
Tango: Simplifying SDN Control with Automatic Switch
Property Inference, Abstraction, and Optimization

Aggelos Lazaris+ Daniel Tahara×
Xin Huang? Li Erran Li† Andreas Voellmy× Y. Richard Yang•× Minlan Yu+

†Bell Labs, Alcatel-Lucent ?Cyan Inc. +USC •Tongji University ×Yale University

ABSTRACT
A major benefit of software-defined networking (SDN) over tradi-
tional networking is simpler and easier control of network devices.
The diversity of SDN switch implementation properties, which in-
clude both diverse switch hardware capabilities and diverse control-
plane software behaviors, however, can make it difficult to under-
stand and/or to control the switches in an SDN network. In this
paper, we present Tango, a novel framework to explore the issues
of understanding and optimization of SDN control, in the presence
of switch diversity. The basic idea of Tango is novel, simple, and
yet quite powerful. In particular, different from all previous SDN
control systems, which either ignore switch diversity or depend on
that switches can and will report diverse switch implementation
properties, Tango introduces a novel, proactive probing engine that
infers key switch capabilities and behaviors, according to a well-
structured set of Tango patterns, where a Tango pattern consists
of a sequence of standard OpenFlow commands and a correspond-
ing data traffic pattern. Utilizing the inference results from Tango
patterns and additional application API hints, Tango conducts auto-
matic switch control optimization, despite diverse switch capabil-
ities and behaviors. Evaluating Tango on both hardware switches
and emulated software switches, we show that Tango can infer flow
table sizes, which are key switch implementation properties, within
less than 5% of actual values, despite diverse switch caching algo-
rithms, using a probing algorithm that is asymptotically optimal in
terms of probing overhead. We demonstrate cases where routing
and scheduling optimizations based on Tango improves the rule in-
stallation time by up to 70% in our hardware switch testbed.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Packet switching networks; C.2.3 [Computer-
Communication Networks]: Network Operations—Network Man-
agement

Keywords
Software-defined Networking; OpenFlow; Switch Diversity

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CoNEXT’14, December 2–5, 2014, Sydney, Australia.
Copyright 2014 ACM 978-1-4503-3279-8/14/12 ...$15.00.
http://dx.doi.org/10.1145/2674005.2675011 .

1. INTRODUCTION
A major benefit of software-defined networking (SDN) over tra-

ditional networking is simpler and easier control of network switches.
In particular, OpenFlow [11] has provided a standard, centralized
mechanism for a network controller to install forwarding rules at
the forwarding engines (called flow tables) of a heterogeneous set
of network switches, substantially reducing controller-switch de-
pendency, and hence control programming complexity.

One key issue that such a standard controller-switch protocol
cannot resolve, however, is the diversity of switch implementa-
tion properties, which we define to include both hardware capa-
bilities and control software behaviors. In particular, the hard-
ware of switches can have significant differences in their physical
structures such as TCAM size, which significantly affects forward-
ing throughput over large sets of rules; the software implement-
ing the control of switches can differ substantially as well, such as
in their TCAM management algorithms and flow installation effi-
ciency. Since such diversity reflects many factors, including real-
life, random, idiosyncratic designs as well as systematic switch
vendor engineering exploration (which can be essential to foster
switch vendor innovation), it is inconceivable that all switches will
have the same hardware capabilities and software behaviors.

The presence of SDN switch diversity can pose significant chal-
lenges in the control of SDN switches. In particular, we identify
two challenges. First, diversity creates an understanding challenge.
Although newer versions of OpenFlow [16] allow switches to re-
port configurations and capabilities (called features), the reports
can be inaccurate. For example, the maximum number of flow en-
tries that can be inserted is approximate and depends on the match-
ing fields (e.g., IPv4 vs. IPv6). Furthermore, many important con-
figurations and behaviors are not reported, for example, whether a
switch uses a software flow table and the caching policy that deter-
mines when a rule should be in the software flow table or TCAM.

Second, diversity can create a substantial utilization challenge,
which can lead to control programming complexity. For example,
consider two switches with the same TCAM size, but one adds a
software flow table on top. Then, insertion of the same sequence
of rules may result in a rejection in one switch (TCAM full), but
unexpected low throughput in the other (ended up in the software
flow table). Now consider that the two switches have the same
TCAM and software flow table sizes, but they introduce different
cache replacement algorithms on TCAM: one uses FIFO while the
other is traffic dependent. Then, insertion of the same sequence
of rules may again produce different configurations of flow tables
entries: which rules will be in the TCAM will be switch dependent.
Whether a rule is in TCAM, however, can have a significant impact
on its throughput, and therefore quality of service (QoS).

In this paper, we design Tango, a novel approach to explore the
issues of SDN control in the presence of switch implementation
diversity. Tango addresses both the understanding challenge and
the utilization challenge.

The basic idea of Tango is novel, simple, and yet quite pow-
erful. In particular, different from all previous SDN programming
systems, which ignore switch diversity or at most simply receive re-
ports of switch features (in newer version of OpenFlow), Tango is
designed with the observation that instead of depending on switch
reports, one can use real measurements to achieve better under-
standing of switch diversity. Based on this observation, Tango in-
troduces a novel, proactive probing engine that measures key prop-
erties of each switch according to a well-structured set of Tango
patterns. Each Tango pattern consists of a sequence of standard
OpenFlow flow modification commands and a corresponding data
traffic pattern, based on the general knowledge of the switch archi-
tecture. For example, a Tango switch TCAM capacity discovery
pattern sends data packets matching the inserted rules. If Tango
detects larger delay of the packets for newly installed rules, Tango
has detected the TCAM size.

Utilizing the measurement results from the Tango patterns, Tango
derives switch capabilities as well as the costs of a set of equiva-
lent operations that can be utilized, through expression rewriting,
to optimize networks with diverse capabilities and behaviors. For
example, the Tango priority pattern inserts a sequence of rules in
ascending priority and descending priority in two separate tests. In
the hardware switch we tested, Tango records that the descending
pattern has a substantially longer latency than that of the ascend-
ing pattern. The difference is about 6 fold if Tango priority pattern
has 5,000 rules. The Tango scheduling algorithm automatically ex-
ploits these Tango patterns. Therefore, if Tango has 5,000 rules
to install on the hardware switch, it will write the sequence in the
ascending order to achieve low rule installation latency. Second,
comparing across switches, Tango records that insertion into the
flow table of the hardware switch is substantially slower than into
that of the software switch. Hence, when Tango needs to install
a low-bandwidth flow where start up latency is more important,
Tango will put the flow at the software switch, instead of the hard-
ware switch.

We use both experiments on three types of hardware switches
and simulations with Open vSwitch (OVS) to evaluate Tango. Tango
inference engine is highly accurate. In particular, our inference ac-
curacy of flow table size is with 5% of actual value. For a real
switch, Tango can reduce rule installation time by a factor of 12.

We emphasize that despite the progress made by Tango, its scope
is still limited, focusing mainly on performance. Additional switch
diversities, such as ability to provide different functionalities, re-
main to be explored.

The remainder of this paper is organized as follows: Section 3
motivates our work by first examining standard switch architecture
and then proceeding to explore the diversity of their implementa-
tion. Section 4, 5, and 6 provide a concrete specification for the
Tango system, the inference process used by the Tango controller
to understand the switch diversity, and an example Tango sched-
uler. We provide evaluations of our inference algorithms and per-
formance optimizations in Section 7, explore related work in Sec-
tion 8, and conclude in Section 9.

