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Abstract: Recent studies on operational wireless LANs
(WLANs) have shown that the traffic load is often unevenly dis-
tributed among the access points (APs). Such load imbalance
results in unfair bandwidth allocation among users. We argue
that the load imbalance and consequent unfair bandwidth allo-
cation can be greatly alleviated by intelligently associating users
to APs, termed association control, rather than having users as-
sociate with the APs of strongest signal strength.

In this paper, we present an efficient algorithmic solution to
determine the user-AP associations for max-min fair bandwidth
allocation. We provide a rigorous formulation of the associa-
tion control problem, considering bandwidth constraints of both
the wireless and backhaul links. We show the strong correlation
between fairness and load balancing, which enables us to use
load balancing techniques for obtaining optimal max-min fair
bandwidth allocation. As this problem is NP-hard, we devise
algorithms that achieve constant-factor approximation. In par-
ticular, we present a 2-approximation algorithm for unweighted
users and a 3-approximation algorithm for weighted users. In
our algorithms, we first compute a fractional association solu-
tion, in which users can be associated with multiple APs simul-
taneously. This solution guarantees the fairest bandwidth alloca-
tion in terms of max-min fairness. Then, by utilizing a rounding
method, we obtain the integral solution from the fractional solu-
tion. We also consider time fairness and present a polynomial-
time algorithm for optimal integral solution. We further extend
our schemes for the on-line case where users may join and leave
dynamically. Our simulations demonstrate that the proposed
algorithms achieve close to optimal load balancing (i.e., max-
min fairness) and they outperform commonly-used heuristic ap-
proaches.
Keywords: Wireless Local Area Networks (WLAN), IEEE
802.11, Max-Min Fairness, Load Balancing, Approximation Al-
gorithms.

I. INTRODUCTION

In recent years, IEEE 802.11 wireless LANs (WLANs) have
been rapidly deployed in enterprises, public areas and homes.
Recent studies [2], [3], [4] on operational WLANs have shown
that the traffic load is often distributed unevenly among the ac-
cess points (APs). In WLANs, by default, each user scans all
available channels to detect its nearby APs and associate itself
with the AP that has the strongest received signal strength indi-
cator (RSSI), while ignoring its load condition. As users are,� Part of this paper was published in � ��� .

typically, not uniformly distributed, some APs tend to suffer
from heavy load while adjacent APs may carry only light load
or be idle. Such load imbalance among APs is undesirable as
it hampers the network from providing fair services to its users.
As suggested in initial studies [5], [6], [7] the load imbalance
problem can be alleviated by balancing the load among the APs
via intelligently selecting the user-AP association, termed asso-
ciation control. Obviously, association control can be used to
achieve different objectives. For instance, it can be used to max-
imize the overall system throughput by shifting users to idle or
lightly loaded APs and allowing each AP to serve only the users
with maximal data rate. Clearly, this objective is not a desired
system behavior from the fairness viewpoint. A more desirable
goal is to provide network-wide fair bandwidth allocation, while
maximizing the minimal fair share of each user. This type of
fairness is known as max-min fairness. Informally, a bandwidth
allocation is max-min fair if there is no way to give more band-
width to any user without decreasing the allocation of a user
with less or equal bandwidth. In this paper, we present efficient
user-AP association control algorithms that ensure max-min fair
bandwidth allocation and we show that this goal can be obtained
by balancing the load on the APs.

A. Related Work

Load balancing in WLANs has been intensely studied by
both the research community and the industry. Various WLAN
vendors have incorporated proprietary load-balancing features
in their network device drivers, AP firmwares and WLAN
cards [8], [9]. In these proprietary solutions, the APs broad-
cast their load conditions to the users via the Beacon messages
and each user chooses the least loaded AP. In [5], [6], [7], differ-
ent association criteria than RSSI are proposed. These metrics
typically take into account factors such as the number of users
currently associated with an AP, the mean RSSI of users cur-
rently associated with an AP, the RSSI of the new user and the
bandwidth a new user can get if it is associated with an AP. For
example, Balachandran et al. [6] propose to associate new users
with the AP that can provide a minimal bandwidth required by
the user. If there are more than one such AP, the one with the
strongest signal is selected. Most of these heuristics only de-
termine the association of newly arrived users, except the one
in [7]. Tsai and Lien [7] propose to reassociate users when some
conditions are violated.

Load balancing has also been studied in cellular networks,
both TDMA and CDMA networks. Usually, it is achieved via
dynamic channel allocation (DCA) [10]. These methods are not
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applicable in WLAN setting where each AP normally uses one
channel and channel allocation is fixed. Another approach is
to use cell overlapping to reduce the call blocking probability
and maximize the network utilization. In [12], [13], a newly ar-
rived user is associated with the cell with the greatest number of
available channels. In [14], Lagrange and Jabbari address fair-
ness issues in this approach by restricting the number of avail-
able channels for new calls that are made in overlapping areas.
Tinnirello and Bianchi [15], propose to take into account the
channel conditions of the users. Recently, load balancing inte-
grated with coordinated scheduling technique has been studied
in [11] for CDMA networks. However, these techniques are
not suitable to our goal, since they consider different objective
functions, e.g., blocking probability, and they do not provide any
guarantee on the bandwidth allocated to each user.

Load balancing and max-min fairness have been extensively
studied and we discuss here just the most relevant literature for
our study. Most of the work on max-min fairness addresses
the problem of allocating bandwidth to a set of pre-determined
routes in a wired network [16], [17], [18]. The problem of se-
lecting routes for providing max-min fair bandwidth allocation
to a set of connections is much harder and has been studied
in [19], [20]. Megiddo [19] addresses the problem in the set-
ting of single-source fractional flow and presents a polynomial
time algorithm that finds an optimal max-min fair solution. Ex-
tending this work, Kleinberg et al. [20] consider the problem
where a connection is routed along a single path. In particular,
their approach can be applied to the load balancing problem of
parallel machine scheduling [21] where each job imposes the
same load per unit time on the subset of machines in which it
can be run, i.e., a load conserving system. They argue that a
coordinate-wise constant-factor approximation cannot be found
for this problem, and present a prefix-sum 2-approximation al-
gorithm to the fairest fractional solution. In other words, for
every integer ���
	 , the sum of the first � coordinates of the
calculated allocation vector sorted in increasing order is at most
twice the sum of the first � coordinates of the fairest fractional
assignment. They use Megiddo’s algorithm [19] to compute
a fractional solution and use the rounding scheme of Lenstra,
Shmoys and Tardos [21] for obtaining an integral solution. As
compared to our problem, this problem is a special case of ours
in which each user uses the same bit rate to all the APs it can
associate with. Therefore, their result cannot be directly applied
to our problem since each user gets different rate from differ-
ent APs, i.e. our jobs are not load conserving. In the context
of online load balancing of unrelated parallel machines, Asp-
nes et al. [22] and Goel et al. [23] present an algorithm with
a logarithmic competitive ratio when compared with the offline
optimal allocation. We will apply these results to deal with the
online case of our problem.

B. Our Contributions

In this paper, we present an algorithmic solution for deter-
mining use-AP association that ensures the network-wide max-
min fair bandwidth allocation. This goal is achieved by balanc-
ing the load of the APs. Previous studies on load balancing in
wireless networks have not explicitly considered fairness in con-
junction with load balancing. As shown in our simulations, if

load-balancing is not done carefully, users may experience even
poorer connections compared with the default strongest signal
approach. To the best of our knowledge, we are the first that
presents an association control algorithm that provides guaran-
tees on the quality of the bandwidth allocation against the opti-
mal solution.

In our scheme, each user station is equipped with client soft-
ware for monitoring the wireless channel quality to its nearby
APs. Each user reports this information to a network control
center (NOC) and NOC determines the user-AP associations of
all users. NOC informs each client of its decision and the users
set their associations accordingly. In this study, we do not ad-
dress the issue of providing fair service within each AP. We as-
sume that such a feature is available, for instance, by using the
IEEE 802.11e extension [24] or any fair scheduling mechanism,
such as [25], [26] [27], and we build our association control so-
lution on top of it.

For rigorous formulation of the association control problem,
a formal definition of the load is necessary. However, there is
no common notion of the load in the literature. Several studies
have already shown that naive definitions such as the number
of users that are associated with an AP or the AP throughput
do not reflect the AP load [2], [3], [4]. To this end, we intro-
duce a rigorous definition of the load in WLANs. Under our
load definition, generally speaking, the load that a user gener-
ates on its associated AP is inversely proportional to their ef-
fective bit rate. With this load definition, we prove the strong
correlation between AP load balancing and max-min fair band-
width allocation. Since the max-min fair bandwidth allocation
problem is NP-hard, we develop approximation algorithms. Ide-
ally, we would like to guarantee to each user a bandwidth of at
least �
��� of the bandwidth that it receives in the optimal (in-
tegral) solution, for a constant ����� . However, due to the
unbounded integrality gap, it is impossible to provide this type
of approximation [20]. Instead, our guarantees are relative to
an optimal fractional solution, where users can be associated
with multiple APs simultaneously. The basic steps of our algo-
rithms are as follows. First, we calculate a fractional solution for
the max-min fair bandwidth allocation problem. It is the fairest
among all possible allocations, and we use it as the basis to com-
pare with our integral solution. Then, we extend the rounding
method of Shmoys and Tardos [28] to obtain an efficient inte-
gral solution where each user can only associate with one AP.
In particular, we provide a 2-approximation algorithm for un-
weighted users and a 3-approximation algorithm for weighted
users. In [1], we extend these algorithms also for instances with
bounded-demand users, where users have upper bound on their
traffic demands. In addition to bandwidth fairness, we also con-
sider time fairness and we present an polynomial time optimal
algorithm. We further extend our schemes for the online case
where users may join and leave dynamically. Our simulations
demonstrate that the proposed algorithms achieve close to opti-
mal load balancing and max-min fairness and they outperform
popular heuristic approaches. In the presence of hot-spots, our
algorithms also provide higher network utilization than the one
obtained by the strongest signal approach. Although, this work
currently targets at WLANs, the proposed methodolgy may be
applicable to other wireless networks as well.
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II. THE NETWORK AND THE SYSTEM DESCRIPTION

A. The Network Model

We consider an IEEE 802.11 WLAN that comprises multiple
access points (APs). We use � to denote the set of access points
and let � denotes their number, i.e. ����� ��� . All the APs are
attached to a fixed infrastructure, which connects them to wired
data networks such as the Internet. This infrastructure provides
to each AP ����� a fixed transmission bit rate of � � bits/second.
Each AP has a limited transmission range and it can serve only
users that reside in its range. We define the network coverage
area to be the union of the area covered by each AP in � .

