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ABSTRACT

Each access point (AP) in a WiFi network must be assignedracha
nel for it to service users. There are only finitely many palssi
channels that can be assigned. Moreover, neighboringapoets
must use different channels so as to avoid interferencereGily
these channels are assigned by administrators who carefutt
sider channel conflicts and network loads. Channel conflitisng
APs operated by different entities are currently resolvedn ad
hoc manner or not resolved at all. We view the channel assghm
problem as a game, where the players are the service pre\addr
APs are acquired sequentially. We consider the price ofcayar
of this game, which is the ratio between the total coveraginef
APs in the worst Nash equilibrium of the game and what thd tota
coverage of the APs would be if the channel assignment ware do
by a central authority. We provide bounds on the price of @mnar
depending on assumptions on the underlying network and/gee t
of bargaining allowed between service providers. The key ito
the analysis is the identification of the Nash equilibriahvilie so-
lutions to a maximal coloring problem in an appropriate grayye
relate the price of anarchy of these games to the approximéc-
tor of local optimization algorithms for the maximukacolorable
subgraph problem. We also study the speed of convergenlceda t
games.
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1. INTRODUCTION

802.11 Wireless LANs, commonly known as WiFi, provide wire-
less network access to subscribers. They have been depiloyed
public hotspots, ranging from airports to hotels to Stakisucof-
fee shops. Fueled by the growing usage, service providess ha
been planning to provide wireless network access that sdaeger
areas. For example, Verizon has deployed WiFi for hundréds o
hotspots in New York City [21] and MeshNetworks Corporation
has been deploying city-wide WiFi networks to facilitatevlan-
forcement and emergency response in cities such as Medoed,
gon [16] .

To understand the issues of interest to us, we need to briefly
review some relevant details of 802.11 wireless LANs. (e [
for further details.) An 802.11 network consists of a setafess
points (APs). Each AP must be configured with a fixed transmis-
sion power. There is a constant number of possible trangmiss
powers to choose from. Users can then access the Internenfoy ¢
municating with their provider's APs using the 802.11 aitein
face. Each AP must be assigned a channel (i.e., a frequeatit th
transmits on) for it to service users. There are a small nurobe
non-interfering channels; for example, 802.11b and 8Q@Rd4ch
have 3 such channels and 802.11a has 11. A user within an AP’s
coverage area then uses this channel to communicate withRhe
Channel access between users of the same AP is arbitrated by a
media access control protocol (MAC). For example, in the DCF
model of the 802.11 MAC protocol, if a user determines that th
media is free, it sends a request to send (RTS) message; the AP
replies with a clear to send (CTS) message; users that esttés/
message will defer media access on that channel for longgértou



0= Max{Rs(u), Rs(v)},user 1 and 2 interfere with each other! information it has is the APs that currently exist. For exé&mnpup-

pose that there is only one service provider and there ares3 AP
v1, v2, andvz, which are placed so that interferes with each of
v andvs, butv; andvs do not interfere with each other. If there
is only one color and is acquired first, then the provider should
choose not to give it a channel, since that will prevent itrfrgiv-

ing a channel ta; andwvs. But, for simplicity, we assume that the
service provider must choose a channeldgras soon as it is set
up.

The utilities of the service providers depend on how manyaise
they can serve. We assume that there is a commonly knowir distr
Figure 1: Potential interference between two APs. bution of users. The utility to a service provider of settingan
AP « that is assigned a channel is the expected number of users
in R:(u); if AP w is not assigned a channel, then its utility to the
service provider is 0. The utility of a provider at the end a@feane
is just the sum of the utilities of the APs that it sets up.

A socially optimalassignment is one where the maximum num-
ber of users can be served. We would expect that a centradrityth
would assign channels in a way that leads to a socially optsa
signment. Of course, there is no reason to believe that ttiallso
optimal assignment is the one that arises in this game. Qeneist
is in seeing how far away we are from this assignment. In the la
guage of Koutsoupias and Papadimitriou [14], we are intedeis
investigating theprice of anarchy

We can represent the game using a labeled g@ph (V, E),

guarantee that there is no interference with the user’s agessro
avoid interference in the wireless media between nearby akiels
their users, nearby APs must use different channels.