2. BACKGROUND: TYPICAL
SWITCH ARCHITECTURE

We start with some background on a typical architecture of switches
that implement the OpenFlow specification, which is the key SDN

controller-switch protocol. The OpenFlow specification only de-
fines an interface between a controller and a switch supporting
OpenFlow. It leaves switch vendors the freedom to implement the
internals in their convenient ways and perform optimizations, as
long as the rule matching and traffic processing semantics are pre-
served. As a result, switches can have diverse implementations in
their software layers and on how much they leverage the hardware
interfaces. Such diversity leads to varying switch behavior and per-
formance, both on the control plane and the data plane. In this pa-
per, we use three proprietary switches from three vendors as both
examples and evaluation targets. We refer to these three vendors as
Vendor #1, Vendor #2, and Vendor #3; their switches as Switch #1,
Switch #2, and Switch #3 respectively.

Figure 1 illustrates the architecture of an OpenFlow enabled hard-
ware switch. It usually includes three key components:

Figure 1: OpenFlow switch software stack architecture.

Communication Layer: This layer is responsible for the com-
munication between the switch and remote controllers. It con-
sists of software agents supporting standard network programming
and management protocols such as OpenFlow, OF-CONFIG, and
SNMP. Most vendors use the OVS (Open vSwitch [17]) userspace
code as the OpenFlow agent, and then perform vendor-specific ex-
tensions to better match OVS to their platform design. This is
where interesting things happen and we will get back to this topic
in details at the end of this section.
Proprietary Layer: Below the communication layer is the propri-
etary layer, in which a vendor provides its own software to trans-
late from the platform independent model (e.g., OpenFlow model)
to platform specific commands and configurations. This layer in-
cludes components such as line card manager, driver, and vendor
SDK. The proprietary layer obtains access to the switch hardware
via switch OS. Similar to a computer system, switch OS is responsi-
ble for managing switch hardware resources (e.g., switching ASIC,
TCAM, and Bus) as well as the communications among software
layers and modules (e.g., between OVS and proprietary software).

Although there are proposals on developing and open sourcing
generic an OpenFlow hardware abstraction layer (HAL) across het-
erogeneous switching platforms [22], these projects are still at very

early stage. Today, the proprietary software is still mainly devel-
oped and maintained by individual switch vendors.
TCAM and Switch Hardware: Modern switch silicon consists of
multiple physical tables (e.g., L2 MAC table, L3 LPM table, and
TCAM) that are shared among multiple pipeline stages along the
fast path packet processing. Although potentially all these tables
could be used as OpenFlow flow tables, so far most switch ven-
dors appear to have leveraged only TCAM. Even for switches (e.g.,
Switch 1 in this paper) that support OpenFlow 1.1 and higher, the
multiple tables in OpenFlow pipelines are mostly implemented in
switch software. Only entries belong to a single table are eligible
to be chosen and pushed into TCAM.

As described above, vendor-specific implementations usually hap-
pen at the communication layer or the proprietary layer. For ex-
ample, Switch 1 maintains multiple virtual tables in user space
and uses a certain algorithm to figure out which entries should be
pushed down to TCAM and when. Both tables could be used for
packet forwarding. TCAM facilitates fast path packet forwarding
and virtual tables are used for slow path packet forwarding. Only
packets that hit neither of the tables will be sent to the controller.
Switch 2 chooses to have the TCAM table as the only flow table.
That is, packets that are able to match TCAM entries will be for-
warded in the fast path. All other packets will be forwarded to the
controller. Switch 1 can afford more rules than the number of en-
tries that can be held in TCAM, but traffic processed in slow path
will suffer from longer delay and less throughput. As a contrast,
the number of entries that can be supported on Switch 2 is limited
by the on-board TCAM but all matching packets will be guaranteed
to go through fast path and be forwarded in line rate.

At the proprietary layer, vendors often have different switch soft-
ware stack designs (e.g., multi-threaded vs. single-threaded pro-
cessing, synchronous vs. asynchronous message passing, memory
hierarchy and management, data sharing mechanism). All these
design and implementation details could potentially impact Open-
Flow control channel performance (e.g., OpenFlow packet gener-
ation and processing rate) or the slow path packet-processing rate.
At the same time, vendors are also left with the freedom to perform
optimization for OpenFlow (e.g., putting user space virtual tables
into the kernel, taking advantage of DMA to remove switch CPU
from critical packet processing pipeline).

All these variations contribute to the varying performance and
behavior of the OpenFlow hardware switches. We will take a closer
look at a few key performance and behavior differences in the next
section using real experimental results.

3. SWITCH DIVERSITY: EXAMPLES
Despite the fact that many switches use the typical architecture

presented in the preceding section, their details differ substantially,
and such differences can have large impacts.
Diverse flow installation behaviors: For OpenFlow switches that
maintain more than one table, switch vendors must implement al-
gorithms to manage the assignment of flow entries to different flow
tables, and maintain certain mapping between the tables. This is
totally vendor dependent.

For example, OVS based software switch makes decision based
on data plane traffic. Whenever a flow entry is pushed down to the
switch, it first gets installed in the user space software table. Only
when data plane traffic matches this entry, an exact match entry
will be pushed to the kernel table [17]. This explains the three-tier
delay in Figure 2(a). In this experiment, we first install 80 non-
overlapping OpenFlow entries. Then, we start generating 160 data
plane flows, with 2 packets per flow, and measure the delay. Among

Switch user space software tables TCAM/kernel tables
L2/L3 L2+L3 L2/L3 L2+L3

OVS <∞ <∞ <∞ <∞
Switch #1 <∞ <∞ 4K 2K
Switch #2 None None 2560 2560
Switch #3 None None 767 369

Table 1: Diversity of tables and table sizes.

the 160 flows, the first 80 match the existing entries, while the rest
do not. Since the entries are installed in user space table only, the
first packet of any flow will not match any kernel table entry, and
thus will be forwarded one level up, to the user space table (i.e.,
slow path). It will then match an entry in the user space table, get
processed and forwarded to the right output port. At the same time,
an exact match entry will be installed in kernel so that the following
packets belongs to the same flow (i.e., the second packet) will be
processed in the fast path. Flows that do not match any existing
entries will be forwarded and processed by the controller. Thus,
three levels of delay are shown in the plot: fast path and slow path
for the first 80 flows, and control path for rest of the flows. OVS
uses this simple 1-to-N mapping (i.e., one user space entry could
map to multiple kernel space entries) between the two tables. There
are more complex caching algorithms proposed [7].

In contrast, the software table in Switch #1 works as a FIFO
buffer for TCAM. That is, the oldest entry in the software table
will be pushed into TCAM whenever an empty slot is available.
This is observed in Figure 2(b). In this experiment, we first in-
stall 3500 non-overlapping flow entries. Then we generate a total
more than 5000 data plane flows (again, two packets per flow) and
make the first 3500 flows match installed entries. Again, we ob-
serve three-tier delays, but there is no delay difference between
the first packet and the second packet of a particular flow. This
indicates that unlike the OVS case, flow entry allocation here is in-
dependent of the traffic. The first 2047 flows have much shorter
delay than rest of the flows. This means the first 2047 entries (there
is an default route pre-installed when switches get connected with
controllers) are installed in TCAM and the corresponding flows are
forwarded through fast path. The rest entries reside in user-space
software table(s), and thus the corresponding flows are forwarded
through slow path. When a flow does not match any of the existing
flow entries, it will be forwarded to controller and get processed
there. Although FIFO is simple, it may lead to policy violation
problem [7] when there are overlapping entries in both tables and
the higher priority ones are in software tables.

Switch #2 only has one table (TCAM). It corresponds to the two-
tier delay in Figure 2(c) . Flows matching TCAM entries are for-
warded in fast path, while flows matching no TCAM entries will be
forwarded and processed by controller at control path.
Diverse flow tables and table sizes: Although all switches must
expose flow tables as their forwarding engine model to the con-
troller, per OpenFlow specifications, different switches may map
this model to different tables. In particular, we can identify three
types of tables: user space software table, kernel software table,
and TCAM hardware table. Table 1 shows the types of flow ta-
bles of four OpenFlow switches, including an OVS based software
switch and three HW switches from different vendors that cover a
variety of switch implementations.