We use ! to denote the set of mobile users that reside in the
network coverage area and let "#�$� !%� denotes the total number
of users in ! . We assume that the users have a quasi-static mo-
bility pattern. In other words, the users are free to move from
place to place, but they tend to stay in the same physical loca-
tions for long time periods. This assumption is backed up by
recent analysis of mobile user behavior [2], [3]. Each user is
associated with a single AP. The channel condition between an
AP and a user is dynamic. However, since our goal is to achieve
a long-term1 fairness, our decisions are based on the long-term
channel conditions observed by the users and the APs. The lat-
ter are mainly influenced by path loss and slow fading. For each
user &��'! and each AP �$�(� , we use )
�+* , to denote the
average effective bite rate2 with which they can communicate.

Throughout this paper, we consider greedy users that con-
sume all the bandwidth allocated to them by the network and
always have traffic to send or receive. Furthermore, we assume
that each user &-�.! has a weight / , that specifies its priority.
This weight is used to determine the bandwidth allocation, 01, ,
it entitles to have with respect to the other users. For instance, a
user &2�2! entitles to have a bandwidth of 03,4�
576598%: 0<; of any
other user =>�?! in a nearby location. An extension of our re-
sults for instances with bounded-demand users can be found in
[1]. We assume that, each AP runs a scheduling algorithm that
allocates bandwidth fairly to its associated users, e.g., by using
one of the mechanisms described in [24], [27]. A summary of
the main notation used throughout the paper is given in Table I.

B. The System Description

We develop an algorithmic solution that determines the ap-
propriate user-AP association for providing a long-term max-
min fair service to the users. As such, our solution can be used
as the theoretical foundations in the design of practical network
management systems. Data flows have bursty characteristics
and they generate dynamic load on the APs. Therefore, it is
practically impossible to provide short-term fairness through as-
sociation control without generating high communication over-
head and potentially disrupting ongoing sessions. Instead, our
scheme provides long-term fairness by maximizing the minimal
bandwidth allocated to greedy users.

We now discuss the implementation aspects of the association
control mechanism. First, the system requires relevant informa-@

Long-term time scale is measured in terms of tens of seconds, which is at-
tractive for the practical purpose.A

The effective bit rate also takes into account the overhead of retransmissions
due to reception errors.

Symbol SemanticsB
The set of all access points (APs).C
The set of all users.DFE
The infrastructure link bite rate of AP G .H E+I J The wireless link bite rate between AP G and user K .L J The weight (priority) of user K .M J
The bandwidth allocation of user K .N M J
The normalized bandwidth allocation of user K .OPQJ
A normalized bandwidth allocation vector.R
A bandwidth allocation matrix.S E+I J The fractional association of user K with AP G .T
An user-AP association matrix.U E The load on AP G .VW
An upper bound on the AP’s loads.OW
The APs’ load vector.XZY
The APs of load group [ .VX
The bottleneck load group.\ Y
The users of fairness group [ .V\
The bottleneck fairness group.VT
the user-AP association matrix of the bottleneck
load group and its corresponding fairness group.]
The load balancing threshold, e.g., the minimal load
that a user may generate on an AP.^�_ The max-min load balanced approximation ratio
with threshold

]
.` E+I J

The joint load of user K on AP G on both
the infrastructure and wireless links.

TABLE I

NOTATIONS.

tion on each user &#�>! , such as its weight /a, and the effective
bit rate )+��* , that it experiences from each AP �b�c� . Second, it
needs an algorithm to determine the appropriate user-AP associ-
ation. Third, it needs a mechanism to enforce these association
decisions.

We observe that some required information, the effective bit
rate )��+* , between every user & and every AP � , is not available
from the existing 802.11 AP products, because an AP maintains
the bit rate information only for the users who are currently as-
sociated with it. In fact, the effective bit rates can only be mea-
sured from the user side, by monitoring the signal strength of
beacons from nearby APs. The collected information is reported
to a network operation center (NOC) which runs our algorithm
to come up with the user-AP association decisions. Since the
users are free to move, the NOC periodically recalculates the
optimal user association by using one of the offline algorithms,
described in Section IV. Between two successive executions of
the offline algorithm, the NOC uses an online method that main-
tains the APs’ load as balanced as possible. We elaborate on the
online algorithm in Section V. After determining a user associ-
ation, the NOC notifies the user client software of his decision.
The client changes the user association accordingly.

C. Periodic Offline Optimization

We motivate the need for periodic offline optimization by
revealing the weakness of the online load balanacing mecha-
nism. Example 1 illustrates a case when a naive online load
balancing mechanism yields very poor results. More specifi-
cally, our example shows the Least-Loaded-First(LLF) method,
a widely-used load-balancing heuristic, can perform worse than
the Strongest-Signal-First(SSF) method, the default association
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Fig. 1. The weaknesses of online association control mechanism.

method of WLANs. In the LLF method, a user chooses the least-
loaded AP, where an AP load is inversely proportional to the cur-
rent bandwidth that its associated users receive. Our simulations
in Section VI demonstrate that such bad association decisions by
the online heuristics are not rare but rather typical. Similar ex-
amples can be found when other association criteria [5], [6], [7]
are used.

Example 1: Consider a wireless system with d access points,e and f , and g users hi�ijkdljkglm , indexed according to their arrival
time, as depicted in Figure 1-(a). In this figure the numbers on
the dashed lines represent the bit rate that each user experience
from the corresponding AP. We assume that the APs provide fair
service to their associated users. In this example we compare the
LLF, the SSF and optimal association strategies.
The LLF strategy: When user � arrives to an empty system, it
joins to AP e that provide the higher bite rate (the stronger sig-
nal) among the two APs. Upon the arrival of user d , AP e is
more loaded than AP f . Therefore, user d chooses AP f al-
though AP f provides lower bit rate than AP e . As a result,
AP f becomes the most loaded AP. When user g arrives, it as-
sociates itself with AP e . The final association is given in Fig-
ure 1-(b). Consequently, user � and g receive a bandwidth ofn o

(from 03�
prqs03�td��u� , we have 0v�$pw�
g ), while user d gets a
bandwidth of � . Clearly, this association is far from the optimal
one.
The SSF strategy: In this strategy, user � and d are associated
with AP e , and user g randomly selects one of the two APs.
Case I - user g chooses AP e : All the users are associated with
AP e , as shown in Figure 1-(c), while AP f is idle. The band-
width allocated to each user is xy�tz . Obviously, this is (almost)
the worst possible association.
case II - user g chooses AP f : This results in the optimal as-
sociation, see Figure 1-(d). User � and d receive bandwidth ofxy�{g while user g receives a bandwidth of d . Thus, each user gets
twice the bandwidth allocated to it in the LLF Strategy. |

The association inefficiency of the online mechanism is inten-
sified in the case of hot-spots, where a large number of users are
concentrated in a small area, as we demonstrate in Section VI.
This raises the need for periodic offline calculation of an optimal
association.
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Fig. 2. Examples of bottlenecks both over the wireless and the wired links.

D. Wireless and Wired Bottlenecks

It is commonly believed that in wireless networks the wireless
channels are the scarce resources and become the bottle neck.
Although this may be generally true, there are cases when this
assumption is not valid. For instance, consider an IEEE 802.11
network where the APs are connected to the infrastructure over} � lines, whose capacity is around �i~ � Mbps, as illustrated in
Example 2. Note that

} � lines are commonly used as the access
link that connects small and medium companies to the Internet.
Example 2 demonstrates the need to consider both the wireless
and the wired links for load balancing.

Example 2: Consider a wireless system with d access points,e and f , and � users, enumerated from � to � , as depicted in Fig-
ure 2. Users �tj�dlj�g and p experience a bit rate of d Mbps from
both APs, while users � and � have a bit rate of � Mbps from
both APs. The APs are connected to a fixed network with

} �
lines with capacity of �t~�� Mbps. In the following we consider
two possible associations and we analyze the average bandwidth
that they provide to the users.
Case I: A fair user association only from the wireless perspec-
tive - Consider the association depicted in Figure 2-(a). Here,
the system can allocate a bandwidth of 	�~�� Mbps to each user
over the wireless links. However, while AP e can allocate a
bandwidth of 	�~�� Mbps to users � and � on its

} � line, AP f can
only provide

o� Mbps to its associated users over its
} � line. In

this case, the wireless link of AP e is the bottleneck that affects
the bandwidth allocation. Meanwhile, the wired link is the bot-
tleneck of AP f .
Case II: A fair user association - Consider the association shown
in Figure 2-(b). This association provides a bandwidth of 	�~��
Mbps to each user over the wired and wireless channels. Ob-
serve that in this case different users may gain different service
time on the wireless links and wired backhauls. For instance,
user � captures �o of the service time of the

} � link of AP e ,
while, it is served �� of the time by its wireless channel. This
ensures that user � , indeed, receives a bandwidth of 	�~�� Mbps.|



5

III. FAIRNESS AND LOAD BALANCING

In this section we provide formal definitions of fair bandwidth
allocation and load balancing. Additionally, we describe some
useful properties that we need for constructing our algorithmic
tools. In the following, we consider two association models.
The first is a single-association model, so-called an integral-
association, where each user is associated with a single AP at
any given time. This is the association mode that is used in
IEEE 802.11 networks. The second is a multiple-association
model, also termed a fractional-association, that allows each
user to be associated with several APs and to get communica-
tion services from them simultaneously. Accordingly, a user
may receive several different traffic flows from different APs,
and its bandwidth allocation is the aggregated bandwidth of all
of them. This model is used to develop our algorithmic tools for
the integral-association case. For both association models, we
denote by !�� all the users that are associated with AP �����
and �a, denotes the set of APs that user &$�(! is associated
with.

