
Latency Equalization: A Programmable Routing Service
Primitive

Minlan Yu
Princeton University

Marina Thottan
Bell Labs, Alcatel-Lucent

Li Li
Bell Labs, Alcatel-Lucent

ABSTRACT
Today the Internet is the primary medium for deploying new real
time services such as gaming and distributed online live music con-
certs. Different network services have different expectations from
the routing infrastructure. Some network services require conven-
tional routing paths optimized for low latency or low congestion.
However, real-time interactive services such as online gaming and
distributed live music performance require more than just low la-
tency. They require Latency EQualization (LEQ) among participat-
ing users. Although LEQ could be performed by the client or the
server, end-system techniques for estimating network conditions
are often inaccurate. Instead, we argue that the network should
provide a LEQ service. We propose a LEQ routing architecture
that can leverage programmable hub nodes. By deploying a few
flexible, well-placed programmable nodes to redirect traffic, we can
flexibly support both latency equalized and low latency routing ser-
vices simultaneously. For LEQ routing, programmable hub nodes
provide services such as application packet identification, applica-
tion level packet processing and latency equalized routing paths.
Extensive simulation studies on provider network topologies show
that using just a few programmable nodes we can achieve an 80%
improvement in LEQ over the conventional architecture that uses
shortest path routing.

Categories and Subject Descriptors
C.2.5 [Computer-Communication Networks]: Local and Wide-
Area Networks; G.1.6 [Numerical Analysis]: Optimization

General Terms
Algorithms; Design

Keywords
Latency Equalization; Programmable Routing; Optimization; On-
line Interactive Applications

1. INTRODUCTION
The increasing popularity and accessibility of the Internet has

made it the new medium for many commercial and entertainment

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PRESTO’08, August 22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-181-1/08/08 ...$5.00.

activities. The increased demand is placing an important require-
ment on the network infrastructure to be flexible and configurable
to meet the myriad needs of network-based applications. The co-
existence of many of these applications on the same network in-
frastructure requires innovative architectures that effectively uti-
lize network resources. A key component of such flexibility is
the programmable router. In this paper, using the concept of pro-
grammable router, we show the coexistence of two different routing
architectures: one meets the low latency needs of conventional ap-
plications and the other meets latency equalization (LEQ) require-
ments among a group of interacting users.

Until now most applications were content with a shortest path
routing scheme that provides a low latency path through the net-
work. With improvements in network transport technology and
traffic engineering, meeting absolute latency requirements can be
easily accomplished. However, online interactive applications re-
quire much more than absolute latency bounds. In online gaming,
online distributed live music concerts, e-commerce and financial
trading, the user experience is severely impacted by the latency dif-
ferences experienced among the interacting users. In gaming the
difference in lag experienced by gamers significantly reduces the
entertainment value of the game [17]. Game servers have imple-
mented mechanisms by which participating players can vote to ex-
clude players with higher lag times. In distributed live music con-
certs [3], individual musicians are located at geographically dif-
ferent locations and the sound impairments introduced by delay
differences among the musicians are perceptible to the human ear
thus severely degrading the quality of the music. In e-commerce,
latency differences between pairs of shopping agents and pricing
agents can result in price oscillations leading to an unfair advan-
tage to those pairs of agents whose latency difference is lower [11].

Conventional routing architectures are unable to meet the LEQ
requirement and therefore applications typically perform latency
compensation either at the client or the server [9, 2]. Latency
compensation on the client side is based on hardware and soft-
ware enhancements to speed up the processing of event updates
and application rendering. These techniques cannot compensate
for network-based delay differences among a group of players. La-
tency compensation by servers requires estimating the state of the
network. This estimation has limitations since the state is inferred
from application behaviors that are not always related to network
issues [19]. Furthermore, the overhead of network measurements
and the implementation of latency compensation techniques con-
sumes significant processing power and CPU time on servers [6].
Typically there is a minimum memory and CPU power requirement
on the game server that is associated with individual players. In
some extreme circumstances, due to poor network support, servers
are forced to spend expensive computation cycles on latency com-

pensation, that they are unable to scale for large numbers of users
[6]. Without network support it is also difficult for applications
to achieve robustness to transient network congestion and failures.
Thus the ideal location for compensating delay imbalances in net-
work paths of different users must reside in the network.

