
PACE: Policy-Aware Application Cloud Embedding
Li Erran Li! Vahid Liaghat◦ Hongze Zhao∧ MohammadTaghi Hajiaghayi◦‡

Dan Li∧ Gordon Wilfong! Y. Richard Yang† Chuanxiong Guo⊕
Bell Labs! Microsoft Research Asia⊕ Tsinghua University∧ Yale University† University of Maryland◦

AT&T Research‡

Abstract—The emergence of new capabilities such as virtual-
ization and elastic (private or public) cloud computing infras-
tructures has made it possible to deploy multiple applications,
on demand, on the same cloud infrastructure. A major challenge
to achieve this possibility, however, is that modern applications
are typically distributed, structured systems that include not
only computational and storage entities, but also policy enti-
ties (e.g., load balancers, firewalls, intrusion prevention boxes).
Deploying applications on a cloud infrastructure without the
policy entities may introduce substantial policy violations and/or
security holes. In this paper, we present PACE: the first systematic
framework for Policy-Aware Application Cloud Embedding. We
precisely define the policy-aware, cloud application embedding
problem, study its complexity and introduce simple, efficient,
online primal-dual algorithms to embed applications in cloud
data centers. We conduct evaluations using data from a real,
large campus network and a realistic data center topology to
evaluate the feasibility and performance of PACE. We show that
deployment in a cloud without considering in-network policies
may lead to a large number of policy violations (e.g., using tree
routing as a way to enforce in-network policies may observe up
to 91% policy violations). We also show that our embedding
algorithms are very efficient by comparing with a good online
fractional embedding algorithm.

I. INTRODUCTION

Cloud data centers supporting virtualization and elastic
resources offer many advantages over traditional approaches,
where a dedicated infrastructure is constructed for each ap-
plication [6]. For example, in cloud data centers, applications
can be rapidly deployed, migrated, or scaled, on demand, on
the cloud infrastructures, improving infrastructure efficiency.

A major challenge to the cloud data center approach,
however, is that modern applications are not simple sets of
virtual machines (VM). Rather, they are distributed, structured
systems that also include policy entities such as load balancers,
application accelerators, firewalls, and intrusion prevention
boxes. Hence, designing cloud data centers without a strong
support for policy entities may introduce substantial policy
violations and/or security holes.

The importance of introducing policy support has been
widely recognized in the industry. For example, VMWare
introduces the capability of associating (software) policies
with a VM. Recently VMWare also introduced a capability
called Virtual Service Domain [7], which allows a group of
virtual machines to be protected by a virtual appliance. All
traffic entering or leaving the group of virtual machines will be
sent to that particular virtual appliance for policy verification.
Data center switches (e.g., Voltaire Vantage 6024 switch [23])
have also started to introduce features to support port policy
migration when a VM attached to the port migrates.

A limitation of the aforementioned approaches, however, is
that they are limited to enforce policy only at the VM last

hop. We call such policies end-point policies. On the other
hand, for many networks, some policies are best enforced
or can be enforced only in the network. For example, due
to performance requirements, some policy middleboxes need
hardware acceleration and thus are available only at certain
network locations with the hardware; some desirable features
are available only from certain systems that are available only
at certain network locations; some policy boxes (e.g., intrusion
prevention boxes) perform better when they can observe traffic
involving multiple endpoints. We refer to such policies as
application-wide, in-network policies.

In this paper, we conduct the first systemic study of en-
forcing application-wide, in-network policies in cloud data
centers. Our framework, called PACE, complements existing
capabilities on end-point policies to build a complete solution
framework for cloud application deployment.

We make several contributions.

• First, we precisely characterize application requirements
in cloud data centers (Section II). We introduce concepts
such as the flow security graph to rigorously capture the
requirements.

• Second, we study the complexity of enforcing cloud ap-
plication flow security graph during cloud application de-
ployment (Section III). We refer to this problem as the cloud
application embedding problem. We show that the complex-
ity of the embedding problem depends on the enforcing
mechanisms. In particular, we show that using traditional
tree-based routing, the problem is NP-complete. This points
out a serious challenge in using the traditional network
infrastructure for supporting cloud application deployment.