A. Max-Min Fairness

Consider a wireless network as described in Section II-A. A
bandwidth allocation is a matrix, �(��h�01�+* ,7� &���!�j����s� m ,
that specifies the average bandwidth, 01�+* , , allocated to each user&-�.! by every AP ���>� . We denote by 0 , ��� �+�t� 0 �+* , the
aggregated bandwidth allocated to user & and let � 0�,���0�,l��/�, be
its normalized bandwidth (NB) allocation. On average, AP � is
required to serve user & a period of 01�+* ,l��)��+* , over the wireless
channel and a period of 0 �+* , �
� � over the infrastructure link,
at every time unit. Consequently, we say that a bandwidth al-
location � is feasible if every AP ���(� can provide the re-
quired bandwidth to all its associated users both in the wire-
less and the wired domains, that is, � ,i�y� 0<�+* ,l��)��+* ,���� and� ,t�y� 0<��* ,w�{�r�b��� . In the case of an integral-association, we
also require that each user is associated with a single AP.

Intuitively, a system provides a fair service if all users have
the same allocated bandwidth3. Unfortunately, such a degree of
fairness may cause significant reduction of the network through-
put, since all users get the same bandwidth allocation as the bot-
tleneck users, as we illustrate in Example 3 below. The common
approach to address this issue of fair allocation that also max-
imizes the network throughput is to provide max-min fairness
[18]. Informally, a bandwidth allocation of a weighted system is
called max-min fair if there is no way to increase the bandwidth
of a user without decreasing the bandwidth of another user with
the same or less normalized bandwidth. Consider a bandwidth
allocation � and let �0 , be the normalized bandwidth allocated
to user &
�
! . We define the normalized bandwidth vector
(NBV), �� �
h��0 � j :3:3: jk�0��9m as the users’ normalized bandwidth
allocations sorted in increasing order and users are renamed ac-
cording to this order.

Definition 1 (Max-Min Fairness) A feasible bandwidth allo-
cation � is called max-min fair if its corresponding NBV �� �h��0 � j :1:3: jk�0 � m has the same or higher lexicographical value than

the NBV ���  �¡h �0   � j :3:1: j � 0  � m of any other feasible bandwidth¢
The same normalized bandwidth in the case of weighted system.
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Fig. 3. Examples of a wireless system with £ APs and ¤ users.

allocation �   . In other words, if ��¦¥� ��v  then there is an index§
such that �0k¨>�'�0  ¨ and for every index ©«ª § , it follows that� 0�¬­� �0  ¬ .

Consider the case that each AP provides a weighted fair band-
width allocation to its associated users. Then, a user association
is termed max-min fair if its corresponding bandwidth allocation
is max-min fair.

Theorem 1: The problem of finding a max-min fair integral
association is NP-hard.
Proof: This Theorem can be proved by using a simple reduction
from the partition problem [29] to the max-min fair integral as-
sociation problem. Due to space limitation details of the proof
have been omitted. |

Example 3: Consider a wireless system with g APs, �®�h e j¯f°j�±lm , and � users, !²�³hi�ijkdljkg�j�p´jk�lm , as depicted in Fig-
ure 3-(a). In this figure, doted lines represent possible associa-
tion and the number near each line represents the bit rate ){�+* ,
of the corresponding wireless link. All the users have weight �
and we assume that all the APs are connected to a high band-
width infrastructure. Figure 3-(b) presents a feasible fair associ-
ation in which every user receives a bandwidth 0���� , where the
solid lines represents the users’ associations. Note that this is the
maximal bandwidth that can be allocated to user � . Thus, one
can argue that this is the optimal bandwidth allocation. How-
ever, in Figures 3-(c) and (d), we describe two feasible associa-
tions, in which each user get at least � unit of bandwidth. Here,
the solid lines indicates an integral association and the dashed
line represents fractional association. Figure 3-(c) presents the
integral max-min fair allocation with NBV �� �µhi�ij3�tj1�tj�dljkdlm .
While, Figure 3-(d) introduces the fractional max-min fair allo-
cation with NBV �� ��hy�tj no j n o j n o j n o m . |

Clearly, the NBV of a fractional max-min fairness alloca-
tion always has the same or higher lexicographical value than
the NBV of the integral max-min fairness allocation. We will
use this property to construct our solution for the integral-
association case. Furthermore, consider a max-min bandwidth
allocation � of either a fractional or an integral association. The
users can be divided into fairness groups, such that each fairness
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group, ¶¸·-¹u! , consists of all users that experience the same
normalized bandwidth allocation, denoted by �0 · .

Theorem 2: Let � be a max-min fair bandwidth allocation
and let h�¶¸·ym be its corresponding fairness groups. Then all the
users served by a given AP belongs to the same fairness group.
Formally, for each fairness group ¶º· , » ,t�t¼y½ » �+�t� 6 !��¾��¶¸· .
Proof: Initially we prove that » ,i�t¼ ½ » �+�t� 6 !¿��À¦¶¸· . This
is trivial since every user &���¶ · is included in the set ! � for
each AP � it is associated with. Now, we turn to prove that» ,i�t¼ ½ » �+�t� 6 !¿�c¹$¶Á· . In the case of an integral association,
this is satisfied since each user is associated with a single AP and
this AP guarantees the same normalized bandwidth allocation to
all its associated users. For fractional-association, lets suppose
that this property is not valid. Thus, there is an AP � that serves
users of two different fairness groups ¶­¨ and ¶Á¬ . Suppose that� 0 ¨ ª
�0 ¬ . Thus, AP � may increase the bandwidth of its asso-
ciated users in ¶ ¨ on behalf of its associated users in ¶ ¬ . This
results in a NBV with a higher lexicographical value. However,
this contradicts the assumption that the given allocation is max-
min fair. |
B. Min-Max Load Balancing

It is widely accepted that the primary approach for obtaining
a fair service is balancing the load on the access points. How-
ever, for WLANs the notion of load is not well defined. Several
recent studies [2], [3], [4] have shown that neither the number of
users associated with an AP nor its throughput reflect the AP’s
”load”. This motivates the need for an appropriate definition.
Intuitively, the load of an AP needs to reflect its inability to sat-
isfy the requirements of its associated users and as such it should
be inversely proportional to the average bandwidth that they ex-
perience. Our load definition captures this intuition and it is
also aligned with the standard load definition that are used in the
computer science literature, e.g., scheduling of unrelated paral-
lel machines [30]. Consequently, we are able to extend existing
load balancing techniques to balance the AP loads and obtain a
fair service.

We define the notion of fractional association. A fractional
association is a matrix ÂÃ�'h1ÄÅ�+* ,Z� �>�.��ÆÇ&È�È!�m , such that
for each user &$��! , Equation � �+�t� Ä �+* , �É� holds. Each
parameter ÄZ�+* ,��µÊ 	´j3�<Ë specifies the fractional association of
user & with AP � . Generally speaking, ÄÅ�+* , reflects the fraction
of user & ’s total flow that it expects to get from AP � . A frac-
tional association Â is termed feasible if the users are associated
only with APs that can serve them, i.e., for each pair ���Ç� and&Ì��! , it follows that ÄZ��* ,2��	 only if )��+* ,2�Í	 . Moreover, a
feasible association matrix that consists of just 	 and � is termed
an integral association.

Consider a feasible association Â , either integral or frac-
tional. We define the load induced by user & on AP � to be the
time that is required of AP � to provide user & a traffic volume
of size ÄZ�+* , : /�, . Thus, user & produces a load of ÄÅ�+* , : /�,���)+,i* �on the wireless channel of AP � and a load of Ä �+* , : / , �
� � on its
backhaul link. Consequently, we define the load, Îl� , on AP � to
be the period of time that takes AP � to provide a traffic volume
of size Ä9��* , : /�, to all its associated users &#�>!Ï� . Formally,

Definition 2 (Access-Point Load) The load on an AP �c�.� ,

denoted by Îy� , is the maximum of its aggregated loads on both
its wireless and infrastructure links produced by all the users.
Thus,

Î � �sÐ4Ñ
Ò ÓÕÔ,i�y� Ä9�+* , : /�,)1,i* � j Ô,i�y� Ä9�+* , : /�,�Ö� ×
Therefore, the load of an AP is given in terms of the time it takes
to complete the transmission of certain traffic volume from each
associated user. This is not surprising, since the load should be
inversely proportional to the bandwidth that the AP provides to
its users. Furthermore, the bandwidth that AP � provides to user& is 0<�+* ,��sÄ9�+* , : /�,���Îi� (1)

We define the load vector �Ø ��h+Î � j :1:3: j¯ÎtÙvm of an association
matrix Â to be the " -tuple consisting of the load of each AP
sorted in decreasing order.

