounds. We also prove fast convergence of the LongestFirst policy for
Q||Cmax and B||Cmax.

2 Upper Bounds on the Price of Anarchy

2.1 The ShortestFirst Policy

We begin by bounding the price of anarchy of the ShortestFirst policy for R||Cmax.
We note that there is a direct correspondence between outputs of the well-known
shortest-first greedy algorithm for machine scheduling (see [16], “Algorithm D”)
and pure Nash equilibria of the ShortestFirst policy in R||Cmax.



Theorem 1. The set of Nash equilibria for the ShortestFirst policy in R||Cmax

is precisely the set of solutions that can be output by the shortest-first greedy
algorithm.

The proof of this theorem is deferred to the full version of this paper. The
implication is that any bound on the approximation factor of the shortest-first
greedy algorithm is also a bound on the price of anarchy of the ShortestFirst
policy for R||Cmax. In particular, we may use this theorem and the result of
Ibarra and Kim [16] to prove that the price of anarchy of ShortestFirst for R||Cmax

is at most m.

Theorem 2. The price of anarchy of the ShortestFirst policy for R||Cmax is at
most m.

We can further prove that the price of anarchy of the ShortestFirst policy
for Q||Cmax is Θ(log m). This also shows that the approximation factor of the
shortest-first greedy algorithm for Q||Cmax is Θ(log m), as was previously ob-
served by Azar et al [1]. In fact, the bound on the price of anarchy can be derived
from their result as well. Our proof, derived independently, uses ideas from the
proof of the price of anarchy for the Makespan policy for Q||Cmax by Czumaj
and Vocking [8].

We prove our upper bound for any deterministic coordination mechanism.
A coordination mechanism is deterministic if the scheduling policies do not use
randomization to determine the schedules. We prove that the price of anarchy
for deterministic mechanisms, and in particular for the ShortestFirst policy, for
Q||Cmax is at most O(log m). The proof is deferred to the full version of the
paper.

Theorem 3. The price of anarchy of a deterministic policy for Q||Cmax is at
most O(log m). In particular, the price of anarchy of the ShortestFirst policy for
Q||Cmax is O(log m).

In addition, we can prove that the price of anarchy of any deterministic
mechanism for B||Cmax is Θ(log m). This result is implied by a result of Azar et
al [2] on the approximation factor of the greedy algorithm for B||Cmax, but our
proof is independent of theirs and uses the ideas of the proof for the Makespan
policy by Gairing et al. [13]. We defer the proof to the full version of the paper.

Theorem 4. The price of anarchy of a deterministic policy for B||Cmax is at
most O(log m). In particular the price of anarchy of the ShortestFirst policy for
B||Cmax is O(log m).

2.2 The LongestFirst Policy

It is easy to see that the price of anarchy of the LongestFirst policy for unrelated
machine scheduling is unbounded. It is known that the price of anarchy of this
policy for P ||Cmax is bounded above by 4

3 − 1
3m [6]. Theorems 4 and 3 show



that the price of anarchy of the LongestFirst policy for B||Cmax and Q||Cmax is
at most O(log m). In Section 3, we prove that this bound is tight for B||Cmax.
Here, we prove that the price of anarchy of the LongestFirst policy for Q||Cmax

is at most 2 − 2
m . Note that this is the only policy for which we know that the

price of anarchy for Q||Cmax is bounded by a constant. The proof is similar to
the proof of Theorem 4.9 in [28], and is deferred to the full version of the paper.

Theorem 5. The price of anarchy of the LongestFirst policy for related machine
scheduling (Q||Cmax) is at most 2− 2

m .

2.3 The Randomized Policy

In the Randomized policy, an agent’s disutility is the expected completion time
of his job. We begin by computing the condition under which an agent has an
incentive to change strategies. Consider a job i on machine j and let Jj be
the set of jobs assigned to machine j. Then the disutility of agent i under the
Randomized policy is:

pij +
1
2

∑

i′ 6=i,i′∈Jj

pi′j .

Letting Mj be the makespan of machine j, we see that a job i on machine j has
an incentive to change to machine k if and only if:

pij + Mj > 2pik + Mk.

Because of this observation, the randomized policy is the same as the Makespan
policy for P ||Cmax and B||Cmax. This implies a price of anarchy of at most 2− 2

m

and O( log m
log log m ) for these settings, respectively.

Here, we bound the price of anarchy of the Randomized policy for Q||Cmax

and R||Cmax. In fact, we prove that, in contrast to the Makespan policy the price
of anarchy of the Randomized policy for R||Cmax is not unbounded.