• Third, using feasible mechanisms (e.g., source routing,
OpenFlow [19], or p-switches [15]), we present fast, ef-
fective, primal-dual algorithms for cloud application em-
bedding (Section IV). Our algorithms consider policy and
realistic constraints such as on bandwidth and reliability.

• Fourth, we study the policy entity placement problem (Sec-
tion V). We give a negative result on the performance of ap-
plication request agnostic placement (oblivious placement).
We also give a placement algorithm based on the knowledge
of application request distributions.

• Fifth, we conduct evaluations on the importance of policy-
aware cloud application embedding as well as the perfor-
mance of our algorithms (Section VI). Using real applica-
tions from a large real campus network and several realistic
data center topologies, we show that policy-agnostic de-
ployment may lead to a large number of policy violations
(e.g., using tree routing as a way to enforce in-network

policies may observe up to 91% policy violations). We also
demonstrate the effectiveness of our algorithms.

II. ENCODING CLOUD APPLICATION POLICIES

Many modern applications are designed as structured dis-
tributed systems to achieve scalability and security, based on
concepts such as load balanacers and DMZ.

We encode the requirements of a given application i (de-
noted as Appi) with a tuple (FSGi,Configi). The first com-
ponent is called the flow security graph (FSG), which encodes
the logical entities and the information flow among the entities
of the application. An FSG is much richer than a virtual
network. Nodes can represent virtual machines, middleboxes,
virtual routers, etc. An FSG is annotated with demands on
computing resources, middleboxes, network bandwidth, and
reliability, etc. The second component represents the configu-
ration state of application entities. For example, for a firewall,
the configuration state is the set of firewall rules; for a virtual
machine, the configuration state consists of the set of allowed
services, etc.

We now give more details on an FSG. We represent en-
tities implementing an application as nodes in a graph. For
example, in a two-tiered application, each tier or middlebox is
represented as a node in the graph. In addition, Internet clients
as a group are represented as a single node. Edges represent
direct communication between nodes. Nodes and edges are
annotated with labels that encode application requirements on
computing resources, network bandwidth and reliability.
• Network bandwidth requirements: an application may re-

quire certain bandwidth between pairs of logical entities
(e.g., between tier 1 and tier 2). Bandwidth requirements
are encoded as edge demands on the flow security graph.

• Computing resource requirements: various logical entities
may need computing resources. For example, in a two-tiered
application, each tier requires a certain number of virtual
machines. This is encoded as node demand.

• Reliability requirements: an application may want its logical
entities be placed in more than one “fault domain”. A fault
domain is a unit that has correlated failures of a certain type.
A machine, rack or “pod” can a fault domain. A customer
may demand that its applications be placed in two fault
domains. To encode reliability constraint, we annotate each
logical entity with its required number of fault domains.

We represent the virtual machine demand and fault domain
demand as a tuple. Any two nodes are connected by at least
one path in FSG. If there are multiple paths and an application
prefers a specific path, the application has to annotate the FSG
with the chosen path.

As an example, the flow security graph of a two-tier appli-
cation is shown in Figure 1. Tier 1 and 2 are represented as
nodes u1 and u2 respectively. Middleboxes are firewall Fi, load
balancer LBi, intrusion prevention system IPSi, i= 1,2. We do
not need to represent the switches in our flow security graph.
The tuple (50,1) means that it needs 50 virtual machines
and one fault domain. The Internet clients are denoted as ue
with zero demands on virtual machines and fault domains.
The application needs one copy of each middlebox. Each

Fig. 1. Flow security graph of a two-tier application.

middlebox requires one fault domain. There are no bandwidth
demands on links since it is a best effort service.

III. FEASIBILITY OF ENFORCING POLICIES

We first conduct a feasibility study. We are given a cloud
data center with servers (hosts several VMs) and middleboxes.
The middleboxes can be hardware based or software based.
Most hardware-based middleboxes are virtualized and can
support multiple tenants. Their placements are fixed. Then
the key feasibility issue for cloud provider is that given the
policies of a cloud application represented by an FSG, decide
the existence of a cloud data center routing to satisfy the FSG.