In more detail, we can associate with each#Rvo circular re-
gions around it (see Figure 1). The smaller circle, dendted:),
represents.’s transmission rangeAll messages sent by can be
correctly received by users iR:(u). The larger circle, denoted
Rs(u), represents:’s sensing range In practice, the radius of
Rs(u) is about twice that ofR:(u). The actual size ofR,(u)
and R:(u) depends on the transmission power used:byAP u’s
transmissions will interfere with the transmission of ARaueers . . .
within R (u) if they share the same channel. To avoid such inter- yv_here the vertices W are the APs, and two vergcesgndv are
ference, the distane&u, v) between: andv has to be greater than joined by an edge if they potentially interfere, i.e.dfu,v) <
Re(u) + Re(v) + max{Rs(u), Rs(v)}. Thatis, if APsuandvare ~ 10¢(1) + Fe(v) + max{Rs(u), Rs(v)}. Each vertex also has a
greater tharR, (u) + Ry (v) + max{ R (u), Rs(v)} apart, they can label, Wh!Ch represents the utlllty of the AR associated whitat
fransmit using the same channel, since then no uses ansmis- yertex being assigned a chann@lis called thanterference graph
sion range will be able to sense a message froon its users, and induced t_)y the_game. . _
vice versa. In Figure 1, user 1 of APis within the sensing range There is .ObV'OUSIV a clgse con.nectlon petween assigning-cha
of user 2 of APv. When AP transmits to user 1, user 2, which nels to vertices and coloring the mc_iuced mter_ferencefgrémp-
is outside of the:’s sensing range, may think the media is free. If pose that there gﬂechannels. Cpn&derlacolonng of the graph,
user 2 then transmits on the same channel &s transmission will I.., an association o_f some vertices to colors such thaanjacent
prevent user 1 from correctly decodintg transmission. edges are Iabe_led with different colors. Clearly this cspomnds to

Currently, APs are statically configured with a channel by ad a feasible assignment of channels to APs. All APs that are as-

ministrators who carefully consider channel conflicts aativork signed colo_rs can_safely communicate on the channe_l assddia
loads. Channel conflicts among different entities are wesbin the color without interference. The APs that are assigneltba-c

an ad hoc manner or not resolved at all. We model the channel nel in a Nash equilibrium of the game correspond to a maximal

: . subset of vertices that has been colored wittolors. Amaximal
SrSS\I/?; er?Se_ n;grsoglzrze?is grag;eqh}/;lgde rEyt: :r\s)ilcag E:iﬁ;;g‘;f e k-coloreq subsebf t.he induged graph is defined t.o. be a subset of
tially. When an AP is set up or acquired, a channel must beechos nodes with a specific coloring such th‘_'"t no additional nodes c
that does not interfere with the channels chosen for APsithad be colored: If there are any other vertices in the graph that. can
previously set up; if there is no such channel, the AP caneot b be colored, then the corresponding AP should have beemasisiy

used! The order that the APs are set up is determined exogenouslnyhannel' Cor;]vether,.givel\r; arr]naxir!ili%l:(.)lore(: tsﬁbset ofthe intetr-
(that is, by some agency outside the game, not the servigelprs erence grapn, there Is a Nash equiliorium ot the game winerse

themselves) and is arbitrary. For example, service proviaeight are precisely the_ APs that are a35|gn_ed achannel. In partiduis
set up 5 APs before service provider 2 sets up any. We assumeWIII be the case if the APs in the mfinmaI setare set up befoye a
that when a service provider sets up an AP, it knows about B A othe_r APs are set up. Thus, there is a 1-1 Co”espond‘?.”‘??mtw
that have already been set up and might interfere with itweutio maximal k-colored subsgts of th? graph gnd Nash equilibria of the
not make any assumptions about what the service providens kn game. Moreover, a socially optlr_nal as&g_nment cqrrespdmdgs
about other APs that have already been set up. For simpledy mammglk:-colored subset of maximum weight (that 1S, a maximal
also assume that when a service provider sets up an AP, it doesl“c'COIorIng where the sum of the weights of the vertices that ar

not know what APs will become available in the future. Theyonl c_olored IS maxnm_um). Thus, t_he price OT anarch_y s S|mply_rme
tio of the total weight of a maximak-coloring of minimum weight

to thek-coloring of maximum weight. Given the close connection
betweenk-colorings and Nash equilibria, we speak in the rest of

1We are implicitly assuming here providers follow the “sdcide”
of not assigning a channel to an AP if it interferes with tharatel
already assigned to another AP. This social rule can easiiynb
posed and enforced by a government agency such as the FCE. If w ?Note the distinction between maximatcolored subgraph and
do not make this assumption, then we must define the utility to maximal k-colorable subgraph. A maximatcolorable subgraph
service provider of owning an AP whose communications fater is a subset of nodes that can be colored witholors such that
with those of another AP, and discuss how providers bargaen o the subset is not a proper subset of anotfiveplorable subgraph.
spectrum allocation in this case. Whenk = 1, the two definitions are identical.




the paper often of “vertices” and “colors” rather than “ARsid
“channels”.

It is not hard to show by example that, in the general case, the
coverage of the APs in the network that results after chanamel
chosen can be arbitrarily far from socially optimal; thatke price
of anarchy is unbounded. However, we can do better if we assum
that users are uniformly distributed and all APs must usesémee
transmission power. The interference graghs then aunit disk
graph: two vertices: andv are joined by an edge iff(u,v) <
2R: + Rs, whereR; and R; are the common transmission and
sensing ranges, respectively, of all APs. (We are impjitiaking
2R: + R, to be the “unit” here.) (We remark that the interference
graph for 802.11 wireless networks is often modeled as adislit
graph [3].) Moreover, the utility of a provider is propontial to
the number of APs it sets up which are assigned a channelisin th
case, we can show that the price of anarchy is at least 5 andsit m
5 + max(0, (k — 5)/k), wherek is the number of channels. In
particular, it follows that if there are at most 5 channefgrt the
price of anarchy is 5.