Theorem 6. The price of anarchy of the Randomized policy for R||Cmax is at
most 2m− 1.

Proof. Let L be any pure strategy Nash equilibrium and O be an optimal so-
lution. We consider two groups of jobs — those that are on different machines
in O and L, and those that are on the same machine. Define Sqj as the set of
jobs on machine q in L that are on machine j in O, and let Lq =

∑
i∈∪j 6=qSqj

piq,
Oq =

∑
i∈∪j 6=qSjq

piq, and Rq =
∑

i∈Sqq
piq. Thus, the makespan of a machine

l in L is Ll + Rl, and the makespan of l in O is Ol + Rl. Since L is a Nash
equilibrium, for all jobs i ∈ Sqj ,

Lq + Rq + piq ≤ Lj + Rj + 2pij .

Suppose the makespan of L is achieved on machine l and the makespan of O
is achieved on machine l′. Then



| ∪j 6=l Slj |(Ll + Rl) + Ll =
∑

i∈∪j 6=lSlj

(Ll + Rl + pil)

≤
∑

i∈∪j 6=lSlj

(Lj + Rj + 2pij)

≤ | ∪j 6=l Slj |(Ll + Rl) + 2
∑

j 6=l

∑

i∈Slj

pij

≤ | ∪j 6=l Slj |(Ll + Rl) + 2
∑

j 6=l

Oj

≤ | ∪j 6=l Slj |(Ll + Rl) + 2(m− 1)(Ol′ + Rl′). (1)

Therefore, the value of the solution induced by the Nash equilibrium L is at
most 2(m−1)(Ol′ +Rl′)+Rl ≤ (2m−1)(Ol′ +Rl′), and so the price of anarchy
is at most 2m− 1.

Unfortunately, we do not know if pure Nash equilibria exist for the Randomized
policy for R||Cmax, and so the above theorem might be vacuous. However, we
can extend the above proof to bound the maximum of the expected load of a
machine in a mixed Nash equilibrium of the Randomized policy for R||Cmax. If
Mj is the expected load of machine j in a mixed Nash equilibrium, then it is easy
to show that if the probability of assigning job i to machine q is nonzero, then
for any other machine j, Mq + piq ≤ Mj + 2pij . Now, we can define Lq as the
expected load of jobs with positive probability on machine q that are scheduled
on machines other than q in the optimum solution. Similar inequalities hold in
this setting. This bounds the maximum of the expected load of any machine in
a mixed Nash equilibrium. We defer the details of the proof to the full version
of the paper. Note that this analysis does not hold for the expected value of
the maximum load (see [8] for the difference between these two objective func-
tions). We can further prove that this bound is tight, up to a constant factor
(see Theorem 9).

Finally, we also observe a better bound for Q||Cmax. The proof is along the
same lines as the proof of the Makespan policy [8] and is omitted here. This
proof is also valid for the maximum expected load on any machine for mixed
Nash equilibria.

Theorem 7. The price of anarchy of the Randomized policy for Q||Cmax is at
most O( log m

log log m ).

3 Lower Bounds on the Price of Anarchy

In this section, we prove lower bounds on the price of anarchy of coordination
mechanisms. Our first result shows that the price of anarchy of a general class
of coordination mechanisms for B||Cmax and R||Cmax is at least log m. This
is interesting in light of the fact that constant-factor LP-based approximation



algorithms are known for R||Cmax [19], and suggests that it may be hard to
obtain similar approximations with local search algorithms.

We consider a class of mechanisms which are deterministic and use a common
tie-breaking rule. That is, there is no randomization in the scheduling policies;
and, whenever two jobs i and i′ have the same processing time on a machine, one
of them, say i, is always scheduled before the other (independent of the machine
and the presence of other jobs). An example of such a mechanism is ShortestFirst
with an alphabetical tie-breaking rule (i.e. if pij = pi′j then i is scheduled before
i′ if and only if i < i′). The example in our proof was used by Davis and Jaffe [9]
to show that the approximation factor of the shortest-first greedy algorithm is
at least log m.

Theorem 8. The price of anarchy of any deterministic coordination mecha-
nism which uses a common tie-breaking rule is at least log2 m for B||Cmax and
R||Cmax.

Proof. Consider a deterministic coordination mechanism with a common tie-
breaking rule, say alphabetically first (this assumption is without-loss-of-generality
since we can always relabel jobs for the purposes of the proof such that in a tie
job i is scheduled before i′ whenever i < i′). Consider the following instance
of B||Cmax: there are m jobs and m machines and the processing time of job
i on machines 1, 2, . . . ,m − i + 1 is 1. Job i cannot be scheduled on machines
m− i + 2, . . . , m. Assume that m is a power of 2 and m = 2k.