Our results are that the existence problem is NP-hard for tree
routing. For Openflow [19], a solution may not exist. However,
if one exists, we can decide in polynomial time as long as the
number of middleboxes in each path segment is a constant.
For pswitch [15] or source routing, a solution always exists.
The key intuition here is that different flows have different
policies. Constraining all of them to use the underlying tree-
based routing leads to infeasibility.

To quantify the hardness of the problem, we look at a
specific class of FSG where there is a set of application
terminal nodes, each application terminal node requires a
corresponding middlebox, and all of the middleboxes connect
to a shared root. We assume general link layer network
topology.

A. Policy enforcement mechanisms
Different applications do not share Scope. Thus, applica-

tions must be isolated. There is no sharing of forwarding and
routing table, no communication between VMs of different
applications, no sharing of middlbox instances (typically a
physical middleboxes have many virtual instances). Besides
isolation between applications, different components of an
application must also be isolated. In our example application,
tier 1 and tier 2 are on separate VLANs to enforce isolation.

To enforce FSG embedding, cloud providers need mech-
anisms to manipulate routing so that packets can go through
middleboxes specified by the policy. We consider five types of
link layer routing support: (1) Layer 2 routing uses traditional

2

s1

xk

G

sk

tk

s2

t2

x2x1

R

t1

Fig. 2. NP-hardness construction.

spanning trees; (2) Recent layer 2 shortest path routing pro-
posed by IEEE SPB or IETF TRILL; (3) Openflow based layer
2 routing; (4) source routing; and (5) pswitch-based routing
where all middleboxes are placed off the network path. We will
study a unified solution for (1) and (2). The case of Openflow,
pswitch and source routing admits simple solutions because of
their ability to control routing. We focus on a unified case of
(1) and (2).

B. Feasibility using Tree Routing
We want the policy to be implemented by the spanning

tree protocol. Thus, we want a tree. Our NP complete
proof looks at a simpler problem. We are given a graph
G = (V,E), a distinguished root node R, a set of source
nodes S = {s1,s2, . . . ,sk} ⊆ V and a set of middleboxes X =
{x1,x2, . . . ,xk}⊆V . The problem is to determine if there is a
path Pi between si and R such that xi ∈ Pi for each i, 1≤ i≤ k,
where

⋃
1≤i≤k Pi forms a tree. We call this problem the k-paths-

tree problem. This problem encodes a special case of our FSG
policy feasibility problem. R can represent the gateway to the
Internet (clients need to go through the gateway to get web
service from each application). Each source node si together
with the middlebox xi, and R forms an embedding of a FSG
representing a web application.
Theorem 1: The k-paths-tree problem is NP-complete.
Proof: Note that checking if a set of paths P1,P2, . . . ,Pk

satisfies the given instance of the k-paths-tree problem can
trivially be done in polynomial time. Hence the k-paths-tree
problem is in NP.

To show that the k-paths-tree problem is NP-hard, we show
a reduction from the k-node-disjoint-paths problem to it. An
instance of the k-node-disjoint-paths problem consists of a
graph G= (V,E) and k disjoint pairs of nodes (si, ti), 1≤ i≤ k.
The problem is to decide if there exist k pairwise disjoint paths
P1,P2, . . . ,Pk where Pi is a path between si and ti for 1≤ i≤ k
such that these k paths are pairwise node disjoint. This problem
is known to be NP-complete [8].

Consider an instance NDP of the k-node-disjoint-paths
problem given by the graph G = (V,E) and pairs (si, ti),
1 ≤ i ≤ k. Then we construct an instance PT of the k-paths-
tree problem as follows. Let G′ = (V ′,E ′) be the graph where

u

x j

s j

t j

xi

R

ti

si

G

Fig. 3. A node other than R in both Pi and Pj implies a cycle.