Because providers are forced to assigh a channel to an AP a
soon as it is set up, a provider may be able to do better just by
changing the assignment to APs it controls. (This is alrezdgr
from the example given above where one provider contrg|:2,
andvs.) It certainly seems reasonable to allow providers to chang
the channel assignments of APs that it controls. We assuahthib
is always possible in the remainder of the paper. Serviceigecs
may also be able to negotiate changes to assignments ofegerti
they control that are mutually advantageous. We are péatigu
interested in what we calt-buyer-n-seller bargains where the
m sellers uncolor certain vertices in exchange for paymemn fi
buyers. (Some of the buyers may also be sellers.) The typdwesrof
gains we consider improve the total weight of the coloredicves
(otherwise the changes will not be of benefit to both buyers an
sellers). We are interested in the question of how closedlirairg
can bring us to a socially optimal assignment. In generalgxe
pect it to be hard to negotiate arrangements involving marygts
and sellers. (By way of analogy, in sports, player trade&ally
involve two teams; trades involving more than two teams aiteq
rare.) We start an investigation of this issue in this pajyesxtam-
ining two limited types of bargaining situations, that wgest can
be implemented relatively easily in practice.

e The firstis a generalization of the situation describedithjt
with APswv1, v2, andvs. If vs is colored (i.e., has a channel
assigned)p; andwvs are not,u; andwvs could be colored if
vz were not colored, and the sum of the weightwpfand
vs is greater than the weight ef, then we assume that the
providers that own APs; andvs can always offer the owner
of vy sufficient utility (in terms of, say, money) so that is
uncolored, while still themselves coming out ahéatle do
not go into the details of exactly what the offers are. Allttha
matters is that, in equilibrium, the exchange will be made
(i.e., v2 will be uncolored and); andwvs colored). We call
this alocal 2-buyer—1-seller bargain

The second occurs if an AP is uncolored but its weight is
greater than the sum of weights of all its neighbors of a par-
ticular color. In this case, we assume that the owner of that
AP can offer the owners of the interfering APs sufficient-util
ity so that the interfering APs will be uncolored. Again, we
do not go into the details of exactly what the offers are. We

3For this to be true, we must assume that the utility of monelyds
same for all players.

call thislocal 1-buyer—multiple-seller bargairNote that al-
though many sellers may be involved, this really is a col-
lection of 2-way arrangement, since the buyer can negotiate
separately with each of the sellers.

By allowing such bargains, we are effectively excludingtaier
Nash equilibria; thus, the price of anarchy may go down. \Wwsh
that if local 2-buyer—1-seller bargains are allowed, thethe case
that users are uniformly distributed and the power of all ARbe
same, the price of anarchy is at m@s# max(0,1 — 3/k) and
at least 3. Moreover, if users are not uniformly distribuéed the
transmission power of APs is the same, then if a 1 buyer — mul-
tiple seller bargains are allowed, the price of anarchy imast
5 4+ max(0, (k — 5)/k) and at leass.

In all these results, we assumed that the power with whichRan A
transmits is fixed, and not under the control of the servicowiger.
If the service provider can choose the transmission powan fr
among a finite set of possible transmission powers, we knaiv th
the price of anarchy is still unbounded, but if we allow lodal

ﬁbuyer—m-seller bargains, the price of anarchy is at mostdadn

east7/(1 + ¢) if users are distributed uniformly. However, the
price of anarchy is still unbounded for local 1-buyer—nlesebar-
gains if users are not distributed uniformly. Interestindglargains
covering constant-sized geometric regions do give us adeilin
price of anarchy.

We also consider the speed of convergence to a Nash equifibri
in different variants of spectrum sharing games. We proa ith
some special cases players converge to a Nash equilibriten af
polynomial number of steps. But in the general case, we shatv t
there exists an exponentially long path of improvementsNash
equilibrium.

The rest of the paper is organized as follows: In Section 2jeve
fine formally the relevank-colorability problems and apply some
standard results from the literature ércolorability to spectrum
sharing. In Section 3, we prove our main results on the price o
anarchy. In Section 4, we examine how long it can take to ageve
to a Nash equilibrium. We discuss related work in Sectionns, a
conclude in Section 6.

2. GRAPH-THEORETIC PRELIMINARIES

As we observed in the introduction, there is a close conoecti
between our spectrum-sharing game dndolorability. We for-
mally define the:-colorability problem here, review some standard
results on the problem, and show how they apply to the spaetru
sharing game.

DEFINITION 2.1. Given graphG = (V, E), themaximum in-
ducedk-colorable subgrapMax k-CIS problemis that of finding
a k-colorable subgraph ofy with maximum number of vertices.
(Recall that a graph isk-colorable if it is possible to color the
nodes in such a way that no two adjacent vertices are coloigd w
the same color.) If for each vertex of the gra@ghwe are given a
weightw(v), thenweighted Max k-CI Sis the problem of finding a
k-colorable induced subgraph whose total weight is maximum.