Consider an assignment of jobs to machines as follows. Jobs 1 to 2k−1 = m
2

are assigned to machines 1 to m
2 respectively. Jobs m

2 + 1 to 3m
4 are assigned to

machines 1 to m
4 respectively. Jobs 3m

4 +1 to 7m
8 are assigned to machines 1 to m

8
respectively, and so on. It is not hard to check that this is a pure strategy Nash
equilibrium of this mechanism. The makespan of this assignment is k = log2 m.
In the optimal assignment job i is assigned to machine m − i + 1. Thus the
optimal makespan is 1, and so the price of anarchy is at least log2 m.

The example in the above proof can be easily changed to show that for
R||Cmax, the price of anarchy of the LongestFirst and ShortestFirst policies is at
least log2 m, even if there is no tie among the processing times.

Theorem 8 proves that if a coordination mechanism is deterministic and
policies of different machines are the same, then we cannot hope to get a factor
better than log2 m for R||Cmax. One might hope that the Randomized policy can
achieve a constant price of anarchy. However, we have the following lower bound
for the Randomized policy.

Theorem 9. The price of anarchy of the Randomized policy for R||Cmax is at
least m− 1.

Proof. Consider a scenario with m machines and (m − 1)2 jobs. Split the first
(m− 1)(m− 2) jobs into m− 1 groups J1, . . . , Jm−1, each of size m− 2 jobs. For
jobs i ∈ Jk, let pik = 1, pim = 1/m2, and pij = ∞ for all other machines j. Form
a matching between the remaining m − 1 jobs and the first m − 1 machines.



Whenever job i is matched to machine j in this matching, set pij = 1 and
pim = 1.

The optimal solution has makespan 1 and assigns all jobs in J1, . . . , Jm−1

to the last machine and each of the remaining m − 1 jobs to its corresponding
machine in the matching. However, the solution which assigns all jobs in Jk to
machine k for all 1 ≤ k ≤ m− 1 and all remaining m− 1 jobs to machine m is a
Nash equilibrium with makespan m−1. To see that this is a pure strategy Nash
equilibrium, consider a job i ∈ Jk. Its disutility on machine k is 1

2 (m − 3) + 1
while its disutility if it moved to machine m would increase to 1

2 (m− 1)+1/m2.
Therefore all jobs in J1, . . . , Jm−1 are playing a best response to the current
set of strategies. Now consider one of the remaining m − 1 jobs i. Say job i is
matched to machine j in the matching. Then the disutility of job i on machine
m is 1

2 (m − 2) + 1 while its disutility if it moved to machine j would remain
1
2 (m − 2) + 1. Since these jobs are also playing a (weakly) best response to
the current set of strategies, the above scenario is a Nash equilibrium in the
Randomized policy.

4 Convergence to Pure Strategy Nash Equilibria

In practice, it is undesirable if the job to machine mapping keeps changing. The
system performance can be adversely affected if players keep reacting to one
another’s changes of strategies. A good coordination mechanism is one with a
small price of anarchy and fast convergence to pure strategy Nash equilibrium.
In this section we investigate the convergence of players’ selfish behavior. We
prove that, except for the case of the Randomized and LongestFirst policies for
R||Cmax and the Randomized policy for Q||Cmax, the selfish behavior of players
converges to a pure Nash equilibrium.

We first define the notion of a state graph and a potential function. Let Ai

be the set of actions of player i, i = 1, 2, · · · , n. In our setting, each Ai equals the
set of machines {1, . . . , }. A state graph G = (V,E) is a directed graph where V
is the set of nodes A1 ×A2 · · ·An, and an edge labelled with i exists from state
u to v if the only difference between the two states is the action of player i and
i’s payoff is strictly less in v. A pure strategy Nash equilibrium corresponds to
a node with no outgoing edges. A potential function is a function f mapping
the set of states to a totally ordered set such that f(v) is strictly less than f(u)
for all edges uv ∈ G. In other words, whenever a player in state u changes his
action and improves his payoff, the resulting state v satisfies f(u) > f(v). Note
that the existence of a potential function implies the state graph is acyclic and
establishes the existence of pure strategy Nash equilibrium. The existence of a
potential function also implies that the Nash dynamics will converge if one player
takes the best response action atomically. We restrict our convergence analysis
to this atomic and best-response behavior of players. A game that has a potential
function is called a potential game. Many of our proofs proceed by showing that
the games we have defined in this paper are in fact potential games.