Definition 3 (Min-Max Load Balanced Association) A feasi-
ble association Â is termed min-max load balanced if its cor-
responding load vector �Ø �Úh1Î � j :1:3: j�ÎtÙvm has the same or

lower lexicographical value than any other load vector �Øv  �h1Î  � j :1:3: j�Î  Ù m of any other feasible assignment Â   . In other

words, if �ØÛ¥� �Øv  , then there is an index
§

such that Î{¨cª�Î  ¨
and for every index ©�ª § , it follows that Î ¬ ��Î  ¬ .

Example 4: Consider the wireless system described in Ex-
ample 3. Figure 3-(c) presents the min-max load balanced as-
sociation for the single-association case and its load vector is�Ø ��hi�ij3�ij �� m . While, Figure 3-(d) introduces the min-max
load balanced association for the multiple-association case and
its load vector is �Ø �¡hy�tj on j on m . Recall that in this case the
association of user p is Ä7Ü´* n �µÄ´Ý1* n � �� , thus the load that it
induces on each one of these APs is ��%Þ �� � �n . |

Consider the min-max balanced association Â and its corre-
sponding load vector �Ø . Recall that users can be partitioned
into fairness groups. Similarly, APs can be partitioned into load
groups. Each load group, ß · ¹�� contains all the APs with
the same load, denoted by Î · . Furthermore, lets assume that
the indices of the load groups are assigned in decreasing order
according to their corresponding loads.

Theorem 3: Consider a min-max load balanced associationÂ and let h+ß · m be its APs partitioned into load groups, then
each user is associated with APs with the same load, i.e., , for
each load group ß · we have » �+�tà ½ » ,t�y�wá � , ��ß · .
Proof: Recall that this is trivial in the case of a single association
since every user is associated with a single AP. in the case of
multiple association it is clear that » �+�tà ½ » ,i�y�wá � , À
ß · ,
since each AP is included in the sets � , of each user & that it
serves. We now turn to prove that » �+�tà ½ » ,i�y�wá � , ¹
ß · .
Let us suppose in contrast that this property is not valid. Thus,
there is an user & that is served by to APs � and 0 such thatÎ � ��Îiâ . Recall that both Ä �+* , and ÄZâ * , are strictly more than 	
and less than � . Thus, we can reduce the load of AP � by shift
some load from AP � to AP 0 . This is obtained by decreasing the
fractional association ÄÅ�+* , and increasing a little bit the fraction
association Ä â * , . This load shift produces a new association that
its corresponding load vector has lower lexicographical value
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Fig. 4. Examples of a single association that is min-max load balanced but is
not max-main fair.

than the load vector of the current association Â . However, this
contradicts the assumption that Â is a min-max load balanced
association. |

Theorem 4: Consider a min-max load balanced associationÂ and consider any user &��ã! and any one of its associated
APs �.�Ì� , . Then, the bandwidth allocation for user & deter-
mined by Â is 0 , ��/ , ��Î � .
Proof: Since Â is a min-max load balanced association, it fol-
lows that ��ä �t� 6 Ä ä * ,«�Í� and all the APs å��#�æ, has the same
load Îi� as the selected AP � . By Equation 1, we have,0 , � Ôä �t� 6 0 ä * , �

Ôä �t� 6 Ä ä * , : / , ��Î ä ��/ , �
Î � |
From Theorems 3 and 4, we have Corollary 1.

Corollary 1: Consider a min-max load balanced associationÂ . Â partitions the APs into load groups h�ß�·{m , where the load
on each AP in a group ß°· is Îy· . It also divides the users into
fairness groups h+¶ ·<ç m such that all the users in the same group
experience the same normalized bandwidth � 0<·�ç . Furthermore,
the APs of a given load group ß · serve only users from a corre-
sponding fairness group ¶ · ç and the normalized bandwidth that
each user in ¶ · ç experiences is ����Î · .

In the following we refer to the load group of the most loaded
APs and the corresponding fairness group as the bottleneck
groups. We now turn to prove the strong relationship between
fairness and load balancing in the case of fractional-association.
A sketch of Theorem 5’s proof can be found in Appendix VII.

Theorem 5 (The Main Theorem) In the fractional-association
case, a min-max load balanced association Â defines a max-min
fair bandwidth allocation and vise versa.

Unfortunately, Theorem 5 is not satisfied in the case of a sin-
gle association, as we illustrate in Example 5. However, by us-
ing approximation algorithm we can provide an approximated
solution to these NP-hard problems by rounding the calculated
fractional solutions, as described in Section IV.

Example 5: Consider the wireless system described in Exam-
ple 3. As mentioned above, Figure 3-(c) presents the min-max
load balanced association Â . Its load vector is �Ø �Ãhi�ij3�ij �� m
and its corresponding NBV is �� �Íhi�ij3�tj1�tj�dljkdlm . However, the
association Â   presented in Figure 4 has the same load vector
while its NBV vector is ���  �Éhi�ij3�ij3�tj1�tj�dwm . Observe that in
both associations Â and Â   , one of the two APs f , ± has a load� and the other has �� . However, in association Â only two users
are associated with each one of these two APs, while in associ-
ation Â   three users are associated with AP f whose load is �
and only one user is associated with AP ± whose load is �� . This
disparity leads to the sub-optimality of association Â   . |

IV. ASSOCIATION CONTROL ALGORITHMS

In this section we present our algorithms that give approxi-
mate solutions to the integral max-min fair bandwidth alloca-
tion for greedy users. This is a challenging problem, as even
identifying the users in the bottleneck fairness group and find-
ing their normalized bandwidth is NP-hard. From Definition 2
and Equation 1, it follows that the minimal normalized band-
width allocation is maximized when the maximal load on the
APs is minimized, i.e., when the load on the APs is balanced.
Our load balancing problem is actually an extension of the
scheduling unrelated parallel machines problem [21], [28]. For
this problem, Lenstra, Shmoys and Tardos, in [21], proved that
for any positive èÌª �� there is no polynomial-time é¯�Õq�è�ê -
approximation algorithm exists, unless ëì�¦ícë . Moreover,
in [21] and [28], they gave a polynomial-time 2-approximation
algorithms, which is currently the best known approximation ra-
tio achieved in polynomial time. However, unlike the solutions
given in [21], [28] that balance the load on the most loaded ma-
chines, our solution seeks for a complete min-max load bal-
anced association. We consider three different settings. We
provide a d -approximation algorithm for unweighted users, ag -approximation algorithm for weighted users and an optimal
solution for fair time allocation.

A. ��î -Approximation with Threshold

Intuitively, we would like to guarantee to each user a band-
width of at least �
��� of the bandwidth that it receives in the
optimal integral solution, for a constant �Ì��� . However, due
to the unbounded integrality gap, it is impossible to provide this
type of approximation [20], as we demonstrate below. Let Î ¬ï�
ð�
and Î�ñ+ò �<ó� be the load on a given AP �Ç�-� in the optimal inte-
gral and fractional solutions, respectively. We show that there is
neither upper nor lower constant bounds for the ratio Î ¬ï�
ð� �
Îlñ+ò �<ó� .

Example 6: Consider a wireless network with d APs h+�9jk0�m
and d users hi�ijkdlm , where )���* � �u) â * � �
ô and )��+* � �u) â * � �ô1��éõd : ô­öc�+ê for a given constant ôr��� . In the optimal fractional

solution, the load on each AP is Î´ñ+ò �<ó� �ãÎ ñ1ò �<óâ ���
�{d : é¯���{ô�qéõdtôÖö��+ê��{ô3ê4�÷� . However, in any integral solution, one AP,
let say � , experiences a load of Î ¬ø�{ð� �����
ô while the other has a
load of Î ¬ï�
ðâ �Íéùd{ô7ö��+êk�
ô . Consequently, the ratio Î ¬ï�
ð� ��Î�ñ+ò �3ó� ����{ô and it cannot be lower bounded by any constant. |

Example 6 demonstrates the difficulty to provide guarantees
that are comparable with the integral solution. Accordingly, our
guarantees are relative to an optimal fractional solution. Recall
that the NBV of the latter has the same or higher lexicographical
value than the NBV of the optimal integral solution. Thus, the
fractional solution is at least as fair as an integral one. In fact,
the optimal fractional solution is the fairest among all feasible
allocations.

Example 7 (from [30]) Consider a wireless network with �
APs, denoted by � , and a single user & , and let ) �+* , �¦� for
each �.�Ì� . Clearly, in the fractional solution the load of & is
equally divided among all the APs and thus for each �.�Ì� , it
follows that Î ñ+ò �3ó� �ì���
� . However, in the integral solution
user & is associated with a single AP, lets say � , and the load of
this AP is Î ¬ï�
ð� ��� . Thus, the ratio between Î ¬ø�{ð� and Î�ñ+ò �<ó� is
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Fig. 5. A formal description of the integral load balancing algorithm

� and it cannot be upper bounded by any constant. |
This obstacle occurs since the fractional load is smaller than

the load induced by a single user on any AP. Since, our practical
goal is to reduce the load of highly-loaded APs, there is no need
to balance the load of APs with load below a certain threshold}

. To this end, we select
}

to be the maximal load that a user
may generate on an AP as formulated in Equation 2.} � Ð4Ñ
Ò� ,i* ��� ,i�y���l�+�t��� ò á! 6�"$#!% Ð4Ñ
ÒZh / ,)+��* , j / ,�r� m (2)

Recall that
}

is indeed a very small value and in practical 802.11
networks

} �µ� sec/Mb. In light of these difficulties, we now
formulate load and bandwidth guarantees that we provide in our
solutions.