We propose a latency equalization routing architecture that can
be implemented on programmable network nodes to provide LEQ
services. Using a few programmable hub nodes in the network we
can steer packets through hub nodes along pre-determined paths,
that compensate for the delay difference between the users. Hub
nodes can also be used to steer packets away from congested links.
The proposed LEQ routing architecture coexists and leverages the
low latency routing architecture.

Our LEQ routing architecture is validated through extensive sim-
ulation studies on ISP network topologies. We show that our rout-
ing scheme improves LEQ by 80% on average over the default
shortest path routing.

In summary, we make the following contributions in this paper:
• LEQ routing architecture that can provide LEQ and reli-

able paths to users while maintaining the service experience
of low latency users (maximum delay is bounded). To the
best of our knowledge the proposed LEQ architecture using a
greedy hub placement algorithm is the first theoretical result
to optimize network routing for minimizing delay difference.
• Deployment on a few flexible and well-placed programmable

routers. Our LEQ routing architecture is incrementally de-
ployable using a few well-placed programmable routers. LEQ
services can be simultaneously supported with conventional
low-latency routing protocols.

The paper is organized as follows: Section 2 describes our LEQ
routing architecture and deployment considerations on programmable
routers. In Section 3, we formulate the hub placement problem and
describe our greedy algorithm. We evaluate our hub routing archi-
tecture and algorithm in Section 4. Sections 5 and 6 discuss related
work and conclude the paper.

2. LATENCY EQUALIZATION
We first discuss possible alternate solutions for LEQ and their

limitations. Next, we propose our LEQ routing architecture and its
deployment on programmable routers.

2.1 Alternative Solutions

1

4
8

R1
4

1

server

8

33

44

4

2

1

R3

R4

R5
R2

R10

R9

R6

R7

R8

8 5

client1

client2

Figure 1: LEQ routing architecture

Typical network providers usually use shortest path routing pro-
tocols (e.g. OSPF) as the intra-domain routing protocol. For exam-
ple, in Figure 1, there are ten routers in the network domain. Client
1 and client 2 are connected to edge router R1 and R2 respectively.
They both send packets to their server, which is connected to the
edge router R10. The numbers on the links represent link weights.
For simplicity, we assume that link weights are determined by the
propagation latency on each link. Therefore the metric in OSPF is

assumed to be proportional to latency. In this way, we are able to
find the minimum delay path for each client: packets from client
1 go through the path R1 → R3 → R9 → R10, which takes 3ms;
packets from client 2 take the path R2 → R5 → R8 → R10, which
takes 10ms. There is a 7ms delay difference between client 1 and
client 2. Such delay differences are a significant problem for both
servers and clients in real time interactive applications.

The primary goal of routing protocols for most conventional ap-
plications is to send packets to their destinations through low-latency
paths. Supporting multiple applications requiring LEQ and low la-
tency routing at the same time is a challenging problem.

One solution would be source routing, where each client edge
router determines the paths for its own packets. Implementing LEQ
using this approach will require a centralized server for global path
computation and the collaboration of all client edge routers. This
is computationally hard due to the diversity of available routes and
also hard to implement since all routers in the network must iden-
tify application packets and support source routing. Our LEQ rout-
ing architecture ensures LEQ with only a small overhead and is
scalable to many services with only minor modifications to the net-
work infrastructure and routing strategy.

2.2 LEQ Routing Architecture
The basic philosophy behind LEQ based routing architecture is

that we could choose longer paths for low latency clients (near the
servers) by redirecting their packets through hub nodes. The hub
nodes are strategically placed to ensure that the delay difference
is minimized for those users that are steered via these hub nodes.
This method is better than simply buffering packets at the server
or within the router. Storing packets at the server is not scalable
since the capacity of the server to support large number of users
depends on the memory associated per user on that server. Also
buffering in the network router is expensive due to power consump-
tion/dissipation associated with high speed network hardware.