It is well known that deciding if a graph is-colorable is NP-
complete [8]. It follows that there is unlikely to be a polynial
time algorithm for finding an optimal channel assignmengreif
one player owns all the APs. Indeed, it is hard to even approxi
mate an optimal solution to thdax k-CIS problem. More pre-
cisely, recall that thenaximum independent set probléitax-1S)
is that of finding a set of vertices of maximum cardinality aHi
are pairwise nonadjacent. It is known that the problem ofaxip
mating theMax-IS to within a factor better tha(n'~) (that is,



the problem of finding a set of vertices in a graph witlvertices
which are independent and whose cardinality is within aofialsét-
ter thanQ(n'~¢) of a maximum independent set in the graph) is
NP-complete [11], and that the problem of finding an appraxim
tion to Max k-CIS is just as hard as that of finding an approxima-
tion to the maximum independent set, for any fixefd 2].

The situation is somewhat better for unit disk graphs (wiimh
respond to the situation where all APs transmit with the steares-
mission power and users are uniformly distributed).

THEOREM 2.2. There is al.582-approximation foMax k-CI S
in unit disk graphs.

The proof follows from two facts: (1) we can reduce the proble
of approximatingMax k-CIS to that of approximating/ax-IS and
(2) there is a polynomial-time approximation schemeNt6 in
unit disks [18]. Thus, even if some entity could assign cledsn
and was trying to do so in a way that maximizes potential ushge
best we can hope for even in the special case that all APsitians
with the same power and users are uniformly distributed igeto
an assignment that is within a factor of roughly 1.5 of optima

3. THE PRICE OF ANARCHY

In this section, we prove that the price of anarchy is unbednd
in the basic spectrum-sharing game for arbitrary graphsn éiv
players are computationally unbounded. We then show tleat th
price of anarchy is bounded in unit disk graphs. Finally, wa-c
sider the extent to which allowing bargaining helps imprave
price of anarchy.

Before proving these results, we prove a general resultahat
lows us to reduce to games where there is only a single comfel
available. This allows us to simplify a number of argumeMsre-
over, since a 1-coloring is just an independent set, thallto
apply results about th®lax-I1S problem. This result applies for
all types of bargaining we consider. The key observatiore lier
that the various types of bargains allowed impose consgraimthe
structure of an optimal coloring. For example, if we consithe
weighted case and allow 1-buyer—multiple-seller bargahen we
do not allow solutions where a vertex is uncolored but haatgre
weight than all of its neighbors of a given color.

THEOREM 3.1. Suppose the price of anarchy if there is only
one channel for a spectrum-sharing game that allows a cetige
of bargaining isp. Then, for allk, the price of anarchy for the same
game withk: channels is at mogt+max (0, 1—p/k) and at leasp.

PrROOF. For the lower bound, suppose tltats an interference
graph where the price of anarchy 4§ Thus, there are maximal
independent subsels andY of G such thatv(X) = p'w(Y). We
construct a graph where, even witrcolors, the price of anarchy
is p’. The idea is to replace each vertexGhwith k copies of
that vertex at the same location. Then there is a Nash equitib
that involves coloring each of the vertices that corresponds to a
vertex inX a different color, and similarly fo¥". Thus, the price of
anarchy in the game with colors is stillp’. Of course, we cannot
set upk APs on top of each other, but we can achieve the same
effect as follows. Suppose that we have a setting of APs ésaits
in the interference grapy. Note that there must be ar> 0 such
that if all distances are contracted by a factof bf- ¢), G would
still be the graph corresponding to the resulting placeréAts.
Now replace each AP by a cluster bfAPs on the circumference
of a circle of radiuse/2 around the original AP, and we get the
required graph.

For the upper bound, IeX consist of the colored vertices in a
Nash equilibrium to the given spectrum-sharing game, waitlorc
classesXi,..., Xx. LetY be the vertices in a socially-optimal
solution, with color classe®, ..., Y. LetC =X NY,letY’' =
Y \C,andlety; =Y NnY;, fori=1,... k.

Observe that, for alf and j, the X; \ Y; must a maximal in-
dependent subset in the subgraphGfinduced by the vertices
(X; \ Y;) UY/. Clearly the vertices itX; are independent, since
they are all in the same color class. And if there are no edges f
some verteyy € Y; to all the vertices inX; \ Y;, then there are no
edges fromy to any vertex inX; (since there are no vertices fram
to any vertex inY;, since they are all in the same color class). Then
we can add; to X and color it with the same color as the vertices
in X;, contradicting the maximality oX. It follows that

Y7 < plX; \ Yil,

for otherwise the price of anarchy in the graphu X; with one
color is greater thamp, a contradiction. Summing up over it
follows thatk|Y;| < p|X \ Y;]. Summing up ovet,

k(') < 37 pu(X\ ) = plkuw(X) - w(C)).