As shown in Table 1, OVS maintains software tables in both user
space and kernel space. Switch #1 has both a hardware table im-
plemented in TCAM, and can support 256 virtual tables in the user
space. In contrast, switches 2 and 3 have only TCAM tables, but
no software tables.

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0 20 40 60 80 100 120 140 160

d
e

la
y
 (

in
 m

ill
is

e
c
o

n
d

s
)

flow id

Slow/Fast/Control Path Delays (OVS)

fast path
slow path

control path

(a) Three tier delay in OVS.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0 1000 2000 3000 4000 5000 6000

d
e

la
y
 (

in
 m

ill
is

e
c
o

n
d

s
)

flow id

Slow/Fast/Control Path Delays (HW Switch #1)

fast path
slow path

control path

(b) Three tier delay in Switch #1.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1000 2000 3000 4000 5000 6000

d
e

la
y
 (

in
 m

ill
is

e
c
o

n
d

s
)

flow id

Fast/Control Path Delays (HW Switch #2)

fast path
control path

(c) Two tier delay in Switch #2.

Figure 2: Various edge detection algorithms.

Even if two switches have the same type of tables, their tables
may have different number of entries. Although we could assume
software tables have virtually unlimited size, this does not apply
to TCAM tables. TCAMs are expensive and power hungry, thus
TCAM size on a switch is quite limited and varies from one model
to another. Moreover, the number of entries that can be stored in a
fix-sized TCAM depends on: 1) entry type, and 2) operation mode.
For example, in single-wide mode, entries can match only L2 head-
ers or only L3 headers, while in double-wide mode, entries can
match both L2 and L3 headers. When configured in the double-
wide mode, TCAM can only hold half as many entries as in the
single-wide mode.

It is interesting to see how this would impact the flow table size
on different switches. Switch #1 allows the user to configure the
TCAM mode. If being configured in L2 only or L3 only mode, it
could have 4k L2 or L3 only flows. However, if we want to match
on both L2 and L3, we can only get 2K entries installed in TCAM.
Switch #2 and #3 does not allow user to customize TCAM mode.
However, the experiment results in Table 1 reveal that the TCAM
in Switch #2 has been configured as double-wide mode, since we
can only install 2560 flow entries no matter whether the entries are
L2 only, L3 only, or a mix of L2 and L3. This obviously is not
an efficient design under the scenario that most of the flow entries
are either L2 only or L3 only. Switch #3 is a better design in this
aspect, since it could automatically adjust the table size according
to entry type. When all flow entries are L2 only or L3 only, it could
hold 767 flow entries comparing with only 369 L2 and L3 entries.

Unlike TCAM (or other hardware tables), software tables in ei-
ther user space or kernel space can support virtually unlimited num-
ber of entries, but their matching and forwarding performance will
be limited by CPU capability and the type of rules we install [13].
Diverse delay with different orders of rule operations: We mea-
sure the installation latency of various numbers of rules in various
orders using Switch #1, Switch #2, and OVS. For Switch #1, and
OVS, we preinstall 1000 rules in random priority, and for Switch #2
we preinstall 500 rules (in order not to exceed the TCAM capacity
of the hardware switches). Then, we measure the speed to perform
a set of flow addition, deletion and modification operations with
different permutations with the same start and end sets of rules.
Specifically, we implement all the six possible permutations of 200
flow additions, 200 deletions, and 200 modifications. We repeat the
experiment 10 times and we present the average over the 10 exper-
iments. The result for the hardware Switch #1 is shown in Figure
3(a).
Diverse delay using different flow tables: from above description,
it is easy to understand that packets match different flow tables en-
counter different forwarding delays. In general, we expect fast path
delay to be much smaller than slow path delay. Control path de-
lay should be the longest since packets need to traverse between
separate boxes.

As shown in Figure 2(a), OVS based software switch has three-
tier delays: a constant fast path delay of 3 ms, a varying slow path
delay of 4.5 ms on average, and a control path delay of 4.65 ms.
This numbers do not differ much. The varying slow path delay was
resulted from the variation of switch CPU utilization to install the
micro-flow at the kernel space. Similarly, Figure 2(b) has three-tier
delays. The fast path delay is consistent around 0.665 ms, which is
much faster than the slow path delay (typically 3.7 ms) and control
path delay (7.5 ms on average). Here the fast path could process
and forward packets in line rate. Figure 2(c) shows that the fast
path performance and the control path performance of Switch #2

 0

 2

 4

 6

 8

 10

 12

 14

 16

add_del_m
od

add_m
od_del

m
od_del_add

m
od_add_del

del_m
od_add

del_add_m
od

in
s
ta

lla
ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

scenarios

HW Switch #1 Rule Installation Sequencies

(a) Total flow installation time for the case of 200 adds, 200 mods,
and 200 dels for HW Switch #1.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

in
s
ta

lla
ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

number of flows

Add vs. Modify Flow Delay

add flow (HW switch #1)
mod flow (HW switch #1)

add flow (OVS)
mod flow (OVS)

(b) Performance of mod vs. add for an OF HW Switch.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

in
s
ta

lla
ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

number of flow_mod

Flow Installation Time

desc. priority (HW switch #1)
asc. priority (HW switch #1)

same priority (HW switch #1)
random priority (HW switch #1)

desc. priority (OVS)
asc. priority (OVS)

same priority (OVS)
random priority (OVS)

(c) Flow installation time for different priority patterns in OVS and
a OF HW Switch. (The four curves for OVS overlap with each
other.)

Figure 3: Rule installation time under different scenarios.

are comparable with Switch #1, with a data path delay of 0.4 ms on
average and a control path delay of 8 ms on average.
Diverse controller-switch channel performance: The controller
- switch interactions are also diverse in key aspects. First, different

rule operations (e.g., add new entries or modify existing entries)
have different performance. This is especially true for hardware
OpenFlow switches that use TCAM in fast path forwarding. Fig-
ure 3(b) shows how long it takes to either install n new entries or
update n existing entries, where n varies from 20 to 5000. In order
to support the priority concept defined in OpenFlow specification,
entries in TCAM need to be sorted, with higher priority entries on
top. When a packet comes, it will be processed according to the
first TCAM entry it hits. In this case, adding a new entry may
lead to shifting multiple existing TCAM entries. This is not needed
when modifying an existing entry. From Figure 3(b), we observe
that modifying 5000 entries could be six times faster than adding
new flows under our setup.

Second, different rule priorities have different performance, es-
pecially for hardware switches. Inserting the same number of new
flows with exactly the same priority takes the least amount of time.
This is because increasing priority avoids shifting existing TCAM
entries to make room for new entries. Figure 2(c) shows that it
takes significant less time to insert 5000 new flow entries in ascend-
ing priority order than in descending priority order. So far, we have
observed 46X performance boosting by comparing the descending
with constant priority ordering in the case of 2000 entries. Even
by comparing random with ascending priority ordering, we can get
12X performance boosting to install 2000 non-overlapping entries.
In addition, Figure 2(c) shows the results from the same experiment
in OVS where we observed that priority has no impact on the rule
installation delay.

The above observations have significant importance even in the
cases where proactive rule installation is used (e.g. failover rules),
since there are applications like traffic engineering that still requires
a very fast rule update in order to adapt to the new network condi-
tions.

4. TANGO ARCHITECTURE
Overview: The real measurement results in the preceding section
provide both motivations and inspiration for the design of Tango.
In other words, real measurements can give insights on the diver-
sity of switches, and hence can form a foundation of understanding
and handling SDN switch diversity. Measurement based program-
ming is not new. For example, many programming systems first
run test scripts to test the capability and availability of features of
a platform, to handle platform diversity. The key novelty of Tango
is that we apply this methodology in the context of handling SDN
switch diversity, which poses its own unique challenges: (1) What
are the measurements to reveal switch capabilities and behaviors?
(2) How to hide, as much as possible, switch diversity?
Components: Figure 4 shows the basic components and infor-
mation flow of Tango. The key component is the central Tango
Score and Pattern Databases (TangoDB), where each Tango pattern
is defined as a sequence of OpenFlow flow mod commands and a
corresponding data traffic pattern. As an extensible architecture,
Tango allows new Tango Patterns to be continuously added to the
database.