Definition 4: Let Âbî be a fractional min-max load balances
association and let Î î� be the load of each AP �?��� . Then, a��î min-max load balanced approximation with threshold

}
is an

integral association Â such that the load Îw� of each AP �-�È�
satisfies Îi�v�Ì� : Ð Ñ{ÒZh1Î´î� j } m .Definition 5: Let Âbî be a fractional max-min fair associa-
tion, and let � 03î, be its normalized bandwidth allocation to user&c�c! . Then, a ��î max-min fairness approximation with thresh-
old
}

is an integral association Â such that the normalized band-
width � 0�, of each user &#�>! satisfies �0�,%� �& : Ð('�)Fh �03î, j �* m .
B. The Scheme Overview

We now present our integral load balancing algorithm. The
algorithm comprises two steps. Initially, it calculates the optimal
fractional association i.e., the min-max load balanced fractional
association. From Theorem 5, it follows that this association is
also a max-min fair fractional allocation. Then, the algorithm
utilizes the rounding method of Shmoys and Tardos [28] to ob-
tain an approximate max-min fair integral association. A formal
description of the algorithm is provided in Figure 5.

B.1 The Fractional Load balancing Algorithm

Our algorithm results from the observations made in Sec-
tion III. More specific, let Â be a max-min load balanced frac-
tional association. According to Corollary 1, Â partitions the
APs and the users into load groups h�ß�·im and corresponding
fairness groups h�¶¸·ym , such that the APs in a load group ß�· are
associated only with the users in a fairness group ¶ · and vise
versa. Moreover, all APs in a given load group ß · have the
same load Îi· and the corresponding users in the fairness group¶¸· experience a normalized bandwidth allocation of ����Îl· .

Based on these observations, we present an iterative algo-
rithm, referred to as the fractional load balancing algorithm.
The algorithm calculates the load groups and their correspond-
ing load values. For each load group, it also infers the users

Alg Fractional Load Balancing(
B¿ú C

)
Initialize

T[ þ �
while (

C,+-/. ) do0 X9Y ú \�YÅTÅY21 þ M �����3��45�64�ÿ [ 	
45�34�ÿ7�������8� B�ú C��
Update

T
with the association

TFY
.B þ B:9 X9YC þ C 9 \ Y[ þ [<;��

end of while
return

T
end

Fig. 6. A formal description of the fractional load balancing algorithm

that are associated with the APs of this load group. To ease our
presentation, lets assume that the load groups are enumerated in
decreasing order according to their loads Îl· . Thus, the APs in
the group ß � are the ones with the maximal load according to
the association Â . We refer to the group ß � as the bottleneck
load group and the set ¶ � of their associated users as the bot-
tleneck fairness group. Moreover, load Î � on the APs in ß � is
termed as the bottleneck load and it is denoted by =Ø .

Initially, the iterative algorithm assumes a system that con-
tains all the APs and the users. At each iteration, the algo-
rithm invokes the bottleneck-group detection routine to calculate
the bottleneck load group and the corresponding fairness group.
Then, it updates the fractional solution accordingly. Before pro-
ceeding to the next iteration, the algorithm removes the bottle-
neck load and fairness groups from the system. Note that in the
new iteration the load group with the succeeding index becomes
the bottleneck group. A formal description of the algorithm is
given in Figure 6.

Now, we turn to present the bottleneck-group detection rou-
tine. In this routine, we denote by =ß and =¶ the load and fair-
ness bottleneck group respectively. This routine consists of three
steps. In the first step, we calculate the optimal bottleneck load
value =Ø , that upper bounds the load Î � of every AP �?��� in
any min-max load balancing association. To infer its value, we
utilize a linear program, denoted as >@?(A , that calculates a fea-
sible association Â , which also minimizes the maximal load on
all the APs over both their wireless and wired channels.

>@?(ACB Ð('�)D=ØE &Z0 §GF ô!HIH7JKBL �%���MB � ,i�y� é /�, : Ä9�+* ,wê��
)+�+* ,�� =ØL �%���MB � ,i�y� é / , : Ä �+* , êk�
� � �N=ØL &#�c!OB � �+�t� Ä �+* , ���L &#�c!�j L �4�#�PB Ä9�+* ,4��Ê 	�j1�<Ë
Note that >@?(A minimizes the maximal load on all the APs.

Consequently, the calculated association Â ensures that the load
on each AP in the bottleneck load group =ß is exactly =Ø and it
also specifies the association of the APs in =ß with the corre-
sponding users in =¶ . However, Â does not optimize the load on
the other APs, which may be as high as =Ø . We observe that, in
the worst case, >Q?(A may calculate a bad association such that



9

the load on all the APs is =Ø although the optimal association
contains several load groups with lower loads, as illustrated in
Example 8.

Example 8: Consider the wireless system described in Exam-
ple 3 and the association presented in Figure 3-(b). This associ-
ation induces a load of =Ø ��� on all the APs. However, from
Example 4 we know that a min-max fair allocation generates a
load of

on on AP f and ± and accordingly the allocated band-
width to each of the associated user dlj�g´j¯p7jk� is

n o
. |

Such association is very deceptive, since it gives the impres-
sion that all the APs are included in the bottleneck load group.
Therefore, we have developed a method to separate the APs in
the bottleneck load group =ß from the rest of the APs. In the
second step, we use an auxiliary linear program, >Q?SR , which
enables us to identify whether some APs are not in =ß or whether
=ß comprises all the APs. >@?SR is based on Property 1, proved in
Appendix VII

Property 1: The bottleneck load group =ß contains all the APs
if there is no feasible association such that
(1) Every AP has a load at most =Ø and
(2) Some APs have load strictly less than =Ø .
>@?SR looks for an association Â that minimizes the overall load
on all the APs subject to the constraint that the load on each AP
is no higher than =Ø .

>@?SRTB ÐU'�)
� ���t� Îi�E &Å0 §
F ô!HIH7JSBL �4�Ç�MB Î � �N=ØL �4�Ç�MB � ,i�y� é / , : Ä �+* , ê��
) �+* , ��Î �L �4�Ç�MB � ,i�y� é /�, : Ä9�+* ,wê��{�r�v��Îi�L &#�c!VB � �+�t� Ä9�+* ,«���L &#�c!�j L �4�#�PB Ä �+* , �-Ê 	�j1�<Ë
Clearly, if the bottleneck load groups do not comprise all the

APs then >@?SR should find an association where some APs have
load strictly less than =Ø and these APs are not included in =ß .
However, >@?SR does not specify the APs that are included in =ß ,
as APs with loads equal to =Ø are not necessarily included in =ß ,
as we illustrate in Example 9 bellow. Consequently, in the third
step, we introduce a method to separate =ß from the other APs
based on the results given in Definition 3; The load of each AP� ¥�D=ß , Î � �W=Ø , can be reduced by shifting the association of
some of its associated users to less loaded APs.

Consider the association Â determined by >Q?SR . Initially, we
build a directed graph X���éZY�j5[�ê that each node ���\Y rep-
resents an AP in � , and there is an edge éõ�7j�0<ê#�][ if AP �
can shift some load to AP 0 . In other words, there exists a user&���! such that ÄZ�+* ,?��	 and ) â * ,Ì�'	 . Note that the graph
X���é^Y¿j�[vê represents paths in which loads may be shifted.
The method colors each node either white or black, where white
represents APs not in =ß and black indicates APs that may be in-
cluded in the bottleneck group. Thus, the initial color of each
node with load =Ø is black, while the other nodes are colored
white. Now, as long as there is an edge éõ�9jk0<êb�P[ such that

Routine bottleneck detection(
B�ú C

)
Use _I`ba to calculate

VW
.

Use _I`dc to calculate an association
T

.
Construct a graph e - ��f ú^g � .
Color each AP G black if U E - VW .
Color each AP G white if U Eih VW .
while exist �ïG ú M ��j g and G is black and

M
is white do

Color AP G white.
end whileVX þ 0 Glk Gm�3nZÿ7�o��� H 45	 M � G1ÿ [ 1V\ þ 0 Kpk q S E+I JsrCtKu G j VXI1VT þ

the association of
V\

and
VX

.
Return

0 VX ú V\ ú VTv1
end

Fig. 7. A formal description of the bottleneck-group detection routine.
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Fig. 8. Examples of an execution of the bottleneck-groups detection routine.

node � is black and node 0 is white, we color node � white.
At the end of this iterative process, the bottleneck load group
=ß comprises all the APs that are colored black and their associ-
ated users =¶ are determined by the association Â calculated by
>@?(A (or >Q?SR ). Finally, the bottleneck-group detection routine
returns the sets =ß , =¶ and their corresponding user-AP associa-
tion =Â . A formal description of this routine is given in Figure 7
and an example of its execution is provided in Example 9.

Example 9: Consider the wireless system described in Exam-
ple 3. In this case, a possible association Â calculated by >@?SR
is the one depicted in Figure 8-(a). Figure 8-(b) represents the
calculated graph Xµ�µé^Y¿j�[vê and the nodes’ initial colors. Re-
call that Î�w���Î{Ý>�¦� and ÎtÜ����� . Moreover, some load of
user d or g can be shift from AP f to APs ± or e , which is in-
dicated by the edges é fÏjk±iê and é f°j e ê , and some load of userp or � can be shift from AP ± to AP f , which is indicated by
the edge é ±´j¯fºê . In the following, our routine colors AP ± with
white and ends the coloring iterations. Consequently, the com-
puted groups are =ß���h e m and =¶'�'hi�tm , which are indeed the
bottleneck groups. |

Theorem 6: The load balancing algorithm calculates a min-
max load balanced association in the case that users are allowed
to have fractional associations with APs.
Theorem 6 is proven in Appendix VII.