Hence,
w(Y)

w(Y') +w(C) < pw(X)+ (1 - p/k)w(C)

as desired. [

We start by considering the basic spectrum game, without bar
gaining. Our first result shows that, in general, the pricarafrchy
in this game is unbounded, even if all vertices have equaiitei

PROPOSITION 3.2. The price of anarchy is unbounded in the
basic spectrum-sharing game, no matter how many channels or
players there are, even if all vertices have equal weight.

PrROOF First suppose thdt = 1. Consider a star graph, where
the center vertex is connectedrimther vertices. If the center ver-
tex appears first, then none of the other vertices can beezbldn
the optimal assignment, all the vertices other than theecemtrtex
are colored. Thus, the price of anarchy:isThe fact that the price
of anarchy is unbounded with colors follows immediately from
Theorem 3.1. O

Note that the star graph in Proposition 3.2 can be realizeakby
suming that the center vertextransmits with high power, while
the remaining vertices transmit with low power. We can thifik
the remaining APs as being placed on the circumference af a ci
cle with centerv. It is then easy to distribute the users so that all
vertices have an equal number of users, and hence equaltweigh

We can construct similar examples even if APs transmit viiéh t
same power (although in that case we must look at the weighted
coloring problem, since APs have different utilities). Hewer, we
cannot construct such an example if APs all transmit witrstrae
power and users are uniformly distributed.

To prove the result, recall that a graphrist 1-claw freeif no
vertex has more than neighbors in the graph, none of which are
connected to each other. Unit disk graphs are known to bawg-cl
free (see e.g. [15]).

THEOREM 3.3. If all APs transmit with the same power and
users are uniformly distributed, then the price of anarctiythe
spectrum-sharing game is at mdst+ max(0,1 — 5/k) and at
least 5.



Figure 2: An interference graph for which the price of anarchy
is 3 with 2-buyer—1-seller bargaining.

PrROOF By Theorem 3.1, it suffices to show that the price of
anarchy is 5 if there is one channel. This follows from thelwel
known observation that the size of a maximal independeninset
a 6-claw free graph is no more than a factor of 5 from the size of
the largest maximal independent set in a 6-claw free grapdl, a
a simple example showing that it can be 5, namely, a 6-claw fre
graph consisting of 6 vertices: a central vertex connedédather
vertices. The central vertex by itself is a maximal indepericset,
as are the other 5 vertices.[]

It follows from Theorem 3.3 that fok < 5, we have a tight
bound of 5 on the price of anarchy in unit disk graphs.

We now consider what happens if we allow bargaining. Our first
result shows that if all APs transmit with uniform power, tssare
uniformly distributed, and we allow 2-buyer—1-seller k&irgng,
then the price of anarchy drops to at most 4.

THEOREM 3.4. If all APs transmit with the same power, users
are uniformly distributed, and 2 buyer—1 seller bargain ai-
lowed, then the price of anarchy of the spectrum-sharingey&mn
at most3 + max(0,1 — 3/k) and at leasB.

PrROOF. Forthe upper bound, it suffices by Theorem 3.1 to show
that the price of anarchy is 3 if there is one channel. Thiwed
from the analysis of local optimization for independent ise6-
claw free graphs of [13] (see also [10]).

The lower bound is attained by the construction of Fig. 2. The
9 dark circles correspond to vertices in a maximal indepensiet,
while the 27 light circles correspond to the optimal solntitdlote
that the set of 9 dark circles is stable with respect to 2-btiye
seller bargains, since two vertices have to be removed fin t
maximal independent set (i.e., uncolored) before any natexe
can be added. J

When users are not uniformly distributed, then the pricenafra
chy for the simple spectrum sharing game is not bounded,iEstn
APs transmit with the same power and we allow 2-buyer—Esell
bargaining. Indeed, we can show that the price of anarchydis u
bounded unless bargains involve at least(p, 7) sellers, where
is the number of players and the interference gragh is 1)-claw
free.

PrRoOPOSITION 3.5. If APs transmit with the same power but
users may not be uniformly distributed, then the price ofrelma
is unbounded unless bargains involve at leash(p, 7) sellers,
where p is the number of players and the interference graph is
(7 4+ 1)-claw free.

PrROOF By Theorem 3.1, we can assume without loss of gen-
erality that there is only one channel. Consider a star witkra
ter vertex of large weight and leaves of small weight that oc-
cupy a channel. The large-weight vertex cannot be bouglessnl
all 7 non-adjacent neighbors will be sold. The bound follows if
we assume that each of the vertices is controlled by a diftere
player. O

However, as we now show, if we allow 1-buyer—-multiple-selle
bargains, then the price of anarchy is bounded, even in tighteel
case, provided that APs transmit with the same power.

THEOREM 3.6. If APs transmit with the same power and 1-
buyer—multiple-seller bargains are allowed, then the prif anar-
chy of the spectrum-sharing game is at nost max (0,1 — 5/k)
and at leasb.