In LEQ routing architecture, we define two types of edge routers:
one that has clients connected to it which is called client edge
router, and the other with servers connected to it which is referred
to as server edge router. Any edge router can simultaneously be
a client and a server edge router. The hub nodes can be enhanced
routers or a stand-alone network appliance that have some network
state that is pertinent to the application. In the LEQ architecture we
assign each client to a set of hub routers, and then set up tunnels
between each client and its associated set of hub nodes, and again
from hub nodes to servers. Packets from clients are forced to go
through the tunnels to their hub nodes. Hub routers then redirect
the packets to the destined servers.

For example, in Figure 1, R1 and R2 are client edge routers; R10
is server edge router. We choose R6 and R7 as hub nodes for R1,
and set up tunnels of (R1,R6), (R1,R7), (R6,R10) and (R7,R10).
Similarly, we choose R7 and R8 as hubs for R2 and set up corre-
sponding tunnels. In this way, R1 has two paths to the server edge
router R10: R1→ R6→ R10 and R1→ R7→ R10, both of which
has the delay of 10ms. R2 also has two paths: R2→ R7→ R10 and
R2 → R8 → R10, whose delay is 10ms. We achieve equalized la-
tency by cleverly placing the hubs. Compared with OSPF routing,
we use hubs R6 and R7 to redirect the packets from client 1 through
a longer paths and thus find paths of equal delay with client 2.

In the above example, we choose two hubs for each client. The
main reason to choose multiple hubs for one client is that network
delay consists of two parts: propagation delay and queuing delay.
Under normal network conditions where the infrastructure is not
fully utilized, our hub placement algorithm (Section 3) would pro-
vide equalized-latency paths in terms of propagation delay. With

the varying network conditions, we need multiple paths to ensure
that packets always have an alternate path, and thus do not get buf-
ferred on one path where queuing delay becomes a significant fac-
tor. In fact, there is a tradeoff to be made when the number of hubs
for each client is increased. More hubs would lead to more diversity
of LEQ paths for one client, and thus provide more reliable paths
in the face of transient congestion or link/node failure. However,
additional LEQ paths are realized by making a small compromise
in the delay difference. We will show in Section 4.3 that 2 or 3 hubs
for each client are enough to ensure both reliability and good delay
difference.

2.3 Deployment on Programmable Routers
To apply LEQ routing, the edge router first identifies the appli-

cation packets based on the port number and the IP addresses of
the servers, which are known to the ISP in advance. Since we
have multiple hub nodes for each client, for robustness the edge
router then duplicates the application packets among pre-selected
hub nodes and sends them through tunnels to the hub nodes. The
hub nodes then redirect the packets to the destination edge router
through tunnels. Conventional routers already support application
identification and tunneling. We can also deploy these edge router
functions using OpenFlow switch [13].

IPV4
IPV4

 IPV4
LEQ routing
for gaming
 Quake 3

 ...

 Programmable Router

 Control Plane

 Data Plane

LEQ routing
for gaming
 Car Racing

LEQ routing
for concert

LEQ routing
for trading

FIB FIB FIBFIBFIB

Packet
Classifier

Packet
Classifier

Packet
Classifier

Packet
Classifier

 Tunnels Tunnels

Packet
Inspection
etc.

Echo
Cancellation
etc.

(1)

(2)

(3)

(4)

Figure 2: Programmable hub node

The hub nodes are programmable routers placed at preselected
locations. Figure 2 shows the architecture of such a programmable
hub node. It consists of two parts – control plane and data plane.
Based on the routing requirements of the applications, the control
plane can be programmed to run different routing protocols in the
virtual router environment (Figure 2 (1)). Each routing protocol
then installs a specific forwarding table (Figure 2 (2)) that caters
to the routing requirements of the application. For example, online
games (e.g. Quake 3 and Car Racing) can each run an LEQ rout-
ing protocol with different latency equalization values. Since the
gaming application uses the regular IPV4 routing for initial game
set up, the FIB is composed from the output of both the LEQ route
computations and the IPV4 route computation.

In the data plane, a packet classifier is used to identify different
packet types within a specific application and customized routing
is applied to these packets(Figure 2 (3)). Packets from different
applications are identified by the same source and destination IP
address. Within an application, packets are classified based on port
number or application tags. For example, packets in the game ap-
plication can be classified into game setup packets and interactive
event packets based on their tags. In the initial game set up when
the player downloads a map from the gaming server, these packets
can go through shortest path routing because they need faster down-
load times and have no latency equalization requirement. However

during game play interactive packets requiring LEQ, would choose
LEQ routing paths.