V ′ =V ∪{x1,x2, . . . ,xk, t1, t2, . . . , tk,R} and E ′ = E∪{tixi : 1≤
i ≤ k}∪{xiR : 1 ≤ i ≤ k}. See Figure 2 for an illustration of
the construction of G′. Let S = {s1,s2, . . . ,sk} be the set of
source nodes and {x1,x2, . . . ,xk} be the set of middleboxes.
Then we wish to determine if there are paths Pi between si
and R so that xi ∈ Pi for 1 ≤ i ≤ k and where

⋃
1≤i≤k Pi is a

tree.
We claim that there is a solution to NDP if and only if there

is a solution to PT . First suppose Pi, 1 ≤ i ≤ k is a solution
for NDP. Clearly if we define T to be the graph consisting of
paths Pi and edges tixi and xiR for 1≤ i≤ k ,then T is a tree
satisfying the requirement that the path from si to R contains
xi. That is, the paths in T from the source nodes to R satisfy
PT .

Suppose T is a solution to PT . Then T is a tree and the
path from si to R in T passes through xi for 1≤ i≤ k. It can
easily be checked that any path from si to R containing xi must
contain the edges tixi and xiR. Let Pi be the path in T from si
to ti, 1≤ i≤ k. We claim that these paths are pairwise disjoint.
To show this, consider two such paths Pi and Pj. Suppose by
way of contradiction that Pi and Pj are not node disjoint. (See
Figure 3.) Let u be the node in Pi∩Pj such that no other node
in the subpath of Pi between u and ti is in Pj. Then the union
of the edges in Pi from u to R with the edges in Pj from u to
R, form a cycle in T . But this contradicts the assumption that
T is a tree.

One may wonder if we limit the class of network topology,
the problem may become easier. For example, one class
of topologies consists of planar graphs. However, by the
construction given in the preceding proof and the fact that
k-node-disjoint-paths problem remains NP-complete in planar
graphs, we conclude that the k-paths-tree problem also remains
NP-complete even when restricted to planar graphs [17].

Another class of network topologies is that of fat trees.
Given the increasing trend to adopt fat tree as a topology for
data centers, we study feasibility in such a network. We have
the following results.
Theorem 2: Even if graph G = (V,E) is a fat tree, the k-

paths-tree problem is NP-complete.
Proof: See appendix.

3

C. Feasibility using Openflow
The only restriction in this case is that the path segment

has to be a simple path (i.e., it does not contain a cycle). If
one exists, we can decide in polynomial time as long as the
number of middleboxes in each path segment is a constant.

D. Feasibility using pswitch or source routing
A pswitch can perform hop-by-hop routing and forward traf-

fic matching policy to a middlebox directly. Thus, a solution
always exists. The case for source routing is similar as long
as middleboxes can be addressed in layer 3.

IV. DEPLOYING ENTERPRISE APPLICATIONS IN PUBLIC
DATA CENTERS

Enterprises use a management interface similar to, but richer
than Amazon EC2 to submit their application deployment
requests (each represented as a flow security graph). There
are three steps for the cloud provider to deploy enterprise
applications in public data centers. First, the cloud provider
needs to realize the flow security graph in the underlying
data center network. We refer to this step as flow security
graph embedding. The second step for the cloud provider is
to configure the entities in the flow security graph. The third
step for the cloud provider is policy enforcement. The second
step is straightforward and application specific. We have
considered policy enforcement mechanisms and feasibility of
policy enforcement in Section III. We now only consider
FSG embedding. We assume mechanisms such as Openflow,
policy switch or source routing are available to enforce specific
policies on flows of an application. To reduce routing complex-
ity, and leverage underlying data center routing protocol, we
assume that neighbors in a flow security graph are connected
by the native routing path in the data center.

A. Flow security graph embedding
For ease of the description of the algorithm, we consider

a few simplifying assumptions; all the results carry to the
general case. We assume the flow security graph of each
application request is a simple path and the fault domain
constraint is one, i.e., all resources of an entity must be placed
together. We also assume there is one type of middlebox.
Application requests must be processed as they arrive in real
time. Thus, we need an online algorithm.
1) Problem Formulation: An instance of the offline FSG

embedding problem is the tuple (G,C,n,R) in which
• The weighted graph G= (V,E,B) represents the network

topology where B : E → N shows the bandwidth of the
edges;

• The function C : V → N shows the number of compute
nodes (i.e. VMs) on each vertex; 1

• The integer n is the number of available middleboxes to
be placed on vertices; and

• R is the sequence of arriving requests which are to be
allocated on the topology.