PrROOF This follows from Theorem 3.1, using a bound on sim-
ple weighted local improvements for maximum independetg se
in 6-claw free graphs [2]. The key point is that the “local impegev
ments” of [2] correspond to the result of a 1-player—mudtipkller
bargain. O

The requirement that APs transmit with the same power ik crit
cal in Theorem 3.6.

PrRoPOSITION 3.7. Inthe general case (where APs transmit with
different powers and users are not uniformly distributetgn the
price of anarchy of the spectrum sharing game is unboundest) e
if multiple-buyer—multiple-seller bargains are allowed.

PrROOF Consider a spectrum-sharing game with bargains in-
volving up tot buyers and arbitrary number of sellers. kebe
a large value. Consider a graph consisting of vertexf weight
p - t and transmission power corresponding to a circle of ragjus
verticesvy, . . ., vs, €ach of weighp and transmission power cor-
responding to a circle of radius 1; and vertiegs. . ., v5,, each
of weight 1 corresponding to a circle of radius 1. The sitais
illustrated in Figure 3. Note that the S6OPT = {v, v1, ..., v5,}
is a maximal independent set, and has weight+ pt. On the
other hand, the s&@PT = {v, ..., vsp} is an independent set of
weight5p?. Further note that OPT cannot be improved with any
bargain involving less that sellers. Hence, the price of anarchy
for this instance ip/(1 + t/5). By settingp large enough, we get
an unbounded ratio. Furthermore, this example involveg tmb
different weights and two different transmission powergl

What happens if we allow more general bargains? As we now
show, with sufficiently general bargains, we drive the potan-
archy arbitrarily close to 1. However, the bargains may vear-
bitrarily many players, which would makes the coordinatbom-
plexity unreasonable.

For a setX of vertices, letw(X) denote the sun_ . w(u)
of the weights of the vertices iX .

THEOREM 3.8. Suppose that distances have been normalized
so that, for any pair of nodes, v, we haveR;(u) + R:(v) +
max{R,(u), Rs(v)} < 1. Thus, two vertices, v such thatd(u, v)
> 1 do not have an edge between them in the interference graph.
Further suppose that bargains involving arbitrary sets eftices
within distancey/2d are allowed. Then the price of anarchy in the
spectrum-sharing game is at ma&t/(d — 1)*.



Figure 3: A family of interference graphs with unbounded
price of anarchy.

PrROOF Consider a network with induced interference graph
Suppose without loss of generality that there is one charlnet
LOPT consist of the vertices in a maximal independent subsét of
(recall that a maximal 1-colored set is just a maximal indeleat
set) after generalized bargaining, and@®T be the vertices in a
socially optimal independent set.

Consider al x d rectangleR with integer coordinates that is half-
closed in both directions (i.e., it contains all verticestfinterior
and on its right or top boundaries, but not the vertices obattom
and left boundaries). All vertices withiR are of distance at most
v/2d. Let R be the inned — 1) x (d — 1) rectangle obtained by
removing a unit-length strip from each side Bf This separation
ensures that no node withiR' interferes with nodes outsidg.
Since no generalized bargains are possible,

w(OPTNR') < w(LOPT N R);

otherwise, it would be profitable to b{pPTNR’)\ (LOPTNR)

and sel(LOPT N R) \ (OPT N R'). If we sum over all possible
d-by-d rectangles with integer coordinates, we count each node in
OPT exactly (d — 1)? times but each node iIhOPT exactly d*
times. Thus,

(d—1)*w(OPT) < d*w(LOPT),
as desired. O

If we assume that ownership is relatively local, so that fadl t
APs within a distancel of each other are owned by a relatively
small set of APs, this says that we can get a relatively snaiép
of anarchy. Obviously, aggets larger, the number of players likely
to be involved will increase.

We next consider what happens if users are allowed to choose
the transmission power of an AP. That is, when an AP becomes
available, a user chooses a channel for it (if one is avai)adohd
a transmission power, subject to not interfering with otblean-
nels. We then allow the same bargaining procedures (anduzs, u
allow players to make arbitrary changes among the APs tlest th
control). Essentially the same example as in the proof op&si
tion 3.5 shows that we need to allow multiple sellers in otdaget
a bounded price of anarchy in this case.

PROPOSITION 3.9. Even if users are distributed uniformly, in
the spectrum-sharing game with power control, the pricerafra
chy is unbounded unless bargains involve at leagi(p, 7) sell-
ers, wherep is the number of players and the interference graph is
(7 + 1)-claw free.

Our next result shows that if we allow multiple sellers, them
do in fact get a bounded price of anarchy.

THEOREM 3.10. If users are distributed uniformly and 1-buyer—
multiple seller bargains are allowed, then the price of aiteyr of
the spectrum-sharing game with power control is at most 9atnd
least? — ¢, for anye > 0.