B.2 The Rounding Method

For the sake of completeness, we provide a short description
of the rounding method of Shmoys and Tardos [28]. This de-
scription is tailored for unweighted greedy users but with minor
modifications it can address weighted users, as we explain in the
following sub-section. Consider a fractional association Â and
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Fig. 9. Examples of the graph e�x and a matching.

for each AP �b�c� let y­� �{z � ,i�y� ÄZ�+* ,G| . Initially, the round-
ing method constructs a bipartite graph X   éõÂ%êÈ� éù!�joY¿j�[vê .
Each node & in the set ! of the bipartite graph represents a
user & in ! . The set Y contains y � nodes for each AP ���?�
denoted by h1= �+* � j¯= �+* � j :3:1: j�= �+* } áim . The graph edges are deter-
mined by the following process. For each AP �>�.� , the users!¿� are sorted according to a given sorting criterion. In the case
of unweighted greedy users, the users in !°� are sorted in non-
decreasing wireless bit rate )
�+* , and they are renamed accord-
ing to this order, h1& � j¯& � j :3:1: j¯& � �wá�� m . Moreover, let ~ éõ�9j¯&´¨+ê°�� ¨ ¬�� � Ä �+* ,2� . For each AP � , we divide the users in ! � into y �
groups, denoted by ���+* � where � � E ��y­� , according to their
~ é �9j�& ¨ ê values. Each group � �+* � contains all the users & ¨ such
that E ö���ªN~ é �9j¯&´¨+ê�� E or E ö����N~ é �9j¯&´¨
� � ê�ª E . A
user that is included in two groups is referred as border node.
The edges [ of the graph represent user-AP association. Thus,
for each AP � and every integer E ��y � node = �+* � is connected
to each user & ¨ in � �+* � . Such bipartite graph is given in Exam-
ple 10. After constructing the graph X   , the rounding method
looks for a maximal matching [31] from each user to one of the
nodes = �+* � ��Y . Since the association Â specifies a fractional
matching such maximal matching exists (more details are pro-
vided in [28]) and it determines the integral association of the
users.

Example 10: Consider the wireless system described in Ex-
ample 3 and the fractional max-min fair association depicted in
Figure 3-(d). In this association Ä Ü´* n ��Ä Ý3* n � �� and its NBV

is �� �³hy�tj no j n o j n o j n o m . Figure 9 presents the graph X   calcu-
lated by the rounding method and a corresponding matching.
Consequently, the obtained load vector �Ø �Ãhi�ij3�iji�� m and the

corresponding NBV is �� �'hi�ij3�tj1�tj1�tjkdlm . The latter is not the
optimal max-min fair association. However, the bandwidth of
each user & is at least half of its bandwidth in the fraction asso-
ciation. |
C. Analysis of the Unweighted Case

We now prove the approximation ratio of our algorithm for
the case of unweighted greedy users. We start with a useful
property of the rounding method. We assign to each edge

F
of

X   a weight, Ä   é F ê , termed the association weight, that repre-
sents the fractional association of the corresponding user and
AP. More specifically, consider an edge

F � é = ��* � j¯&Åê��{[
indicating that user & is associated with AP � . If user & is a
non-border node then it is included only in the set �«�+* � and we
assign Ä   é = �+* � j�&Zêæ�ÍÄ �+* , . Otherwise, user & is included in the

sets �Õ�+* �o� � and �v�+* � and we partition the association ÄÅ�+* , with
the two edges é = �+* ��� � j¯&Åê and é = �+* � j�&Zê , such that Ä   é = �+* � j¯&Åê¾�
~ é �9j�&Zê°ö E q�� and Ä   é =t��* ��� � j¯&Åê �'ÄZ�+* ,4öÌÄ   é =t�+* ��j�&Zê . This
assignment ensures the following property.

Property 2: Consider an AP ���Ç� and a set � ��* � , where E is
an integer between 1 and yQ� . Then, for any E ªOy­� , it follows
that � ,t�l� áo � Ä   é =t�+* ��j¯&Åê¿��� and � ,t�l� áo � á Ä   é =t�+* }{áyj�&Zê°�ã� .

Consider a node =i�+* �?��Y . We define its fractional wire-
less load as Î�ñ+ò �<ó�* 5 é =t�+* �<ê �µ� ,t�l� áo � Ä   é =t�+* �+j¯&Åê��
)+�+* , . More-
over, suppose that node = �+* � is associated to user &���� �+* � in
the calculated matching. We define its integral wireless load
as Î ¬ø�{ð * 5 é =t�+* �<ê#�¡���
)+�+* , . Similarly, we define the fractional
and integral infrastructure load of node =y�+* � as Î ñ+ò �<ó�* ¬ é =t�+* ��êÖ�� ,t�l� áo � Ä   é =t�+* ��j¯&Åê��{�r� and Î ¬ø�
ð * ¬ é =t��* ��êÌ� �
�
�Ö�+* , . Conse-
quently,

Lemma 1: Consider a node =i�+* �Ö�,Y such that E �Í� . Then,Î ¬ø�{ð * 5 é = �+* � ê��?Îlñ+ò �<ó�* 5 é = �+* ��� � ê andÎ ¬ø�{ð * ¬ é = �+* � ê��ÌÎ�ñ+ò �<ó�* ¬ é = �+* ��� � ê .
Proof: This lemma results directly from the selected sorting cri-
terion and we first prove it for wireless channel. For each user&��{�Õ��* � , E ��� satisfied that )��+* ,��ì)+�+* ,�ç for every user&   �P�Õ�+* ��� � . This is also true for the user &­î>���Õ�+* � that is
matched with node =i�+* � . Thus,Î ñ+ò �<ó�* 5�é =t�+* ��� � ê¿� Ô, ç �l� áo ���
� Ä   é =t�+* �+j�&   ê) �+* , ç �

� Ô, ç �l�Qáo �7�
� Ä   é =t�+* �+j¯&   ê) �+* ,�� � �) ��* ,�� �sÎ ¬ï�
ð * 5 é = �+* � ê
We now consider the backhaul link. Recall that all the users
pose the same load, ���{�Ö� , on the backhaul link. Therefore,
independent of the user order, for each node = �+* � ��Y such
that E ª�yF� , it follows that Î�ñ+ò �<ó�* ¬ é =t��* �<êv�Ã���
�Ö� and for any
node =i�+* }{á ��Y , it follows that Î´ñ+ò �<ó�* ¬ é =t�+* }{á
ê°���
�
�Ö� . Conse-
quently, Î ¬ø�{ð * ¬ é =t�+* �<ê°��Îlñ+ò �<ó�* ¬ é =t�+* ��� � ê . |

Theorem 7: The association Â calculated by integral load
balancing algorithm ensures dwî max-min fairness approximation
with threshold

}
, defined by Equation 2.

Proof: First, we prove for each AP ���Ç� that Î ¬ø�{ð� ��Îlñ+ò �<ó� q } .
We prove this property for the wireless link. The proof for the
backhaul link is similar. From Lemma 1 and the definition of

}
follows, Î ¬ø�
ð * 5� � Ô

�k��� �!��� }{á�� Î ¬ø�
ð * 5 é =t��* �<ê°�� } q Ô
�k��� �!����� }{á�� �7� � Î ñ+ò �<ó�* 5 é = �+* � ê°� } q�Î ñ+ò �<ó�* 5�

Consequently, Î ¬ï�
ð� � } q-Î�ñ+ò �<ó� . In the sequel we consider two
cases:
Case I: suppose that Î´ñ+ò �3ó� � }

. Thus Î ¬ø�
ð� � d : Î�ñ+ò �<ó� .
From Theorems 4 and 6, it results that bandwidth allocation
of each user & associated with AP � in the integral solution is0 ¬ï�
ð, � �� �����á � ��
� ���¡  á¡¢á � â �¡  á¡¢6 � .
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Case II: Suppose that Î ñ+ò �<ó� ª } . Thus Î ¬ï�
ð� ��d : } . Accord-
ingly, each user & that is associated with AP � in the integral
solution experiences a bandwidth 0 ¬ï�
ð, � �� �����á � ��
� * , and this

complete our proof. |
D. Weighted Users

We turn to describe our integral load balancing algorithm for
weighted users. This algorithm is similar to the one described in
Section IV-B with different sorting criterion. We observed that
in weighted instances, the calculated fractional solution Â ñ+ò �<ó
does not satisfy Lemma 1. This prevents from us to providingdiî max-main fairness approximation. However, by using a dif-
ferent sorting criterion, our algorithm ensures g�î approximation.
For our needs, we define the joined load of user & on AP � as,

£ �+* , � Ä ��* , : / ,)��+* , q Ä ��* , : / ,�r��* ,
The joined load may be either fractional or integral. For a given
AP � , the algorithm sorts the users ! � in decreasing order of
their joined loads,

£ ��* , . This order determines the manner in
which the users !�� are divided into groups h��v�+* �1m . The rest of
the rounding method remains the same.

We turn to calculate the approximation ratio of the algorithm
with same threshold

}
defined in Equation 2. Consider a node=t�+* ���¤Y we define its fractional joined load

£ ñ+ò �<ó é =t�+* ��ê-�� ,t�l�Ááo � Ä   é = �+* � j¯&Åê : £ �+* , . Now, suppose that node = �+* � is asso-
ciated to user &c�¥� �+* � in the integral solution. Thus, its integral
joined load is

£ ¬ø�{ð é =t�+* �<ê¿� £ �+* , . Note that the fractional and in-
tegral joined loads of AP �%�Ç� satisfy,

£ ñ+ò �3ó� �sÎ ñ+ò �<ó�* 5� qÈÎ ñ+ò �<ó�* ¬� � Ô,i�y�wá £ ñ+ò �3ó��* , � } áÔ
��� � £ ñ+ò �3ó é =t�+* �<ê

Similarly,

£ ¬ø�{ð� �sÎ ¬ï�
ð * 5� q�Î ¬ï�
ð * ¬� � Ô,t�y�wá £ ¬ï�
ð�+* , � }táÔ
��� � £ ¬ø�{ð é = �+* � ê

Lemma 2: Consider a node = �+* � �¦Y such that E �Í� . Then,£ ¬ø�{ð é = �+* � ê°� £ ñ+ò �<ó é = ��* ��� � ê .
Proof: This proof is similar to the proof of Lemma 1 and it is
direct result from the definition of joined load. |

Lemma 3: Consider an AP �4�#� then
£ ñ+ò �<ó� �sd : Î�ñ+ò �<ó�

Proof: By definition,
£ ñ+ò �<ó� �sÎ�ñ1ò �<ó�* 5� qÈÎ�ñ+ò �<ó�* ¬� ��sd : Ð4Ñ
ÒZh1Î�ñ+ò �3ó�* 5� j¯Î�ñ+ò �<ó�* ¬� mæ��d : Îlñ+ò �<ó� |

Theorem 8: The association Â calculated by integral load
balancing algorithm ensures glî max-min fairness approximation
with threshold

}
, defined by Equation 2.