Given a Tango Pattern and a switch, the Probing Engine applies
the pattern to the switch, and collects measurement results. The
collection of switch measurements can be either offline testing of
the switch before it is plugged in the network, but online testing
when the switch is running. The measurement results are stored
into a central Tango Score Database, to allow sharing of results
across components. All components in Tango can send requests
to the Probing Engine to apply Tango Patterns on switches. One
particular basic component is the Switch Inference Engine, which

Controller	

Diverse	
Switches	

Switch	
Inference	
Engine	

	
	

Network	
Scheduler	

	
	

Applica<ons	 Applica<ons	 Applica<ons	

Performance	 &	 Rou<ng	
Requirements	

Measure	 Switch	
Behavior	

Rule	 Updates	 &	
Rou<ng	 Paths	

Tango	 Score	 and	
PaFern	 Databases	

	
	

Probing	
Engine	

	
	

Figure 4: Tango architecture components.

derives switch capabilities and behaviors (e.g., TCAM size, pro-
cessing throughput, and cache replacement algorithm). The Switch
Inference Engine generates Tango Patterns that it may need and
stores them in the Tango Pattern Database. It then sends requests to
the Probing Engine to apply the patterns. In Section 5, we will de-
fine two sets of Tango Patterns which the Switch Inference Engine
will use.

Another component that may utilize the Probing Engine and Tango
Patterns is Network Schedulers. Our goal is that different Net-
work Schedulers may utilize Tango derived information to achieve
its own goals. In Section 6, we will give more details on an ex-
ample Network Scheduler, which uses Tango derived information
to schedule flow priorities and installation sequence, using a tech-
nique that is similar to expression rewriting in compiler optimiza-
tion.

5. HARDWARE INFERENCE PATTERNS
In this section, we design Tango patterns to infer switch sizes

and cache replacement algorithms. In particular, we will present
two patterns to infer the size and the cache replacement algorithm
respectively. The key challenge of designing the two Tango pat-
terns is to handle the challenge that the probing traffic itself can
change the cache state. For example, OpenFlow switches keep traf-
fic counters and usage timers that are updated each time the switch
receives a packet matching a given flow, so probing a flow that was
not initially cached might cause some other flow to be evicted.

5.1 Switch Model
Before explaining our inference algorithms, we first present a

conceptual model of an OpenFlow switch that guides our designs.
Hardware-based OpenFlow switches (as opposed to Open vSwitch)
generally comprise of a flow table that can be partitioned into multi-
ple levels of hardware-backed (TCAM tables) and software-backed
(i.e., kernel and user space tables) rules. Since the latency of for-
warding using different tables can differ significantly (for instance,
hardware forwarding has significantly lower latency than software
forwarding), we can view the flow table organization as a multilevel
cache for the entire set of forwarding rules in the switch. Analo-
gously, then, the switch policy for deciding how to populate a flow
table layer can be viewed as a cache policy. Thus, the flow ta-
ble layer size, hit rate, and relative performance of hardware and
software forwarding of a switch can be used to characterize its per-
formance in the same way as caches in an operating system.

Specifically, consider a cache’s managing policy. We formalize
such a policy as defining a relation that creates an ordering among
all memory elements and removes the element that comes last in
this ordering. The cache policy examines some set of attributes of
the memory elements (such as usage time or frequency) and then
selects the element with the lowest “score” to be evicted (this may
be the new element, in which case the cache state does not change).
The evicted element may be saved in the next cache, but we focus
on one cache at a time. Although many cache policies exist that de-
viate somewhat from a total ordering (e.g., by introducing random-
ness), an approximation using a total ordering gives statistically
similar results.

Thus, we formalize a switch cache policy as follows:

1. [ATTRIB] The algorithm operates on a subset of the follow-
ing attributes that OpenFlow switches maintain on a per-flow
basis: time since insertion, time since last use, traffic count,
and rule priority1.

2. [MONOTONE] A comparison function between two values
of a given attribute is monotonic. The function can be either
increasing or decreasing.

3. [LEX] A total ordering on the flows is created by sorting
them lexicographically under some permutation of the at-
tributes2.

We can make a few observations based on these assumptions.
First, ATTRIB minimizes the search space of possible cache poli-
cies, but in a way that does not affect the generality of the overall
probing pattern since both MONOTONE and LEX can apply to ar-
bitrary numbers of attributes. Second, MONOTONE implies that
we do not care about the magnitude of the difference between two
given values, only the sign. This means that we do not need to
worry about the effect of, for example, a single packet on traffic
count, provided that the difference between the two flows under
comparison was sufficiently large (i.e., greater than 2). Third, LEX
is simply a natural extension of single element sort, and is suffi-
ciently general because cache algorithms that do not obey LEX,
such as second chance and clock, require hardware support that is
not present and unlikely to be built into OpenFlow switches.

Our probing patterns are motivated by the previously mentioned
observation that the different flow table layers have significantly
different latency. In a two level model of a TCAM-based hard-
ware table and software table, the TCAM-based hardware forward-
ing has significantly lower latency than software forwarding, so a
cached flow entry will have a significantly lower round trip time
than one that is not cached. These round trip times will fall into two
clusters, with the faster round trip times corresponding to cached
entries. Switches with multiple levels of caching (e.g., division of
software tables into kernel space and userspace) will have a num-
ber of clusters equal to the number of cache layers. This situation
is demonstrated in Figure 5, which has three layers. Our algorithm
handles the general case of multiple levels of caching.

1Note that match layer is likely to be a filter on the cache-eligible
flows rather than an ordering constraint.
2For example, assume the attributes are permuted in order of traffic
count, priority, use time, and finally insertion time. A flow with
traffic = 20 would precede one with traffic = 10, and a flow with
traffic = 20 and priority = 4 would precede one with traffic = 20
and priority = 2 (the orders are reversed if lower priority or traffic
is better).

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500

R
T

T
 (

in
 1

0
e

-2
 m

ill
is

e
c
o

n
d

s
)

Flow Id

fast path 1
fast path 2
slow path

Figure 5: Round trip times for flows installed in HW Switch #2.

5.2 Flow-table Sizes
Our size-probing algorithm (Algorithm 1, Size Probing Algo-

rithm) uses a statistical approach to estimate the flow table sizes of
a given switch, relying on the previously described switch model
along with the observation that for any possible cache state, a cache
hit does not change that state. Thus, we design our algorithm with
three stages, as follows. In stage 1 (lines 4-12), as long as we have
not overflown the cache (we explain this condition in detail below),
we insert a batch of rules (lines 7-10). Stage 2 starts after inserting
these rules. In this stage (lines 14-21), we send packets correspond-
ing to the inserted flow rules and measure the RTTs. We cluster the
RTT to determine the number of flow table layers– each cluster
corresponds to one layer. In stage 3 (lines 23-42), we perform a
sampling experiment (let m be the number of rules inserted, and
let n1, n2, . . . , nN be the cache size of levels 1 . . . N, n = Σni):

1. Select one of the m rules at random (line 27/31)

2. Record the RTT for a packet matching that rule (line 28/32)

3. Repeat the previous two steps as long as the rules are in the
same cache layer and we have sent fewer than m packets
(line 29)

Since a cache hit does not affect the cache state, this process will
terminate if and only if there is a cache miss. Assuming we have
m > n, therefore, if we record the result of this experiment over
multiple trials for a given m, we get an approximation of the ex-
pected value of the number of consecutive cache hits. If we perform
k trials, the total number of packets sent corresponds to the random
variable X ∼ NB(1, ni/m), where NB(r, p) is the Negative
Binomial distribution for r negative results sampling with proba-
bility p for a cache hit. We can infer the value of p using max-
imum likelihood estimation over the results of k samples, which

yields the expression: p̂ =

k∑
i=0

Xi

k+
k∑

i=0
Xi

. Setting p̂ = n̂i/m, we get:

n̂i = m ∗ p̂ = m ∗
k∑

i=0
Xi

k+
k∑

i=0
Xi

.