Each request r is associated with a prize πr and a path struc-
ture qr. The prize of a request shows the benefit of allocating

1In a fat tree, the compute nodes are only on the leaves.

that request which may encode the priority, importance, size,
or other considerations. A path structure describes the demands
of the request.

An extended path of length k in the graph is an ordered
sequence of k vertices with simple paths connecting them.
Therefore an extended path would be in the form of

p=< v1, p1,v2, . . . , pk−1,vk >

where pi is a path between vertices vi and vi+1. We note that
these paths may be empty, i.e., vi’s are not necessary different.
We allocate the requests to the extended paths of the topology
with enough resources. Thus we can define the path structure
of a request as a sequence of the form

qr =< (r1, t1),b1,(r2, t2),b2, . . . ,bk−1,(rk, tk)>

where k is a small constant [14]; ri ∈ N is the number of
resources needed on the ith vertex; ti is the type of the resource
needed on the ith vertex; and bi is the bandwidth of the
connection needed between vertex i and i+1. As mentioned
before, we assume that ti may have only two options: either
‘middlebox’ or ‘compute node’. To allocate a request on
the topology, we have to choose a valid extended path. An
extended path p is valid for the path structure qr if for
1≤ i≤ k, the vertex vi has ri amounts of either middleboxes
(if ti = ‘middlebox’) or compute nodes (if ti = ‘computenode’)
available and for 1 ≤ i ≤ k− 1 all the edges in the path pi
have bi amounts of bandwidth available. By allocating r to p,
these amounts of resources would be allocated to the request
and thus will not be available anymore. We may denote the
valid extended paths as candidate paths.

Given an instance (G,C,n,R), the algorithm has two phases.
In the first phase, the algorithm should define a function F :
V →N which shows the number of middleboxes to be placed
on each vertex. We note that the total number of middleboxes
is n, i.e., ∑v∈V F(v) = n. In the second phase, the algorithm
should choose a subset of the requests and allocate them to the
candidate paths. An allocation scheme is the selection of the
subset of the requests to be allocated with their corresponding
allocated candidate paths. The payoff of an allocation scheme
is the total prize of the allocated requests.

The online FSG embedding problem is an online version
of the offline FSG embedding problem, in the sense that the
sequence of requests is revealed to the algorithm in an online
manner, however we know the number of requests in advance
(which might be large). The algorithm should decide about the
placement of the middleboxes (i.e. F(v)) before receiving the
requests. Upon receiving a request the algorithm should either
allocate a candidate path to the request or discard it right away;
this decision is not revocable. The goal is to maximize the total
prize of the allocated requests.

We can formulate the offline version as the following integer
programming optimization (IP) problem. Let Pr be the set of
all possible candidate paths for request r in the topology. We
note that since the size of a request is constant and neighbors
in a FSG are connected by the native routing path in G,
then the number of possible candidate paths is polynomial.
This might still be a large number. However, we typically
want nodes (VMs or middleboxes) in an application to be

4

allocated close together, e.g. within a fault domain (if the FSG
of an application has no requirements for more than one fault
domain). This can drastically reduce the number of candidate
paths to a manageable level. The LP variable yrp indicates
the situation where the candidate path p ∈ Pr is allocated to
the request r ∈ R. The values crpv, frpv, brpe are independent
of LP variables, showing the required (i) computer nodes on
vertex v, (ii) middleboxes on vertex v and (iii) bandwidth on
edge e, if the path p was to be allocated to the request r.

Maximize. ∑
r
∑
p
πryrp (FSG)

∀r ∈ R : ∑
p
yrp ≤ 1 (FSG.A)

∀v ∈V : ∑
r
∑
p
yrpcrpv ≤C(v) (FSG.B)

∀v ∈V : ∑
r
∑
p
yrp frpv ≤ F(v) (FSG.C)

∀e ∈ E : ∑
r
∑
p
yrpbrpe ≤ B(e) (FSG.D)

∑
v
F(v)≤ n (FSG.E)

yrp ∈ {0,1}
F(v) ∈N

In the maximization LP, the set of constraints
• FSG.A insure that each request can be assigned at most

once;
• FSG.B insure that the number of required compute nodes

on each vertex cannot exceed the number of available
compute nodes on that vertex;

• FSG.C insure that the number of required middleboxes
on each vertex cannot exceed the number of available
middleboxes on that vertex;

• FSG.D insure that the allocated requests cannot exceed
the bandwidth limit on each edge.