The data plane of hub nodes can also apply application level
packet processing (Figure 2 (4)). For online gaming, hub nodes
can be used to aggregate event updates, and inspect packets to de-
tect virus signatures. For distributed live concert, it may be used
for sound amplification, echo cancellation, and distortion compen-
sation. Hub nodes can also provide applications the opportunity to
reconsider their packet destinations on the fly. For example in P2P
games, hubs can perform load balancing among multiple servers
for the clients. It can also aid in server migration by doing a soft
hand-off between servers, where packets are sent to both the old
and new servers till the migration process is complete.

LEQ routing architecture is easy to be deploy on programmable
routers for three reasons: i) It only requires a few programmable
routers to participate in routing and thus reduces the cost of de-
ployment; ii) It allows incremental deployment since even with one
hub, we can reduce the delay difference by 41% on average (see
Section 4.2); iii) No modification of the underlying routing proto-
cols is necessary. The LEQ architecture can be implemented as an
overlay on the substrate routers.

The focus of this paper is to achieve LEQ routing using a pro-
grammable network architecture. For ease of discussion we only
consider a single network domain, where both clients and servers
are connected to the Internet through edge routers of the same ISP.
Without loss of generality we assume that edge nodes aggregate
application traffic from users that have similar access delays.

3. HUB PLACEMENT ALGORITHM
We formulate the Hub Placement Problem, which focuses on

how to select hub nodes in the network and the assignment of hubs
to the client edge routers to minimize delay difference. We pro-
pose a greedy hub placement algorithm, which can achieve LEQ
by using just a few programmable hub nodes in the network.

3.1 Problem Formulation
We use undirected graph G = (V, E) to represent the network.

We denote d(u, v), u, v ∈ V as the propagation delay of the shortest
path between routers u and v. We assume that the propagation delay
is symmetric, i.e. d(u, v) = d(v, u).

Let VP ⊆ V denote the set of client edge routers where users enter
the network, VS ⊆ V denote the set of edge routers to which servers
are connected, VH denote the set of routers that can be chosen as
hub nodes. Without loss of generality, we represent all servers con-
nected to the same server edge router as a single server. For sim-
plicity in writing notation, we call server edge routers as servers,
and client edge routers as clients respectively.

For generality, we associate each client edge router with r servers
that are nearest to it in terms of propagation delay. We denote by
S pi the set of servers associated with client pi. S pi can be easily
attained by calculating the propagation delay between clients and
servers. We also define Dmax as the maximum delay each client
pi can tolerate on its path to any server in S pi . We limit the total
number of hubs to M and require each client has at least m hubs.

Given M, m, r, Dmax, our goal is to find a set Hpi of m hubs for
each client pi, so that we can achieve the minimum delay differ-
ence. Delay difference δ is defined as:

δ = max
pi∈VP ,h j∈Hpi ,sk∈S pi

(d(pi, h j) + d(h j, sk))

− min
pi∈VP ,h j∈Hpi ,sk∈Hpi

(d(pi, h j) + d(h j, sk))

Algorithm for min δ

1. Sort all the delays from client i to server j through hub h
in increasing order, denote this array A

2. Binary search to find the min delay difference for each A[i]:
for each delay A[i]

le f t = Dmin, right=Dmax
while(le f t not equal right)
δi = (le f t + right)/2
Li = greedycover(A[i], δi, m, G, {d(u, v)})
if (|Li | > M) le f t = δi
else right = δi

3. pick Li with smallest (δi,A[i]) in terms of
lexicographical order.

Figure 3: The pseudo-code of hub placement algorithm
The IP formulation for this problem is given as follows.

min δ

s.t.
∑

j∈VH
y j ≤ M (1)

xi j ≤ y j,∀pi ∈ VP, h j ∈ H (2)∑
j∈VH

xi j ≥ m,∀pi ∈ VP (3)
di jk xi j ≤ Dmax,∀pi ∈ VP, h j ∈ Hpi , sk ∈ S pi (4)

(di jk − di′ j′k′)(xi j + xi′ j′ − 1) ≤ δ
∀pi, p′i ∈ VP, h j, h′j ∈ Hpi , sk, s′k ∈ S pi (5)

y j = {0, 1}, xi j = {0, 1} (6)