The only remaining question is how we can determine when m
has exceeded the total cache size n. By installing flows and send-
ing traffic for each flow upon insertion (before performing the sam-
pling), our switch model guarantees that there are no wasted slots
in the cache; that is, there are only empty cache entries if there are

fewer flows than slots in the cache. We continue installing new
flows until the OpenFlow API rejects the call, which indicates that
we have exceeded the total cache size.

Our algorithm is asymptotically optimal in the number of rule in-
stallations and probing traffic sent. By doubling the number of rules
installed until rule installation fails, and then halving the number of
rules and installing, we install n rules O(n) in 2∗log2 n batches, so
we can take advantage of batching effects that switches may have
for rule installation. Moreover, each rule installed requires 1 packet
to be sent. Furthermore, in the experiment phase of the algorithm,
we send O(n) packets (we impose a cap on the number of consec-
utive packets to be m in case ni is very close to m). Since we are
trying to measure the size of the cache layers, we need to install at
least n rules and send at least n packets of traffic, so this algorithm
being linear with respect to total cache layers’ size in both number
of rule installations and packets sent is asymptotically optimal.

Algorithm 1 Size Probing Algorithm
1: k ← NUM_TRIALS_PER_ITERATION
2:
3: function PROBE_SIZE(switch)
4: cache_full← FALSE;x← 1
5: while !cache_full do
6: for all i ∈ [0, x), i /∈ switch.flows do
7: f ← INSERT_FLOW(switch, i)
8: if rejected then cache_full← TRUE; break
9: SEND_PROBE_PACKET(switch, f)

10: end for
11: x← x ∗ 2
12: end while
13:
14: g ← ∅
15: for all i ∈ [0, x) do
16: f ← SELECT_RANDOM(switch)
17: rtt← MEASURE_RTT(switch, f)
18: APPEND_RTT(g, rtt)
19: end for
20:
21: clusters, n_clusters← COMPUTE_CLUSTERS(g)
22:
23: for all level ∈ [1, n_clusters) do
24: a← 0
25: for all i ∈ [0, k) do
26: j ← 0
27: f ← SELECT_RANDOM(switch)
28: rtt← MEASURE_RTT(switch, f)
29: while WITHIN_CLUSTER(switch, rtt, clusters,

level) AND j < m do
30: j ← j + 1
31: f ← SELECT_RANDOM(switch.flows)
32: rtt← MEASURE_RTT(switch, f)
33: end while
34:
35: if j = m then
36: break
37: else
38: a← a+ j
39: end if
40: end for
41: sizes[i]← m ∗ a/(k + a)
42: end for
43: return sizes
44: end function

5.3 Cache Algorithm
We leverage MONOTONE and LEX in order to generate patterns

that successfully observe cache state without violating the relative
ordering of the inserted flows. LEX suggests a clear structure for

 0

 50

 100

 150

 200

 250

 0 50 100 150 200

Flow Id

Flow Attribute Pattern

insertion time
use time

priority
traffic count

Figure 6: Visualization of Cache Algorithm Pattern for Cache
Size = 100.

our probing. If we first identify the primary sorting attribute, we
can then hold it constant to recursively identify the next sorting
attribute, and continue until we have determined the correct per-
mutation of the attributes. We identify the primary sorting attribute
by ensuring, for each attribute for a given flow, the corresponding
value is either less than or greater than the values of half (n = cache
size) of the other flows. If we ensure that there is no subset of flows
for which this condition holds for more than one attribute at a time,
we can fairly easily identify the sorting attribute by seeing which
correlates most strongly (positive or negative) with the caching de-
cisions.

Algorithm 2 presents the details of policy patterns. We first in-
sert 2 ∗ cache_size flows (line 4) and initialize them subject to the
constraints explained in the paragraph above (lines 5-7). The traf-
fic generation pattern in line 9 ensures that our probing does not
affect the flow’s relative position in an ordering on any attribute.
Considering each attribute in turn, priority and insertion time are
unaffected by probing, whereas traffic count could be affected by
probing if two flows had counts that differed by only one, but the
algorithm initializes the values to be far apart (10 in our specific im-
plementation). We maintain invariant relative use times by query-
ing in order of reverse use time (line 9). For example, by the time
we send traffic for what was initialized as fifth most recently used
rules, only the four rules that had succeeded it have been queried
again, so the ordering is left unchanged.

Similarly to the size probing patterns, the policy patterns exam-
ine the round trip times to determine which elements are cached
(based on the data collected during size probing). LEX guarantees
that the cached flows should have some attribute for which they all
have the highest values or all have the lowest (‘highest’ and ‘low-
est’ meaning greater than or less than the values for at least n other
flows). We identify this variable by statistical correlation (line 24),
and then recur to find subsequent sort attributes if necessary (lines
27-30).

As an example, consider probing the cache replacement algo-
rithm for a cache of size 100. The post-initialization state of each
of the flows is shown in Figure 6. If the replacement algorithm
is LRU, we will see that packets matching the flow entries with
use_time > 100 will have round trip times near the mean cache
processing time computed as part of the size inference process.
Since use time values are unique, the flow entries can be arranged

in a strict total order on the basis of just use time, and the algorithm
would terminate.

Algorithm 2 Policy Probing Algorithm
1: ATTRIBUTES← {insertion, usage_time, traffic, priority}
2: SERIAL_ATTRIBUTES ← {insertion, usage_time}
3:
4: function PROBE_POLICY(switch, policy)
5: attributes← ATTRIBUTES \ policy
6: s← 2 ∗ switch.cache_size
7:
8: for all i ∈ [0, s) do
9: f ← INSERT_FLOW(switch, i)

10: for all a ∈ attributes do
11: INITIALIZE_FLOW_ATTRIBUTE(switch, f, a)
12: end for
13: end for
14:
15: rtts← {}
16: for all f ∈ SORT_BY_MRU(switch.flows) do
17: rtts[f]← MEASURE_RTT(switch, f)
18: end for
19:
20: correlations← {}
21: for all o ∈ ATTRIBUTES × {incr, decr} do
22: correlations[o]← CORRELATE(o, rtts)
23: end for
24: a← ARGMAX(correlations)
25: policy.APPEND(a)
26:
27: if a ∈ SERIAL_ATTRIBUTES then
28: return policy
29: else
30: return PROBE_POLICY(switch, policy)
31: end if
32: end function

6. TANGO SCHEDULER
The hardware table inference patterns provide basic information

about individual switches and their performance. Rewriting pat-
terns provide information to allow a scheduler to identify effective
operational patterns. In this section, we demonstrate the benefits
of using Tango pattern in scheduling and optimization of flow in-
stallation. We emphasize that the algorithm depends on the avail-
able patterns, and designers should continue to add new patterns to
guide scheduling and optimizations.
Application requests: The design intention of Tango is that it can
be integrated with a wide range of SDN controllers, and different
SDN controllers may offer different APIs for applications to submit
requests. Hence, application requests can range from simple static
flow pusher style requests (e.g., [20]), where the whole path is
given in each request, to declarative-level requests such that the
match condition is given but the path is not given (e.g., ACL style
spec) in each request [14], to algorithmic policies such that even
the match condition will be extracted (e.g., [23]).
Switch request DAG: Given application requests and/or other events
(e.g., link status changes), a compiler or run time at the central SDN
controller will generate operations, which we call switch requests,
to individual switches to update the rules in their flow tables. Using
a general format, we consider that each request has the following
format:

S1
ADD

priority=
1334

S1
ADD

priority=
1244

S1
MOD

priority=
2000

S1
DEL

priority=
2001

S2
MOD

priority=
2334

S4
MOD

priority=
2330

S1
DEL

priority=
1070

S1
ADD

priority=
2350

S1
ADD

priority=
2345

A
B C

E
F

G

H I J

Figure 7: An example DAG of switch requests.

req_elem = {
‘location’: switch_id,
‘type’ : add | del | mod,
‘priority’: priority number or none
‘rule parameters’ : match, action
‘install_by’: ms or best effort}

Each switch request has a location field, which specifies the switch
at which the operation should be installed. A switch request also
has other common fields such as the operation type, the priority
of the new flow table rule, and other parameters such as match
fields and actions. Priority is needed, since that TCAM match
conditions cannot include negation, and hence one must introduce
higher-priority barrier rules [23] for such cases. A switch request
may have a deadline by which the request should be installed (e.g.,
derived from aforementioned application requests). A switch re-
quest may leave the deadline field empty for best efforts.