We remark that the Makespan policy corresponds to a potential game. This
fact has been observed in various places. In particular, Even-Dar et al. [10] give
several bounds on the speed of convergence to pure Nash equilibria for this
policy. The Randomized policy is the same as the Makespan policy for B||Cmax

and P ||Cmax. Thus, the Randomized policy also corresponds to a potential game
for B||Cmax and P ||Cmax. We do not know if the Randomized policy for R||Cmax

is a potential game or not. If it were, this would imply, among other things,
that pure Nash equilibrium exist. For the rest of this section, we study the
convergence for the ShortestFirst and LongestFirst policies.

4.1 Convergence for the ShortestFirst Policy.

In Section 2.1, we have shown that pure strategy Nash equilibria exist for the
ShortestFirst policy for R||Cmax and can be found in polynomial time. In the
following, we show that this game is a potential game and players will converge
to a pure strategy Nash equilibrium. Note that this gives an alternative proof of
the existence of pure strategy Nash equilibria.

Theorem 10. The ShortestFirst policy for R||Cmax is a potential game.

Proof. For any state u, let c(u) be the vector of job completion times sorted in
increasing order. We show that as a job switches from one machine to another
machine to decrease its completion time, it decreases the corresponding vector
c lexicographically. Suppose the system is in state u and c(u) = (c1, c2, . . . , cn).
Suppose job i with completion time ci switches machines and decreases its com-
pletion time. Call the new state v and let c(v) = (c′1, c

′
2, . . . , c

′
n). Let i’s comple-

tion time in v be c′j . We know that c′j < ci. However, the change in i’s action
may cause an increase in the completion times of other jobs. Assume that job
i switched to machine k in state v. Jobs whose completion time increases after
this switch are the jobs that are scheduled on machine k and whose processing
time on machine k is greater than i’s processing time on machine k. Thus, the
completion times of these jobs in state u (before i moves) were greater than or
equal to c′j . Thus in the resulting vector c(v), we decrease an element of the
vector from ci to c′j and we do not increase any element with value less than
c′j . Thus this switch decreases the corresponding vectors lexicographically, i.e.
c(v) < c(u) and so c is a potential function. This completes the proof.

Corollary 1. Selfish behavior of players will converge to a Nash equilibrium
under the ShortestFirst policy for R||Cmax.

Knowing that the selfish behavior of players converges to a Nash equilibrium
and the social value of a Nash equilibrium is bounded does not indicate a fast
convergence to good solutions. We are interested in the speed of convergence
to a Nash equilibrium. We consider the best responses of jobs and prove fast
convergence to Nash equilibria for the ShortestFirst policy.

In order to prove a convergence result, we must make some assumption re-
garding the manner in which the ShortestFirst policy resolves ties. In particular,



we will require that this tie-breaking rule is deterministic and satisfies indepen-
dence of irrelevant alternatives, i.e., the resolution of a tie between jobs i and j
is not affected by the presence or absence of job k. One such tie-breaking rule
is the alphabetically first rule. When there is a tie between the processing times
of two jobs, the alphabetically first rule always chooses the one with the smaller
identifier. We note that all our upper and lower bounds hold for the ShortestFirst
policy with the alphabetically first rule. For simplicity, in the proof below, we
will assume our ShortestFirst policy employs the alphabetically first rule to break
ties.

Theorem 11. In R||Cmax with the ShortestFirst policy, best responses of jobs
converge to a Nash equilibrium after n rounds of any arbitrary ordering of jobs,
when ties in the coordination mechanism are resolved using the alphabetically
first rule. In other words, from any state in the state graph G, it takes at most
n state traversals to end up in a state with no outgoing edges.

Proof. In the t’th round, let it be the alphabetically first job which achieves the
minimum possible disutility among the set of jobs Jt ≡ J −{i1, . . . , it−1}, fixing
the strategies of jobs J − {it}. We prove by induction that in round t, job it
moves to some machine and remains there in subsequent rounds.

Suppose j is any machine on which it achieves his minimum disutility. Then
in the t’th round, a best response for it is to move to machine j. We show that
this machine is the weakly best response of it for any set of strategies of jobs Jt.
By weakly best response, we mean there is no other action that, gives the player
a strictly better payoff (a smaller completion time in our setting).