PROOF As usual, we can assume without loss of generality that
there is one channel. Given a network with induced interfege
graphG, let LOPT consist of the vertices in a maximal indepen-
dent subset o7 after 1-buyer—multiple-seller bargaining, and let
OPT be the vertices in an independent set of greatest weight af-
ter bargaining. We divide the vertices@PT into two groups. A
vertex inOPT is smallif it interferes with at least one vertex of
greater weight irLOPT; otherwise it islarge. These two groups
are denoted aS(OPT') and L(OPT) respectively.

We prove this theorem using the following geometric lemma.

LEMMA 3.11. Letu be an AP in LOPT with transmission range
circle C. Let Ng (IN1) be the set of neighbors af in S(OPT)
(L(OPT)). Then the sum of the weights of nodesVig is at most
9 — | N | times the weight of.

PROOF. Letg be the ratio between the sensing and transmission
range radii, and lep = 1 + (3/2. We construct a sef of circles.
Around each small nodein Ng, draw a circle of radius: (v) +
Rs(v)/2 = ¢R¢(v). For each large node in Nz, draw a circle of
radius¢ R (u) with center at distanc2R; (u) + Rs(u) = 2¢R¢(u)
from v along the line fromw to w.

We claim that none of these circles hintersect. Suppose the
circles corresponding to nodesandw intersect. We consider here
the case when is small andw is large; the other cases are similar.
Then, the distance fromto w is bounded by

dv,w) < ¢Ri(v) + ¢Re(u) + (d(w,u) — 2¢R¢(u))
d(w, u) + ¢(Re(v) — Re(u))
= (Ri(w) + Rs(w) + Re(u)) + ¢(Re(v) — Re(u))
= Ri(w) + Rs(w) + Re(v) + B/2[Re(v) — Re(u)]
< Ri(w) + Rs(w) + Re(v).

Then,v andw interfere, and cannot both be contained in OPT, a
contradiction.

All centers of circles inS are within distanc@¢ R, (u) from w,
and all the circles are therefore contained within a cireletered at
w of radius3¢ R (u). This circle is(3¢)? times the area of’. The
fraction of the area used by transmission range circles isogt
1/42, or at most(3¢/¢)? = 9 times the area of’. Of that, the
circles in S that derive from nodes ity contribute| N | to the
factor. Finally, recall that our assumption is that weightaode
corresponds to the area of its transmission range cirdlé.

A large nodeu in OPT is larger than all the circles it intersects
in LOPT. ¢ From the local optimality of LOPT, for anyin OPT,
w(u) < w(N(u)). Let N (u) be the set of large neighbors in OPT

of nodeu. Thus,
Y ww) < Y INL@) ().

u€L(0PT) vEN (u) vELOPT

w(L(OPT)) <

For a small node: in OPT, letv = B(u) be some larger circle
in LOPT that interferes wittC'. From Lemma 3.11,

>

wEOPT, B(u)=v

w(u) < (9= [Nz (v)[)w(v).



Thus,
w(S(OPT) < 3 (9~ Nz (v))uw(v).

vELOPT
Adding together the two inequalities, and summing up ovér al
nodes in LOPT, we have (OPT) < 9w(LOPT).

For the lower bound, we sketch an example where the ratio is
arbitrarily close to 7. Arrange two concentric circleg, Cr of
radius1 and 1 + ¢, respectively. Around’y, arrange 6 circles
C1,Cs,...,Cs of radius 1. The circle€), . . ., Cs do not overlap,
but Cr, intersects them all. Hence, the price of anarchy for this
instance is/(1 + ¢).

4. CONVERGENCETONASHEQUILIBRIA

We have assumed that the order that APs are set is determined

exogenously. Clearly, if there are APs altogether, there will be
at mostn steps before they are all set up. But now suppose that
bargaining moves are interspersed with the setting up of NBw
many steps will it take before all the APs are set up and wehreac
local optimum, so that no further bargaining can improvesthea-
tion? In this section, we address that question. For thegsapof
this section, we call a bargaining move or coloring of a nevtere
alocal improvementsince it improves the payoff for at least one
agent and does not make any other agent worse off.

This question is particularly easy to answer in the unweight

case, where all APs transmit with the same power and users are

uniformly distributed. In that case, each local improvemien
creases the number of colored vertices by at least one, ftars a
at mostn local improvements, the resulting color assignment is a
Nash equilibrium. In the weighted case, the same argumemish
that the number of local improvements is finite. In fact, wa ca
easily prove the following:

PrRoPOSITION 4.1. In the weighted spectrum sharing game, play-

ers will converge to a local optimum after finitely many logak
provements, no matter what kind of bargains are allowed ther
more, if all weights are integers bounded by a polynomialhie t
number of vertices, then players will converge to a localroptn
after a polynomial number of local improvements.

PrRoOF Each local improvement increases the value of the color
assignment, and there are only finitely many color assigtsnen
thus the number of possible improvements is finite. If allgis
are integers and are polynomial in the number of vertices) the
total weight of colored vertices is also polynomial in thenher of
vertices. After each local improvement, the total weightréases
by at least one. thus players converge to a local optimunr afte
polynomial number of local improvements[]

The assumption that weights are integers bounded by a polyno
mial in the number of vertices is critical in Proposition 41iwe
allow arbitrary weights, then we show that there is alway®an
der of local improvements that reaches a local optimum ineali
number of steps, but in some graphs, there may also be ofdsrs t
take exponentially many steps.