δ denotes the delay difference defined above. y j = 1 denotes
router hi is a hub, 0 otherwise. xi j = 1 denotes router h j is a hub
for client Pi, 0 otherwise. We use the short hand notation di jk for
d(pi, h j) + d(h j, sk). Equation (1) is the constraint that the total
number of hubs can not be more than M. Equation (2) means that
each client can only select its hubs from the hub set. Equation (3)
is the constraint that a client must have at least m hubs. Equation
(4) is the constraint that the maximum delay can not be more than
Dmax. Equation (5) specifies that pair-wise delay difference can not
exceed δ. Equation (6) indicates that y j, xi j are binary variables.
Note that Equation (4) takes effect only when xi j = 1 and xi′ j′ = 1,
otherwise, the constraint is trivially true.

3.2 Greedy Hub Placement Algorithm
The optimal solution for the hub placement algorithm is hard

even for a small network graph since the time complexity is ex-
ponential in the number of hub candidates. We have proved that
the hub placement problem is NP-hard and it is hard to find good
approximations.

To solve the greedy hub placement problem we design a simple
greedy heuristic algorithm to pick the M hubs. Given two solutions,
i.e. two sets of M hubs, if the overall maximum delay difference is
the same, we favor the one with smaller minimum delay. Our algo-
rithm sorts the delay in increasing order. For each possible delay
Ai, we set it to the minimum delay experienced by nodes in a solu-
tion. We use binary search to find a feasible solution with smallest
maximum delay difference δi. In each step of the binary search,
given a minimal delay A[i] and a maximum delay difference bound
δi, we use a greedy set cover algorithm to pick the M hubs. That
is, we pick one hub at a time; the selected hub “covers” (connect
clients and servers through the hub) the maximum number of un-
covered client edge routers. If m > 1, each client edge router has
to cover m times. The pseudo-code of the algorithm is illustrated
in Figure 3. Dmin denotes the minimal delay difference among all
paths from client i to server j through hub h. Recall that Dmax de-
notes the maximum tolerated delay difference. We pick the solution

with minimal δi. If there is more than one solution, we pick the one
with smallest min delay among them.

4. EXPERIMENTAL EVALUATION
The performance of our LEQ routing architecture is evaluated by

both static and dynamic analysis on provider network topologies.
In the static case we only consider propagation delays. For the
dynamic case we consider a rate varying traffic matrix where the
offered load on the links could approach the maximum link capacity
over short periods of time. The performance of the LEQ scheme is
compared with that of OSPF.

4.1 Simulation Setup
For our network simulations we use large ISP network topolo-

gies, obtained through the Rocketfuel project [15]. In this paper,
we show the evaluation result for Telstra network with 97 nodes
and 132 links1. For the dynamic case we consider the Abilene net-
work topology [1].

Our evaluation uses several parameters that define the Hub rout-
ing architecture: the total number of hub nodes M, the number of
hub nodes selected for each client m, the number of servers in the
network NS , and the number of servers allocated for each client r.
The performance metric is the delay difference δ, which means the
maximum difference in delay among all the paths selected.

We use all the edge nodes in the backbone topology as clients.
We then run the hub routing and shortest path routing algorithms
to compute paths for these clients and servers. Note that in the
static case the path computation is based on the propagation delay
in the network. The propagation delay is estimated based on the
geographical distances between any two nodes. In the shortest path
routing algorithm we associate the link weights with the propaga-
tion delay of these links. To eliminate the bias introduced by server
location, we test all the possible locations of the servers; For in-
teractive applications delay is not as critical as delay difference, as
long as we bound the absolute delay with Dmax = 100ms [5].