First notice that the disutility of it on j can not increase as jobs in Jt alter
their strategies. This is because any job i′ ∈ Jt has processing time at least pitj

on machine j and, upon equality, is alphabetically larger or else we would have
set it = i′ in the t’th round. Now consider some other machine j′. Let cj be
the completion time of job i on machine j. Then any job with completion time
less than cj on machine j′ in round t must be in {i1, . . . , it−1} or else we would
have picked this job to be it in round t. Thus, the strategies of these jobs are
fixed. Let i′ be the job on machine j′ in round t with the smallest completion
time that is at least cj . If pitj′ < pi′j′ , then the strategy of i′ and all other jobs
scheduled after i′ on j′ in round t does not affect it’s disutility for machine j′. If
pitj′ ≥ pi′j′ , then even if i′ leaves j′ in a subsequent round, the completion time
of it on j′ is still at least i′’s completion time on j′ in round t, or at least cj .
Thus, it is a weakly best response for it to remain on machine j.

This shows that it is a weakly best response for it to remain on machine j in
all subsequent rounds.

The next theorem proves that the bound of Theorem 11 is tight.

Theorem 12. There are instances of R||Cmax under the ShortestFirst policy
for which it takes n rounds of best responses of players to converge to a Nash
equilibrium.



Proof. Suppose the processing time of job j on machine i is 1 + iε + (n − j) ε
n

for a sufficiently small ε. Starting from an empty assignment, let jobs go to their
best machine in the order of 1, 2, . . . , n. In the first round, all jobs go to the
first machine. In the second round, all jobs except the n’th job go to the second
machine. In the i’th round, jobs 1, 2, n − i + 1 will go from machine i − 1 to
machine i. At the end, job i is scheduled on machine n − i + 1 and it takes n
rounds to converge to this equilibrium.

4.2 Convergence for the LongestFirst Policy.

In the LongestFirst policy, it is possible to prove convergence in the Q||Cmax,
B||Cmax, and P ||Cmax models in a manner similar to that of Theorem 11. One
just must argue that in each round the job with the longest feasible processing
time (among jobs not yet considered) moves to its optimal machine and remains
there in subsequent rounds. For the sake of brevity, we omit this proof.

Theorem 13. For the LongestFirst policy in Q||Cmax, B||Cmax, or P ||Cmax,
the best responses of jobs converge to a Nash equilibrium after n rounds of any
arbitrary ordering of jobs, when ties in the coordination mechanism are resolved
using the alphabetically first rule.

We note that Theorem 13 proves the existence of a Nash equilibrium in these
games. We do not know how to prove that the LongestFirst policy converges in
the R||Cmaxmodel, although given that the price of anarchy would be unbounded
anyway, such a proof is of somewhat questionable value.

5 Conclusion and Future Work

We have studied abstract scheduling games where the disutility of each player is
its completion time. We note that our results can be applied in many practical
network settings. Our results can be directly applied to the Internet setting [26]
where there is a set of selfish clients, each of whom must choose a server from a
set of servers. Each client tries to minimize its latency, or job completion time;
the social welfare is the total system-wide latency. Similar problems arise in
the wireless network setting. For example, the basic fairness and load balancing
problem in wireless LANs [15] is reduced to the problem of unrelated parallel
machine scheduling. Centralized algorithms have been designed for this prob-
lem in [15]. We hope to use ideas from our coordination mechanisms to design
decentralized algorithms for this problem. In the third generation wireless data
networks, the channel quality of a client is typically time-varying [5]; it would
be interesting to study coordination mechanisms in this context given that users
may exhibit selfish behavior.

Theoretically, the most interesting open problem in this paper is to find co-
ordination mechanisms with constant price of anarchy for B||Cmax and R||Cmax.
We have shown that this cannot be achieved by any deterministic coordination
mechanism which uses a common tie-breaking rule. Another problem left open



in this paper is the existence of pure Nash equilibria for the Randomized policy
for R||Cmax.

Through-out this paper, we assumed all information regarding job processing
times was public knowledge. A new direction considered in [6] and [20] is the
design of coordination mechanisms in a private information setting, i.e. where
a job’s processing time is a private value. In such a setting, it would be nice if
a coordination mechanism incentivizes jobs to announce their true processing
times. The only constant-factor price of anarchy for Q||Cmax and the best factor
for P ||Cmax in our paper are achieved using the LongestFirst policy, but this
policy is not truthful. In particular, jobs can artificially inflate their length (by
inserting empty cycles, perhaps) and as a result actually decrease their disutility.
A truthful coordination mechanism with a constant price of anarchy in these
settings would be an interesting result.
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