PROOF Assumek = 1, i.e., the number of available colors
is one. Consider the grap = (V, E), whereV = V1 N V3,
Vi = {1)7;70,...,’07;7”}, w(vl’j) = 2j, andw(m,j) = 2j — €.
Vertexwvs,; is connected t@;,;_2,v1,;—1,v1,; AS we show in the
full paper, this graph is a unit disk graph. We start from thgpty
coloring. The set of improvements is as follows. We starhvai
empty coloring:

1. Color verticesno andviy.

2. Colorwvse and uncolowg andwvy.
. Colorwvi2 and uncolomwss.
. Colorwvez and uncolomwsz.
. Colorwviz and uncolomss.
. Doitems 1,2,3 again.

. Colorvs4 and uncolomwi2 andwvss.

. Colorvi4 and uncolomwsy.

© 0 N o o b~ W

. Colorvss and uncolomw 4.

10. Colorvis and uncolorss.

11. Doitems 1to 7 again.

Note that each of the above steps corresponds to coloring/a ne
vertex or a 1-buyer multiple-sellers bargaining. We camithe
above sequence by a similar pattern. Using induction, weaaity
show that the number of local improvements is at |@4st! for
graphG. We leave the details to the full paper]

Although, the number of local improvements to a Nash equilib
rium can be exponential, it is worth noting that from an enyaily
oring we can find a path of length at mesof local improvements
to a Nash equilibrium. This can be done first ordering theicest
in decreasing order by weight, and then coloring the vestinea
greedy way, starting with the one of highest weight. After tol-
oring is completed, it is easy to see that no 1-buyer—meksglller
bargain can improve the situation.

5. RELATED WORK

There are two bodies of work related to ours. The first is work
on the price of anarchy in other contexts. Large distribsteddems
such as the Internet often involve many economic agents. eGam
theory suggests that, if they follow their own selfish inggsein a
noncooperative manner, they will end up playing a Nash dxguil
rium. Koutsoupias and Papadimitriou [14] first proposecestis
gating the price of anarchy, that is, how far a Nash equiliorcan
be from the socially optimal solution to the problem. Thayd&d
the price of anarchy of a scheduling problem on parallel rimesh
with selfish jobs. Since their work, much progress has beatema
in understanding the price of anarchy in many situationse [8e
6, 9, 19, 22] for a representative sample of the papers ondpis.

Our results are based on relating the Nash equilibrium of the
spectrum-sharing game and local optimization algorithonsrfax-
imum k-colorable subgraphs. Even-dar et al. [5] studied the con-

THEOREM 4.2. Suppose that local improvements are of two kindsyergence time to Nash equilibria of a scheduling game byingla

coloring a new vertex and changing the coloring via a 1-buyer
multiple-seller bargain. In the weighted spectrum shargame

on unit disk graphs, it may take exponentially many localrove-
ments to converge to a Nash equilibrium.

that game to local optimization algorithms for the schatyjprob-
lem. See [7, 9, 17] for other work in this spirit.
The second body of relevant work is on spectrum-sharing exech
nisms. Efficient spectrum-sharing mechanisms have begoged
by Aftab [1] and Satapathy and Peha [20]. Satapathy and Peha



proposed a spectrum-sharing etiquette for devices accesise
free frequency band. Aftab [1] presented an artificial ecopap-
proach to the problem. Each vertex is assigned an artificiddet.
Nodes use this wealth intelligently to bid dynamically fbetright
to transmit. These papers consider dynamic channel acbesise
best of our knowledge, we are the first to study spectrum ishari
in the static case, where a vertex (AP) holds a channel iritkgfin
unless it releases the channel voluntarily. Our model senore
appropriate for the large 802.11 networks that are beingsdty
service providers.

6. CONCLUSIONS AND FUTURE WORK

Spectrum sharing is an inherently distributed problemhwib
central authority to coordinate and arbitrate channelcation. It
is important that spectrum sharing be efficient, allowingresy
users as possible to use the network. With this in mind, we hav
modeled spectrum sharing as a game between providers, and an
lyzed the price of anarchy. We show that if we assume thaigeos
are able to use easily implementable bargaining procedtines
price of anarchy is bounded by a constant if users are disétib
uniformly or every AP uses the same transmission power.

There are many avenues for future research. We intend tietigh
our upper and lower bounds on the price of anarchy. The cenver
gence issues are not completely resolved. In particulamvewdd
like to find useful conditions that guarantee polynomiaidicon-
vergence to a Nash equilibrium. In addition, we would likduo
ther investigate the general weighted power-control gatrerathe
weight is not just a function of the area within transmissiange.

We are also interested in investigating the effect on theepoif
anarchy of allowing different types of bargaining proceziur
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