4.2 Static Analysis
Using the static traffic scenario we analyze the effect of propaga-

tion delay, and explore the potential of discovering LEQ paths.
(1) Hub-routing achieves on average 80% improved LEQ as com-
pared with shortest path routing. Figures 4, 5 show the average
delay difference between all the client paths to any one server for
both LEQ routing and OSPF. In both network topologies we find
that LEQ routing with a single hub per client (m = 1) improves the
LEQ (84% for Telstra and 90% for Abilene) over OSPF. Also the
best performance for LEQ routing is achieved when the number of
hubs per client (m) is set to 1. As the number of hubs per client in-
creases we find that due to the increased path diversity the average
delay difference increases. However, even with 3 hubs per client
the performance of LEQ routing is significantly better than OSPF.
We also experimented with multiple servers, and found that LEQ
routing provides similar improvements in delay difference 2.
(2) Hub routing is incrementally deployable; A few hub nodes is
sufficient to obtain LEQ paths. We calculate the delay difference
improvement of LEQ routing over OSPF ∆:

∆ =
δOS PF − δhub

δOS PF
(7)

We see that in all topologies, even with one hub, LEQ routing gains
at least 22% (41% on average) improvement in delay difference.
1The results of other networks are omitted due to page limitations
2This result is omitted due to page limitations

0 2 4 6 8 10
Number of Hubs (M)

0

5

10

15

20

25

30
D

el
ay

 D
if

fe
re

nc
e

(m
s)

OSPF
LEQ routing (m = 1)
LEQ routing (m = 2)
LEQ routing (m = 3)

Figure 4: Delay difference of Telstra net-
work

0 2 4 6 8 10
Number of Hubs (M)

0

10

20

30

40

50

60

D
el

ay
 D

if
fe

re
nc

e
(m

s) OSPF
LEQ routing (m = 1)
LEQ routing (m = 2)
LEQ routing (m = 3)

Figure 5: Delay difference of Abilene net-
work

0 2 4 6 8 10
Number of Hubs (M)

0

5

10

15

20

25

30

35

D
el

ay
 (

m
s)

OSPF (max delay)
OSPF (avg delay)
OSPF (median delay)
LEQ routing (max delay)
LEQ routing (avg delay)
LEQ routing (median delay)

Figure 6: Average and max delay of Tel-
stra network (m = 3, NS = 1)

When the number of hubs is above 5, we are able to achieve up to
90% improvement.

We also note that in all topologies increasing the total number of
hub nodes in the network to more than 5 does not provide any sig-
nificant improvement in the delay difference measurements. This
suggests that even with varied topologies (Telstra with 97 nodes
and Abilene with 11 nodes) LEQ routing architecture only requires
a few hub nodes to be placed in the network. Since traffic requiring
LEQ is only a small percentage of the total network traffic, a few
hub nodes are sufficient to obtain latency equalized paths.
(3) We trade the delays of clients with shorter paths with the
overall delay difference of the applications. The simulation study
shows that LEQ among multiple clients is best achieved through the
LEQ routing architecture. Figure 6 provides a clear understanding
of how this is accomplished. It shows the maximum, average and
median delay of the selected paths for both OSPF and LEQ rout-
ing with number of hubs per client set to 3 in the Telstra network.
We see that LEQ routing achieves smaller delay difference at the
expense of increasing the average delay of shorter paths in the net-
work. However, the maximum delay among these paths is similar
to that obtained with OSPF. The increase in average delay mainly
comes from the increase in latency of the shorter paths. Delay is
not as critical as delay difference, as long as we bound the abso-
lute delay with Dmax = 100ms [5]. This observation highlights the
philosophy behind LEQ routing: storing packets on network paths
rather than buffering them at the end points reduces the delay dif-
ference between the clients.

4.3 Dynamic Analysis
In this section we show that even under dynamic traffic condi-

tions with queuing as a critical factor, LEQ routing achieves much
smaller delay differences than OSPF. In a typical service provider
network, links are usually maintained at below 50% utilization.
However it has been observed that in the presence of bursty or long
range dependent traffic, it is possible that in certain time scales the
average utilization could be close to 90% - 95% of the link capacity.

Simulation model: We implemented LEQ routing as a new ap-
plication in ns-2 for packet-level simulations. In this application,
we have two classes of packets: packets of background traffic and
probing packets. The background traffic denotes traffic of all the
other applications in the network. Since traffic requiring LEQ is
much smaller than background traffic and will not influence the
network conditions, we do not simulate them explicitly in our ex-
periment. Instead, we use small probing packets that go through
hub routing paths and measure the actual latency experienced by
these packets. To force some of the probing packets to go through
hub routing paths, each client node marks the probing packets with

the address of the destination node and sends them to a hub node.
The hub node is selected in a round robin schedule from among
the m hubs allocated to the client through the hub placement algo-
rithm. Upon receiving the probing packets, the hub node looks up
the destination server from the packet and redirects it to the destina-
tion node. For comparative purposes, we also send probing packets
through shortest path routes computed using Dijkstra’s algorithm
with the delay metric.