Switch requests may not be independent. For example, to achieve
consistent updating, a controller may specify that the requests are
finished in a given order (e.g., from the destination switch back to
the source switch, for the path of a new flow). The aforementioned
case of using priority to implement logic negation may also require
that some rules are installed before the other, to avoid transient
breaches. Using a graph G where each node represents a switch
request, if a switch request A must be completed before another re-
quest B, we say that there is a direct edge from A to B in the graph.
Our Tango scheduler assumes that the graph G is a directed-acyclic
graph (DAG). If the dependency forms a loop, the upper layer must
break the loop to make G a DAG. Figure 7 shows an example DAG
that indicates multi-switch requests, and their dependencies. At any
instance of time, we say that the controller has a current switch-
request DAG.
Basic Tango scheduler: The basic Tango scheduler algorithm,
shown in Algorithm 3, processes the switch requests in the current
switch-request DAG. To understand Algorithm 3, first consider the
scheduling of switch requests without Tango measurements. Given
the current DAG, it is intuitive that one schedules the requests start-
ing from those with no dependencies, such as the Dionysus [6] al-
gorithm. In particular, the algorithm identifies those requests with-
out dependencies, which we refer to as independent requests, and
schedules the independent request that belongs to the longest path
first.

A major issue of this approach, however, is that a typical DAG
can have a large number of independent requests with the same
longest-path length. For example, consider Figure 7. The three re-
quests on the left (i.e., requests A, E, H) and the one on the lower
middle (i.e., request I) have no dependency and have the same
longest path length. Hence, a key issue is how one schedules these
four requests. This is where Tango patterns may provide substan-
tial guidelines. Specifically, at line 3, the scheduler extracts the cur-

rent independent set of switch requests (e.g., during the first round,
the requests A, E, H, I), and uses the Tango Score and Pattern
Database for a suggested ordering of the switch requests in the set.
Applying pattern 1 (deletions followed by modifications followed
by additions in ascending priority order) at line 12, the algorithm
computes a score of -91 (= −(10× 1 + 1× 1 + 20× 22), where
the first 1 means one DEL, the second 1 means one MOD in the set
of requests, and 2 for the 2 ADD requests, and 10, 1, and 20 are the
weights for DEL, MOD, and ADD, respectively). Applying pattern
2 gives a lower score of -171. Hence, the scheduler picks the first
scheduling pattern and issues the requests in the suggested order.

Algorithm 3 BasicTangoScheduler
1: function BASICTANGOSCHEDULER(G)
2: while true do
3: Gi ← independent set in G
4: Git← orderingTangoOracle(Gi)
5: issue requests in Git
6: remove finished requests in Git
7: end while
8: end function
9: function orderignTangoOracle(Gi)

10: maxScore← NEGATIV E_INFINITY
11: for all pattern ∈ TangoPatterns do
12: score← computePatternScore(Gi, pattern)
13: if (score > maxScore) then
14: maxScore← score
15: maxPattern← applyPattern(Gi, pattern)
16: end if
17: end for
18: return maxPattern
19: end function
20: TangoPatterns←

[
21: {pattern : “DELMOD ASCEND_ADD′′,
22: score : −

(
10× {DEL}+ 1× {MOD}+ 20× {ADD2}

)
},

23: {pattern : “DELMOD DESCEND_ADD′′,
24: score : −

(
10× {DEL}+ 1× {MOD}+ 40× {ADD2}

)
},

25: . . .
26:

]
Extensions: The basic scheduling algorithm uses greedy batching
of independent requests. For example, the basic algorithm sched-
ules all four requests (A, E, H, I) in one batch, in the order of
I, H, E, A. One extension that may improve the basic algorithm
is to consider non-greedy batching. Specifically, after computing
the ordering I, H, E, A, the scheduler evaluates different pre-
fixes to determine if there is a better ordering, by considering is-
suing the prefix, and then the batch enabled by the completion of
the prefix. Consider the prefix I , its completion will produce a
new independent set (A, E, H, C, G, J). The scheduler com-
putes the total score of schedule (1): batch 1 with I , and batch 2
with C, H, E, A, J, G, vs that of schedule (2): batch 1 with
I, H, E, A and then batch 2 with C, F, J, G. This process
leads to a scheduling tree of possibilities and the scheduler picks
the schedule with the best overall score.

Another extension of the basic algorithm is to schedule depen-
dent switch requests concurrently. Specifically, Tango probing en-
gine can provide measurement results to guide the scheduling of
concurrent requests. Specifically, in case of a dependency S1 ADD→
S2 ADD (between switches S1 and S2), the scheduler does not
have to wait for the first command to finish if we can estimate (us-
ing the Tango latency curves) that the second command is much
slower than the first (e.g. if the switch is overloaded, or it has a

Flow Files Topological
Priorities

R Priorities Flows
Installed

Classbench1 64 829 829
Classbench2 38 989 989
Classbench3 33 972 972

Table 2: Number of flows per Classbench file and their associ-
ated priorities.

slower CPU). On the contrary, we can push both rules such that
the estimated (using the Tango latency curves) finishing time of the
operation S1 ADD precedes the estimated finishing time of the rule
S2 ADD by a “guard” time interval. This is suitable for senarios
with weak consistency requirement.

7. EVALUATIONS
In this section, we present the results from the evaluation of

Tango and demonstrate that using Tango patterns, we can achieve
substantially better SDN programming efficiency both in a per-
switch and network-wide basis.

7.1 Single Switch Evaluation
With basic switch properties inferred from the preceding section

and additional rewriting patterns, Tango scheduler optimizes the
assignment and installation of flow table rules. We evaluate how
much gain that Tango can achieve compared with approaches that
are oblivious of switch diversity. For this, we test four algorithms
that combine different priority assignments and installation order
to the rules and measure their performance.
Methodology: In order to find the optimal scheduling policy that
can minimize flow installation time, we use three sets of rules from
Classbench [21] access control lists to generate flow rules with de-
pendencies. We then process the dependency graph with the al-
gorithm taken from [23] in order to generate a) the minimum set
of priorities needed to install the rules while satisfying the depen-
dency constraints, and b) a set of priorities that are mapped 1-1 to
the flow rules but they still satisfy the dependency constraints of the
rules.