Proof: First, we prove that for each AP �(�'� follows thatÎ ¬ø�{ð� ��d : Îlñ+ò �<ó� q } . From Lemma 2 and the definition of
}

, it
follows,

Î ¬ï�
ð� ��Ð4Ñ
Ò Ó }{áÔ ��� � Î ¬ï�
ð * 5�é =t��* ��ê�j }{á
Ô
��� � Î ¬ï�
ð * ¬ é =t�+* �<ê × �

� } áÔ
��� � £ ¬ï�
ð é =t��* ��ê�� } q } á � �

Ô
��� � £ ñ1ò �<ó é =t�+* �3ê°� } q £ ñ+ò �<ó�

From Lemma 3 results that Î ¬ï�
ð� � } q�d : Î�ñ1ò �<ó� . In the sequel
we consider two cases:
Case I: Suppose that Î ñ+ò �<ó� � } . Thus, Î ¬ø�
ð� ��g : Î ñ+ò �<ó� . From
Theorems 5 and 6, it results that the normalized bandwidth � 0 ¬ï�
ð,
allocated to user & associated with AP � in the integral solution
is �0 ¬ï�
ð, � �� �����á � �o � ���7  á¡¢á � � 0<ñ+ò �3ó, �{g .
Case II: Suppose that Î´ñ+ò �<ó� ª } . Thus Î ¬ï�
ð� ��g : } . Accord-
ingly, each user & that is associated with AP � in the integral so-
lution experiences a normalized bandwidth �0 ¬ï�
ð, � �� �����á � �o � * ,

and this complete our proof. |
E. Time Fairness

We now introduce our results for max-min time fairness.
Time fairness attempts to provide a fair service time to the users
regardless of the effective bit rates, )
�+* , and �r� , that they ex-
perience. Consequently, it enables us to trade off throughput
between fairness and system throughput, while not starving any
user with low bit-rate, ) �+* , . Informally, a service time alloca-
tion is called max-min time fair if there is no way to increase
the service time of a user without decreasing the service time of
another user with the same or less service time. Usually, there
can be multiple time fairness associations that satisfy the min-
max time fairness requirement. Consequently, time fairness re-
quirement is, typically, coupled with a secondary objective. For
instance, a time fair association that also maximizes the system
overall throughput or one the maximizes the minimal bandwidth
allocated to each user. Due to space limitation we do not con-
sider these complicated variations of time fairness and we leave
these challenges to future work. In this study, we address the
fundamental max-min time fairness problem as described above.
Such fairness is relevant, for instance, when the system bottle-
necks are the backhaul links and all these links have the same
bit rate, � . In such instance, a max-min time fairness solution
also guarantees max-min bandwidth fairness.

To achieve this goal, we use the scheme presented in Sec-
tion IV-B with the following modifications. First, for each user&��s! and AP �.��� , we set their effective bit rates ) �+* , and�Ö� to � and we utilize the unweighted variant for obtaining a
fractional solution. Then, after calculating the bipartite graph
X   éõÂ%êÖ��é !�j�Y�j5[�ê , we assigned a cost ô{é =i�+* �+j¯&Åêr� E to each
edge é = �+* � j¯&Åê#�V[ . Finally, the integral association is deter-
mined by the minimal cost maximal matching [31] of the graph
X   .

Theorem 9: The time fairness algorithm calculates the opti-
mal max-min time fairness association.
Proof: From Theorem 6, it follows that our scheme finds the
optimal fractional solution. Thus, to complete the proof it is
sufficient to prove that the algorithm finds the optimal integral
association for every fairness group ¶º·u¹ ! and its corre-
sponding load group ß°·�¹É� with load Îy· of the fractional
solution. Clearly, in this case the load of each AP ���ãß�· isÎ · �³Î � � � ,i�y�wá Ä �+* , . Thus, from the definition of y � in
Section IV-B.2, it results that yQ�Öös�%ªãÎi�b�PyF� for every AP����ß · . Since all APs in ß · have the same y � we denote it
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Alg Online Load Balancing(
B�ú C

, K )
if (elapsed time from last offline optimization

r¨§
) then

Integral Load Balancing(
B

,
C(© K )U!ª û3û!«�����¬ þ�­v®�¯ E�°2± U E

elseG þ AlgorithmByAAFPW(
B

, K )U ª ��«�����¬ þ�­v®�¯ E�°�± U E
if ( U!ª ��«�����¬ 9 U!ª û<û
«�����¬ r³²´� then

Integral Load Balancing(
B

,
C¨© K )

else
assign K to AP G

end

Fig. 10. A formal description of the online load balancing algorithm

by y­· and the number of users that are associated with any AP�%�#ß°· is at most y­· . We consider two cases.
Case I: Îi· ��yF· . Thus, each AP in ß°· is associated with exactly
y · users and this guarantees the required time fairness.
Case II: Î · ªµy · . Consequently, some APs are associated with
fewer than y · users. Note that we are addressing now a load
conserving system, i.e., in any possible association of the user
in ¶Á· associated with the APs in ß�· , the total load on all the
APs is Îi· : � ßÏ·��i�$� ¶Á·´� . Since, our algorithm seeks for minimal
cost matching no AP is associated with fewer than y · ö2� users.
From this, it results that exactly é^y · ö�Î · ê : � ß · � APs are associ-
ated with y · ö�� users and others are associated with y · users.
This is a max-min time fair association and this completes our
proof. |

V. ONLINE INTEGRAL-ASSOCIATION

In this section, we present an algorithm that deals with dy-
namic user arrivals and departures. Clearly, a repeated exe-
cution of the offline algorithm each time a user arrives or de-
parts may cause frequent association changes that disrupt exist-
ing sessions. To avoid this, we propose a strategy that enables
us to strike a balance between the frequency of the association
changes and the optimality of the network operation in terms of
load balancing. For this propose we use two configuration pa-
rameters; time threshold, ¶ , and load threshold · . We rerun our
offline algorithm if either of the following two conditions hold.
(1) The time elapsed since our last offline optimization is more
than the time threshold ¶ .
(2) The current bottleneck load, i.e., , the maximal load among
all APs, is · more than the bottleneck load obtained by the last
execution of the offline algorithm.
After rerunning the algorithm, each user who needs to change
association can be done between its session arrivals to avoid dis-
ruption of its ongoing sessions. Our algorithm is illustrated in
Figure 10.

Between two offline optimization occurrences, we need to as-
sociate users to APs as they arrive. We adapt the online algo-
rithm of Aspnes et al. , in [22], to achieve a ¸ éZ¹ºJ�»w"­ê approx-
imation factor as compared to the offline optimal, where " is
number of users in the system. We refer their algorithm as Algo-
rithmByAAFPW. All we need to change is to substitute the load
in their algorithm by the integral load of the APs, Î ¬ø�
ð� . In on-
line user association, we need to address two conflicting factors.
Intuitively, a user should be assigned to the less loaded APs that
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Fig. 11. Per-user bandwidth of � t!t users.

are within its transmission range. However, the data rate from
the user to these APs can be very low which adds very high ad-
ditional load to them. Therefore, a user should be assigned to
an AP where it causes small additional load. To capture these

two trade-offs, Aspnes et al. [22] define a function 0�¼½ á that is
exponential in the load of an AP where =¹ � �³Î ¬ï�
ð� ��¾ , 0�¿¦d
and ¾À¿Í� . When a new user arrives, all possible user-AP asso-
ciation are evaluated. After the evaluation, the assignment that
minimizes the increase of the function is selected. They show
that, using certain potential functions, the highest load among
all APs of the online algorithm is within ¸ éº¹ZJ�»y"­ê factor of the
highest load among all APs of the offline algorithm.

VI. SIMULATION RESULTS

Via simulations, we compare the performance (in the context
of max-min fairness) of our scheme with two popular heuris-
tics, namely the Strongest-Signal-First(SSF) method and the
Least-Loaded-First(LLF) method. The SSF method is the de-
fault user-AP association method in the 802.11 standard. The
LLF method is a widely-used load-balancing heuristic, in which
a user chooses the least-loaded AP that he can reach. For a fair
comparison, we assume the same scheduling mechanism at the
APs for all three methods, such that the only difference is the
assignment decisions between users and APs. The simulation
setting is as follows. We use a simple wireless channel model in
which the user bit rate depends only on the distance to the AP.
Adopting the values commonly advertised by 802.11b vendors,
we assume that the bit rate of users within 50 meters from AP
is 11 Mbps, 5.5 Mbps within 80 meters, 2 Mbps within 120 me-
ters, and 1 Mbps within 150 meters, respectively. The maximum
transmission range of an AP is 150 meters. The backhaul capac-
ity is set to 10 Mbps to emulate the Ethernet infrastructure. A
total of 20 APs are located on a 5 by 4 grid, where the distance
between two adjacent APs is set to 100 meters and we assume
that an appropriate frequency planning was made. The number
of users is either 100 to simulate a moderately loaded network
or 250 to simulate a heavily loaded network.