For the dynamic analysis we use the Abilene network topology.
The delay metric is obtained using the propagation delays on each
of the links. We use a single server that is located at Washington
D.C. All the 11 edge nodes have clients. The bandwidth capacity
of each link in Abilene is fixed at 10 Mbps.

Background traffic model: We generate real background traffic
matrices by analyzing packet traces of Abilene Netflow data [1] and
scale them down by 1000 times, to fit with our 10Mbps link capac-
ity, since Abilene bandwidth is 10Gbps. Additional traffic is added
to the link between Denver and Kansas City thus progressively cre-
ating a bottleneck at this link. The size of the probing packet is
48 bytes, which is similar to the size of general UDP packets in
gaming applications [10].

5 6 7 8 9 10 11 12 13 14 15
Amount of Traffic on the Hot Spot Link (Mbps)

0

100

200

300

400

D
el

ay
 D

if
fe

re
nc

e
(m

s)

OSPF
LEQ routing (m = 1)
LEQ routing (m = 2)
LEQ routing (m = 3)

Figure 7: Abilene network: Single bottleneck link

Simulation result: Figure 7 shows the real time evolution of
the delay difference of hub routing and shortest path routing with
increasing load on the hot spot link between Denver and Kansas
City. When the amount of traffic on this link approaches the ca-
pacity of the link, both OSPF and LEQ routing with m = 1 expe-
riences significant queuing delay. Using LEQ routing with m = 2,
or 3 we maintain the delay difference due to path diversity. When
the amount of traffic continues to increase, packets from different
clients are also influenced by this heavy traffic, and thus the delay
difference among all the clients decreases in both cases: OSPF and
LEQ routing with m = 1. From this study we show that with 2 or

3 hubs per client, LEQ routing can get around transient congestion
in the network and reduce the corresponding queuing delay.

5. RELATED WORK
There are several architectures that are being proposed to build

programmable routers [16], [14], [7]. A common theme in all these
architectures is the separation of the control and forwarding plane.
The implication of this separation from the perspective of defin-
ing new routing services is that within the switch architecture it is
possible to allocate computing resources to implement application
specific routing protocols and packet processing. Thus it is possi-
ble to place both the conventional low latency routing and the LEQ
routing service in the same physical infrastructure. Furthermore
through virtualization of the data plane we can identify and sepa-
rate packets from different services and subject them to customized
packet processing.

The availability of flexible network architectures will usher in
the era of application customized networks such as networks for
online gaming and online distributed live music concerts. Network
support for such real time services is a relatively new topic since the
scalability of these services has only recently become a significant
issue. In [6] the authors provide the motivation for network support
and design a game booster box that is a network-based game plat-
form. The goal of the booster box is to off load network functions
such as monitoring from the game server.

In most real time applications there are two important service
metrics: an upper bound on the maximum latency that can be toler-
ated and the latency difference between the interacting users of the
service. Maximum latency bound can be attained by the conven-
tional routing architecture. However the requirement of equalizing
latency among a group of users is more challenging. In [18] Zan-
der et al. show that fairness in multi-player games is affected by the
delay difference between players and propose a scheme by which
the delay corresponding to the largest latency player is estimated
and the application tries to even up every client’s experienced RTT
by adding flow-specific additional latency to each active game flow.
In this approach there is a significant overhead of measuring flow-
specific delays. In [3] the authors show that for online distributed
live music concerts, despite significant enhancements to the hard-
ware and software of end-systems, the inconsistencies in network
delay perceptibly affects the quality of the music. The authors sug-
gest that impairments from network delay can only be addressed by
influencing packet routing in the network. Using the LEQ routing
architecture the application network can be customized to use LEQ
paths as the default routing strategy. Such an approach will provide
more predictability to the delay variance and also will not require
any flow specific monitoring.