We denote the first set of priorities Topological Priorities (we
use topological sorting to obtain the rule schedule and then use the
same priority number for rules that have no dependencies with each
other), and the second R Priorities. The next step is to measure the
installation time using Tango pattern under the following schedul-
ing scenarios: 1) topological priority assignment and the optimal
rule installation order taken from our probing engine, 2) topological
priority assignment and random rule installation order, 3) 1-1 pri-
ority assignment that satisfies the dependency constraints and the
optimal installation order taken from our probing engine, and 4) 1-
1 priority assignment that satisfies the dependency constraints and
random installation order. We repeat the above experiment three
times using three different Classbench files. The number of flows
per Classbench file as well as the number of Topological and R
priorities generated are shown in Table 2.
Per Switch Evaluation: For each Classbench file, and for the
four scheduling scenarios shown above, we measure the installation
time in OVS and HW Switch #1, as shown in Figures 8(a)-9(c). We
can observe that the topological priority assignment combined with
the optimal policy taken from our probing engine achieved the best
performance in terms of flow installation time in five out of the six
scenarios under study. For example, in Figure 8(a)-8(c), we can ob-
serve that the decrease in the installation time is 10%, 9%, and 8%,
respectively. In addition, in the case of the hardware switch (Figure

9(a)-9(c)), the decrease in the installation time is 87%, 80%, and
89%, respectively. The improvement in the case of OVS is lower
since OVS is very fast for a relatively small number of rules (i.e.,
<1000).

The only exception was the case of Classbench 1 for HW Switch
#1, where the installation time is slightly more than the one using
priority assignment of type R and the rules are installed in ascend-
ing priority.

To further analyze the behavior of real hardware switches, we re-
peated the experiment using descending priority installation order,
instead of ascending. As expected, the installation time was up to
12 times higher compared to the one using ascending priority (we
do not show these results here due to space limitations).

7.2 Network-Wide Evaluation
To further evaluate the performance of Tango, we conduct exper-

iments on both a hardware testbed and a virtual network emulator
(Mininet [24]), that represent the following real-life scenarios: (a)
Link Failure (LF): one or more links from the physical topology
fails causing existing flows to be rerouted; and (b) Traffic Engi-
neering (TE): a traffic matrix change causes a number of flows to
be added, removed, or modified. In both scenarios, we ensure that
the flow updates are conducted in reverse order across the source-
destination paths to ensure update consistency [18].

We compare the performance of Basic Tango Scheduler with
Dionysus [6], a network update scheduler for SDN. The core of
Dionysus uses a critical path scheduling algorithm that constantly
calculates the critical path on the scheduling DAG (that represents
the rules to be pushed to each switch and their dependencies), and
pushes the rules to the switches that belong to the critical path, first.
However, unlike Tango, Dionysus does not take into account the di-
versity in the latency of each rule type, as well as the diversity of
the switch implementations (e.g., caching algorithm).
Evaluation on hardware testbed: First, we conduct experiments
on a small testbed consisting of three hardware switches, denoted
as s1, s2, and s3. Switch s1 and s2 are from Vendor #1, and s3 is
from Vendor #3. Initially these switches are fully connected form-
ing a triangle. We use this testbed to implement both LF and TE
scenarios, as follows. In the LF case, the link between s1 and s2
got disconnected causing 400 existing flows to be rerouted from s1
to s2 via s3. In the TF case, a traffic matrix change at s1 causes
a number of flows to be added, removed, or modified. We have
implemented two TE scenarios (denoted as TE 1 and TE 2) with
different distributions on the number of rules of each type required
(i.e., ADD, MOD, DEL) in order to transition from the initial state
to the target state. In the TE1 scenario, we randomly generate 800
flow requests with twice as many additions as deletions or modi-
fications, while in TE2, these three types of requests are equally
distributed. We assume explicitly specifies priorities for their rules,
Tango can optimize the rules with priority pattern (called Priority
sorting).

Figure 10 shows the results of LF, TE1, and TE2 scenarios. By
applying only a rule-type optimal pattern, Tango gets 0%3, 20%,
and 26% improvement compared to Dionysus, respectively. In ad-
dition, by applying both rule-type pattern optimization and priority
pattern optimization, Tango could further reduce the flow installa-
tion time by 70%, 33% and 28%, respectively.

Figure 11 explores two settings about priorities: The first is pri-
ority sorting as described above. The second is priority enforce-
ment. When applications do not specify the flow priorities (as men-
3This is because in LF scenario, there are only rule additions on s1
and rule modifications on s2. Thus, there is no room for rule-type
optimization.

 0.044

 0.045

 0.046

 0.047

 0.048

 0.049

 0.05

1 2 3 4 5 6 7 8 9 10

in
s
ta

lla
ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

scenarios

OVS Optimization Results (Classbench 1)

Topo Desc
R Desc

R Rand
Topo Rand

(a) Classbench 1

 0.052

 0.053

 0.054

 0.055

 0.056

 0.057

 0.058

1 2 3 4 5 6 7 8 9 10

in
s
ta

lla
ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

scenarios

OVS Optimization Results (Classbench 2)

Topo Desc
R Desc

R Rand
Topo Rand

(b) Classbench 2

 0.0525

 0.053

 0.0535

 0.054

 0.0545

 0.055

 0.0555

 0.056

 0.0565

 0.057

 0.0575

 0.058

1 2 3 4 5 6 7 8 9 10

in
s
ta

lla
ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

scenarios

OVS Optimization Results (Classbench 3)

Topo Desc
R Desc

R Rand
Topo Rand

(c) Classbench 3

Figure 8: Installation time for various priority assignments and installation order in OVS.

 0

 2

 4

 6

 8

 10

 12

 14

 16

1 2 3 4 5 6 7 8 9 10

in
s
ta

lla
ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

scenarios

HW Switch #1 Optimization Results (Classbench 1)

Topo Asc
R Asc

R Rand
Topo Rand

(a) Classbench 1

 5

 10

 15

 20

 25

 30

 35

1 2 3 4 5 6 7 8 9 10

in
s
ta

lla
ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

scenarios

HW Switch #1 Optimization Results (Classbench 2)

Topo Asc
R Asc

R Rand
Topo Rand

(b) Classbench 2

 0

 5

 10

 15

 20

 25

1 2 3 4 5 6 7 8 9 10

in
s
ta

lla
ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

scenarios

HW Switch #1 Optimization Results (Classbench 3)

Topo Asc
R Asc

R Rand
Topo Rand

(c) Classbench 3

Figure 9: Installation time for various priority assignments and installation orders in HW switch #1.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

LF TE 1 TE 2

in
s
ta

lla
ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Hardware Testbed Network-Wide Optimization

Dionysus
Tango (Type)

Tango (Type+Priority)

Figure 10: Hardware testbed Link Failure and Traffic Engi-
neering Scenarios.

tioned in Sec. 6), Tango can optimize the assignment of priorities
based on the dependency constraints. We evaluate four scenarios,
each with a different type of rules pushed in the network (i.e., ADD
only, or mix of ADD, MOD, DEL), a different number of levels in
the dependency graph, and a different total number of rules. In
general, Tango outperforms Dionysus in all cases with a maximum
improvement of 85% and 95% via priority sorting and priority en-
forcement, respectively. This happens once the request only con-
sists of flow additions. In the last two scenarios, we explore the
situation where the DAG has more than one levels, under the same
number of rules as before. In these cases, the performance benefit

 0

 10

 20

 30

 40

 50

 60

add, D
AG

=1, 2.4K

m
ixed, D

AG
=1, 2.4K

m
ixed, D

AG
=2, 2.4K

m
ixed, D

AG
=2, 3.2K

in
s
ta

lla
ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

Hardware Testbed Network-Wide Optimization

Dionysus
Tango (Priority Sorting)

Tango (Priority Enforcement)

Figure 11: Hardware testbed measurements.

of Tango is smaller, since each level has less independent rules, and
thus less optimization options.
Network emulation on OVS: To evaluate Tango in larger net-
works, we evaluate Tango scheduler on Google’s backbone net-
work topology [5] using Mininet [24]. In the TE case, we imple-
ment a traffic matrix change in the B4 topology that triggers a se-
quence of rule additions, modifications, and deletions, based on
the max-min fair allocation algorithm used in [5]. The results are
shown in Figure 12. We observe 8% flow installation improvement
compared with Dionysus results, for a total of 2200 end-to-end flow
requests. Similar improvements are observed in the LF case. This
improvements come from rule-type pattern. This is smaller than
the improvements on hardware testbed, because OVS has smaller
performance differences betwen rule type patterns. We also note

that priority optimization does not help in the case of OVS. This is
priority has little impact on OVS rule installation performance.