Due to space limitation we present our results only for the
case hot-spots that more common in practical WLANs. We lo-
cate all users in a circle-shape hot spot at the center of the net-
work. The radius of the hot spot is set to 150 meters. Even if
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Fig. 13. Simulation result of the online case with 250 users.

the size of the hot spot is the same as that of one 802.11 cell, the
users still can reach several cells because of the overlap between
cells. Figures 11 and 12 show the results with 100 and 250 users,
respectively. The Y axis represents the per-user bandwidth and
the X axis represents the user index. Note that the users are
sorted by their bandwidth in increasing order. The user loca-
tions are different at each run, and therefore the bandwidth of
the user with the same Ä index actually indicates the average
bandwidth of Ä -th lowest bandwidth user. Somewhat surpris-
ingly, our method outperforms the two heuristics not only in
terms of fairness but also in terms of total system throughput.
For instance, in Figure 11, the median per-user bandwidth value
of our method is over 20% higher than that of the SSF method.
The bandwidth values are obtained by averaging the results of
100 simulation runs. We also noticed that the SSF approach
outperforms the LLF method in terms of both max-min fairness
and overall network throughput. This supports our claim above
that a naive load-balancing algorithm may yield very poor re-
sults. By comparing Figure 11 and 12, we also conclude the
gap between our method and the fractional optimal solution nar-
rows as the number of users increases. It can be explained by
the fact that the impact of each user in the integral association
scheme decreases as the number of users increases. Thus, with
an infinite number of users, the results of integral association
and fractional association will converge.

We also simulated the online algorithm. To simulate the dy-

namic user departure/arrival (or the user mobility), at each time
slot a certain portion of users are taken out of the system and the
same number of new users are injected into the system. The re-
sult of the case that we replace d{	6Â of users at every time slot is
shown in Figure 13. Unlike other plots the Y axis represents the
lowest user bandwidth and the X axis represents the time. The
offline algorithm is periodically invoked at every 15 time slots or
when the bottleneck difference exceeds dt�
Â (in presented case,
the offline algorithm was invoked total 5 times). Note that the
result is episodic, since it depicts the evolution of the system for
one simulation run. Nevertheless, the presented result is very
typical.

VII. CONCLUSION

As wireless LANs are deployed to cover larger areas and are
increasingly relied on to carry important tasks, it is essential that
they be managed in order to achieve desired system performance
objectives. In this paper, we study the problem of providing fair
service to users and balancing the load among APs. This goal is
achieved by intelligently determining the user-AP association.
We rigorously formulate this association control problem in the
context of wireless LANs and present approximation algorithms
that provide guarantees on the quality of the solution. Our simu-
lations confirm that the proposed methods, indeed, achieve close
to optimal load balancing and max-min fair bandwidth alloca-
tion, and significantly outperform popular heuristics. Moreover,
we show that in some cases, by balancing the load on the APs
the overall network throughput is increased. In the future, we
intend to develop a practical management system based on the
theoretical foundation presented in this study.
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APPENDIX

A. PROOF SKETCH OF THEOREM 5

In the following we only prove that the min-max load bal-
anced association determines a max-min fair bandwidth alloca-
tion. By similar arguments the other direction can be proven as
well. Let Â be a min-max load balanced association and let ��
be its normalized bandwidth vector. Lets assume, that Â does
not produce a max-min fair bandwidth allocation. Thus, there
is an association Â   that its normalized bandwidth vector ��  
has higher lexicographical value than �� . Let h�¶Á·wm , h+¶  · m , h+ßÏ·im
and h+ß   · m be the fairness and the load groups of the associationsÂ and Â   , respectively. We define an additional association,
=Â � éùÂ
q�Â   êk�{d , i.e., for each AP � and user & , it follows

=Ä9��* ,b�'é Ä9�+* ,Õq?Ä  ��* , êk�{d , and let h =¶Á·im and h =ß°·im be its fairness
and load groups, respectively. Let

§
be the lowest index such

that ¶ ¨ ¥�u¶  ¨ or ß ¨ ¥�
ß  ¨ . Recall, that for every index ©�ª §
follows that =¶Á¬r��¶  ¬ and =� 0�¬r�
�0  ¬ . Since, Â is min-max load
balanced association, it follows that Î{¨Ç��Î  ¨ . Similarly, Â   is

max-min fair bandwidth association, thus, � 0�¨v� �0  ¨ . As Î
¨r� �Ã âºÄ
and Î  ¨ � �Ã â çÄ we have Î
¨æ��Î  ¨ and �0�¨r� �0  ¨ . In the following we

assume, without lost of generality, that ¶­¨ ¥�s¶  ¨ , the case whereß¸¨ ¥�sß  ¨ can be proven in similar way. We consider three cases:
case I: ¶ ¨:Å ¶  ¨ : However, this contradicts the assumption Â  
is a max-min fair bandwidth association.
case II: ¶  ¨ Å ¶ ¨ : Now suppose that ß ¨³Å ß  ¨ , but in this case

the set of APs ßº¨ is sufficient to provide the bandwidth � 0  ¨ to
all the users in the set ¶  ¨ . While, APs in the sets ß  ¨ öÌß ¨ can
be used to increase the bandwidth allocation of other users with
the same or higher bandwidth, which contradicts the assumption
that Â   is max-min fair bandwidth association. Consequently, it
follows that ß¸¨ ¥Å ß  ¨ , which implies that ß¿¨aöÌß  ¨ ¥�ÇÆ . Thus,

the association =Â , obviously, reduces the load from every AP�-�Èß¸¨aöÌß  ¨ , without increasing the load of any AP with loadÎ�¨ or more. This contradicts the assumption that Â is a min-max
load balanced association.
case III: ¶  ¨ ö?¶Å¨ ¥�ÈÆ : In this case, the association =Â guaran-

tees to each user &���¶  ¨ ös¶ ¨ a bandwidth =�0 , �
�0 ¨ without
decreasing the bandwidth of any other user that has normalized
bandwidth of � 0�¨ or less in Â   . This contradicts the assumption
that Â   is a max-min fair bandwidth association.
Consequently, we conclude that for every

§
, ß ¨ �¡ß  ¨ and¶F¨a��¶  ¨ and this complete our proof. |

B. THE CORRECTNESS OF THEOREM 6

We start with some properties of the bottleneck-group detec-
tion routine. We then prove the correctness of the load balancing
algorithm.

Lemma 4: >Q?(A infers the value of the bottleneck load =Ø of
any min-max load balanced association. Moreover, it calculates
an association such that =Ø upper bounds the load of each AP.

Proof: >Q?(A seeks for an association Â that minimizes =Ø . The
first and second conditions verify that =Ø upper bounds the load
of each AP both over the wireless and wired domain. While, the
third and fourth condition ensure the Â is a feasible association.|

Lemma 5: Let Â be the association calculated by >Q?SR for
a giving bottleneck load value =Ø as determined by >@?(A . The
bottleneck load group comprises all the APs if and only if the
load on each AP is =Ø . Otherwise, there is at least one AP that
its load is strictly less than =Ø .
Proof: From Lemma 4, it follows that the bottleneck load value
is =Ø . Recall that >@?SR finds a feasible association Â that min-
imizes the overall load with the constraint that the load of each
AP is at most =Ø (the latter is termed as the upper bound con-
straint). Consequently, if all the APs are included in =ß , then, by
definition, the overall load of any such association calculated by
>@?SR is � ��� : =Ø . Thus, there is no feasible association that satis-
fies the upper bound constraint and some APs have load strictly
less then =Ø . On the other hand, if not all the APs are included
in =ß , then there is an association whose overall load is strictly
less than � �«� : =Ø . In such cases, >@?SR finds a feasible association
such that the load of some APs is strictly less than =Ø . |

Lemma 6: Let X$�Íé^Y¿j�[vê be the graph that results from the
association Â calculated by >@?SR and consider the initial node
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colors. A given AP is included in =ß if and only if its corre-
sponding node in X , denoted by 0 , is colored black and there is
no directed path in X from 0 to any white colored node.
Proof: consider a black node 0 that is included in a directed
path of black nodes ë���h
0r��= � j�= � j :3:3: j¯=t·4���7m ended with
a white node � . This means that the corresponding AP of node=t·�� � can shift some load to AP represented by node � . There-
fore, it can reduce its load without increasing the load of any AP
with load =Ø . In an iterative manner, this process can be done for
any node =t¬¾��ë . Thus, the AP represented by node 0 will not
be included in =ß .
We now prove the other direction. From Corollary 1, it follows
that all the APs in =¶ have load =Ø , hence their corresponding
nodes are colored black. In addition, the load of any AP 0 �É=¶
cannot be reduced by shifting some load to a non-bottleneck AP.
Thus, there is no directed link in X between a node represent-
ing a bottleneck AP to a node representing a non-bottleneck AP.
Consequently, nodes that represent APs in =¶ are not included in
any directed path ending with a white node. |

Lemma 7: The bottleneck-group detection routine deter-
mines the load and the fairness bottleneck groups, =ß and =¶ ,
and their corresponding user-AP association in the fractional-
association model.
Proof: From Lemma 4, it follows that >@?(A determines the bot-
tleneck load value =Ø and also calculates a feasible association
that satisfies the upper bound constraint. From Lemmas 5 and 6,
it follows that the routine separates the APs in =ß from the other
APs. Finally, from Corollary 1 the APs in Â are associated only
with the users in =¶ . |
Proof of Theorem 6: From Lemma 7 and Corollary 1 results
that at each iteration the load balancing algorithm detects the
current load and fairness bottleneck groups, denoted as ß¾· and¶ · , and their user-AP association. Thus, at each iteration, the al-
gorithm reduces the size of the AP and user sets until a complete
min-max load association is detected. |