To the best of our knowledge, LEQ has not been studied from a
purely network perspective. Also there are no known theoretical re-
sults aimed at optimizing latency difference in the network, nor are
there any routing architectures that have been proposed to solve the
latency equalization problem. Previous work focused on reducing
delay in the overlay network (e.g. RON [4]), or reduce bandwidth
cost with bounded delay (e.g. VPN tree routing [12]). The pro-
posed LEQ-routing architecture involves the optimal placement of
hub nodes to achieve LEQ paths in the network. Previously Cha et
al. [8] proposed placing relay nodes in the intra-domain network,
but their algorithm aimed at reducing cost, not the delay difference.

6. CONCLUSION
Real time applications such as online gaming and online live dis-

tributed music performance require Latency EQualization (LEQ)

among participating users. This paper proposes a LEQ routing ar-
chitecture, which uses a few flexible, well-placed programmable
routers to redirect application traffic. Our evaluation shows that
with the simple addition of a few programmable hub nodes it is
possible to achieve LEQ routing and support low latency routing
service at the same time. These programmable hub nodes can also
provide application packet identification, application level packet
processing and application customized routing.

The main features of the proposed programmable LEQ-routing
architecture is the configurable deflection of packets at the edge
nodes and the flexible control and packet handling at the interme-
diate nodes. These features will help service providers to easily
define new network services, enable incremental deployment and
reduce the time to market of new services. It is also a cost effective
solution for trial deployments since the services are being config-
ured over the same physical substrate network.

7. REFERENCES
[1] http://abilene.internet2.edu/.
[2] A. Abdelkhalek and A. Bilas. Parallelization and performance of

interactive multiplayer game servers. 2004.
[3] A.Kapur, G. Wang, P. Davidson, and P. R. Cook. Interactive network

media: A dream worth dreaming? In Organized Sound, 2005.
[4] D. G. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris.

Resilient overlay networks. In Proc. Symposium on Operating
Systems Principles, Banff, Canada, 2001.

[5] G. Armitage. An experimental estimation of latency sensitivity in
multiplayer quake 3. In Proceedings of the International Conference
on Networks, 2003.

[6] D. Bauer, S. Rooney, and P. Scotton. Network infrastructure for
massively distributed games. In ACM NetGames, 2002.

[7] S. Bhatia, M. Motiwala, W. Muhlbauer, V. Valancius, A. Bavier,
N. Feamster, L. Peterson, and J. Rexford. Hosting virtual networks
on commodity hardware. Technical Report GT-CS-07-10, Georgia
Tech, 2007.

[8] M. Cha, S. Moon, C.-D. Park, and A. Shaikh. Placing relay nodes for
intra-domain path diversity. Proc. IEEE INFOCOM, 2006.

[9] C. Diot and L. Gautier. A distributed architecture for multiplayer
interactive applications on the internet. IEEE Network Magazine,
1999.

[10] J. Farber. Network game traffic modelling. In ACM NetGames, 2002.
[11] A. Greenwald, J. Kephart, and G. Tesauro. Strategic pricebot

dynamics. First ACM Conference on E-Commerce, 1999.
[12] A. Gupta, J. Kleinberg, A. Kumar, R. Rastogi, and B. Yener.

Provisioning a virtual private network: A network design problem for
multicommodity flow. In Proc. ACM Symposium on Theory of
Computing, 2001.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling innovation in campus networks. In Computer
Communication Review, 2008.

[14] R. Ramjee, F. Ansari, M. Havemann, T. V. Lakshman,
T. Nandagopal, K. K. Sabnani, and T. Y. C. Woo. Separating control
software from routers. COMSWARE, 2006.

[15] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with Rocketfuel. Proc. ACM SIGCOMM, August 2002.

[16] J. Turner. A proposed architecture for the GENI backbone platform.
In ACM ANCS, 2006.

[17] S. Zander and G. Armitage. Empirically measuring the QoS
sensitivity of interactive online game players. Australasian
Telecommunication Networks and Applications Conference
(ATNAC), December 2004.

[18] S. Zander, I. Leeder, and G. J. Armitage. Achieving fairness in
multiplayer network games through automated latency balancing.
Advances in Computer Entertainment Technology, 2005.

[19] H. Zhang. The effect of delay on network games. Master’s thesis,
Computing Science, UMEA University, Sweden, 2006.