 2

 2.1

 2.2

 2.3

 2.4

 2.5

 2.6

 2.7

 2.8

 2.9

Dionysus Tango

in
s
ta

lla
ti
o

n
 t

im
e

 (
in

 s
e

c
o

n
d

s
)

OVS TE Optimization

Figure 12: Mininet TE Scenario.

8. RELATED WORK
Managing switch diversity: Discussions on OpenFlow 2.0 (e.g., [1])
highlight the difficulties of handling switch diversity. OF-config [15]
provides a management protocol for the controller to understand
and control switch-specific configurations. However, these proto-
cols do not fully capture switch diversity and do not provide mech-
anisms to quantify the diversity. For example, they do not specify
a mechanism to query the caching policy, and quantify switch up-
date latencies. In [4], the authors explore the diversity of different
switch implementations using manual inspection. We propose al-
gorithms to automatically infer switch parameters and Tango pat-
terns. Oflops [19] provides a standalone controller to benchmark
OpenFlow switch performance. Tango builds on Oflops but designs
smart probing algorithms to infer Tango patterns.
High level abstractions: Existing SDN controllers and languages
(e.g., Frenetic [12], Onix [8], Maple [23]) provides a high-level ab-
straction of network elements (e.g., switches, hosts, ports) to reduce
the complexity of programming SDN, and leverage compilers and
runtime systems to optimize the application performance indepen-
dent of diverse switches. In Tango, we optimizes application per-
formance by leveraging switch-specific opportunities (i.e., Tango
patterns). One can view Tango as a “backend” compiler optimizer
which none of the existing compilers [3, 23] provide. It is possible
to integrate Tango with Frenetic and Maple. We leave that to future
work.
Switch level optimizations: Previous work has proposed optimiza-
tions at both software and hardware switches to improve perfor-
mance. For example, DevoFlow [2] introduces rule cloning to
reduce the use of TCAM entries. CacheFlow [7] proposes new
caching solutions for overlapping rules between software and hard-
ware switches. However, it is challenging for applications to lever-
age these optimizations without knowing their design details. With
Tango, these optimizations are just new Tango patterns for applica-
tions.

There have also been active research on optimize rule updates
to ensure consistency [18, 10] and reducing transient congestions
during updates [9, 6]. Complementary to these works, we focus
on how to reorder or modify rule updates based on diverse switch
capabilities to improve performance. One can view Tango as a

mechanism to optimize per-switch rule updates. The consistent up-
date mechanisms can use Tango to minimize their overall rule setup
completion time.

9. CONCLUSION AND FUTURE WORK
Our measurement studies show that SDN switches have diverse

implementations, capabilities and behaviors. Current controller im-
plementations ignore the diversity. This leads to inefficient us-
age of switch resources. Most importantly, ignoring switch diver-
sity can adversely impact application performance, e.g. packets
end up in switch slow path. To simplify SDN programming, we
present Tango, the first systematic design. Tango automatically in-
fers switch behavior using a well-structured set of Tango patterns,
where a Tango pattern consists of a sequence of standard OpenFlow
commands and a corresponding data traffic pattern. Tango presents
a simple API for controller applications to specify their require-
ments. Tango optimizes network performance exploiting the cost
of a set of equivalent operations through expression rewriting. Our
evaluation shows the effectiveness of Tango. For our future work,
we would like to expand the set of Tango patterns to infer other
switch capabilities such as multiple tables and their priorities.

Acknowledgments
We thank Haibin Song for providing examples of specific switches;
James Aspnes and Shenil Dodhia for extensive discussions on the
inference algorithms; and CoNEXT reviewers for their suggestions.
Daniel Tahara is partially supported by a gift from Futurewei. An-
dreas Voellmy and Y. Richard Yang are supported by a gift from
Futurewei and NSF CNS-1218457. Minlan Yu is supported in part
by NSF CNS-1423505.

10. REFERENCES
[1] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown,

J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming
protocol-independent packet processors. SIGCOMM
Computer Communications Review, 2013.

[2] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee. DevoFlow: Scaling flow
management for high-performance networks. In Proceedings
of ACM SIGCOMM, August 2011.

[3] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A network
programming language. In Proceedings of the 16th ACM
SIGPLAN International Conference on Functional
Programming (ICFP), September 2011.

[4] D. Y. Huang, K. Yocum, and A. C. Snoeren. High-fidelity
switch models for software-defined network emulation. In
Proceedings of the Second ACM SIGCOMM Workshop on
Hot Topics in Software Defined Networking (HotSDN),
August 2013.

[5] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla,
U. Hölzle, S. Stuart, and A. Vahdat. B4: Experience with a
globally-deployed software defined WAN. In Proceedings of
ACM SIGCOMM, August 2013.

[6] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
J. Rexford, R. Wattenhofer, and M. Zhang. Dionysus:
Dynamic scheduling of network updates. In Proceedings of
ACM SIGCOMM, August 2014.

[7] N. Katta, J. Rexford, and D. Walker. Infinite CacheFlow in
software-defined networks. Princeton Computer Science
Technical Report TR-966-13, 2013.

[8] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and
S. Shenker. Onix: A distributed control platform for
large-scale production networks. In Proceedings of the 9th
USENIX Conference on Operating Systems Design and
Implementation (OSDI), October 2010.

[9] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and
D. Maltz. zUpdate: Updating data center networks with zero
loss. In Proceedings of the ACM SIGCOMM, August 2013.

[10] R. Mahajan and R. Wattenhofer. On consistent updates in
software defined networks. In Proceedings of the 12th ACM
Workshop on Hot Topics in Networks (HotNets-XII),
November 2013.

[11] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: Enabling innovation in campus networks.
SIGCOMM Computer Communications Review, 2008.

[12] C. Monsanto, J. Reich, N. Foster, J. Rexford, and D. Walker.
Composing software-defined networks. In Proceedings of the
10th USENIX Conference on Networked Systems Design and
Implementation (NSDI), April 2013.

[13] M. Moshref, M. Yu, A. Sharma, and R. Govindan. Scalable
rule management for data centers. In Proceedings of the 10th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), April 2013.

[14] T. Nelson, A. D. Ferguson, M. J. Scheer, and
S. Krishnamurthi. Tierless programming and reasoning for
software-defined networks. In Proceedings of the 11th
USENIX Symposium on Networked Systems Design and
Implementation (NSDI), April 2014.

[15] OF-config: https://github.com/
AndreasVoellmy/data-driven-sdn-paper.

[16] OpenFlow switch specification 1.4.0:
https://www.opennetworking.org/images/
stories/downloads/sdn-resources/
onf-specifications/openflow/
openflow-spec-v1.4.0.pdf.

[17] Openvswitch: http://openvswitch.org/.
[18] M. Reitblatt, N. Foster, J. Rexford, and D. Walker. Consistent

updates for software-defined networks: Change you can
believe in! In Proceedings of the 10th ACM Workshop on
Hot Topics in Networks (HotNets-X), November 2011.

[19] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and A. W.
Moore. Oflops: An open framework for OpenFlow switch
evaluation. In Proceedings of the 13th International
Conference on Passive and Active Measurement, March
2012.

[20] Ryu SDN controller: http://osrg.github.io/ryu/.
[21] D. E. Taylor and J. S. Turner. Classbench: a packet

classification benchmark. IEEE/ACM Transactions on
Networking, pages 499–511, 2007.

[22] The eXtensible DataPath Daemon (xdpd): https://www.
codebasin.net/redmine/projects/xdpd/wiki.

[23] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak.
Maple: Simplifying SDN programming using algorithmic
policies. In Proceedings of the ACM SIGCOMM, August
2013.

[24] Mininet: An Instant Virtual Network on your Laptop.
http://mininet.org.