In the FSG embedding problem we should decide about the
placement of middleboxes before receiving the requests. For
any placement there could be a sequence of requests where
none of the requests can be allocated but the same sequence
can be allocated in a different placement. Thus we have to
decide about the placement of middleboxes by finding the best
possible placement for a set of samples for the requests. In the
rest of this section we assume that we know the placement in
advance and try to give an online allocation scheme with a
near optimum competitive ratio. We call this problem FSG
Path Allocation Problem.
2) FSG Path Allocation Problem: If we re-write the FSG

linear programming using a specific middlebox placement,
then all our constraints would be in the form of a packing
constraint2. Formally, we can consider the following relaxed
LP for the offline problem:

Maximize. ∑
r
∑
p
πryrp

∀i ∈ [|R|+ |V |+ |V |+ |E|] :∑
r
∑
p
yrpq(i,r, p)≤ u(i) (FSG.A,B,C,D)

yrp ≥ 0

2A packing constraint denotes a linear combination of variables with
positive coefficients which has to be be smaller than a positive constant.

where all the previous constraints are re-written in a general
form. Indeed one can simplify the LP even more. We write a
new LP by replacing yrp with zrp

πr
and q(i,r, p) with πra(i,r, p).

Thus we get the following LP and its dual. One can easily ver-
ify that there is a 1-to-1 relation between the feasible solutions
of the two LPs which preserves the objective value. Therefore
any α-competitive algorithm which uses the modified LP is
also an α-competitive algorithm for our problem.

Maximize. ∑
r
∑
p
zrp

∀i ∈ [|R|+ |V |+ |V |+ |E|] :∑
r
∑
p
zrpa(i,r, p)≤ u(i) (FSG.A,B,C,D)

zrp ≥ 0

Minimize. ∑
i
u(i)xi

∀r ∈ R and p ∈ Pr :∑
i
a(i,r, p)xi ≥ 1

xi ≥ 0

In the online version of the FSG Path Allocation Problem,
we have the same LP but the variables (along with their set of
coefficients) are revealed to us in an online fashion. As usual,
the performance of an online algorithm on a given input is
defined to be the ratio between the maximum (offline) payoff
of any solution (i.e., allocation scheme) and the payoff of the
solution given by the algorithm. The maximum ratio, taken
over all input sequences, is defined to be the competitive
ratio of the algorithm. If we accept any real value for the
variables, then we get the general online fractional covering
problem. Buchbinder and Naor [4] give an algorithm that gets
the desired competitive ratio B > 0 and produces a solution
that does not violate the ith packing constraint by more than

a factor of
2lg

(

1+ Nai(max)
ai(min)

)

B where N is the total number of
constraints and ai(max) and ai(min) are the maximum and
minimum (non-zero) coefficients of the constraint. They also
gave a tight lower bounds on any online algorithm for the
problem, proving that their scheme is optimal for any B> 0.

Using the algorithm given in [4] with B = 2lg(1+NTmax)
we can give a O (lg(|R|+ |V |+ |E|)+ lg(Tmax))-competitive
algorithm which do not violate any constraint; where N= |R|+
2|V |+ |E| and Tmax = max{ cmaxcmin ,

fmax
fmin ,

bmax
bmin }, i.e., the maximum

of required compute nodes ratio, required middlebox ratio and
required bandwidth ratio. Since lg(Tmax) can be considered a
small constant in the context of this paper, the algorithm gives
a O (lg(|R|+ |V |+ |E|))-competitive fractional solution for the
online path allocation problem. For the sake of completeness
we present the algorithm of [4]. We initialize all the variables
xi and zrp to zero. Upon receiving the request r, we will define
a variable zrp for every possible path p (or we can improve
the performance by using a heuristic algorithm to generate
only a set of suitable paths for the request). For each path p
we compute the coefficients of zrp in the constraints and run
Algorithm 1 given in the figure.

Theorem 1 in [4] proves that this algorithm gives a B-
competitive fractional solution for the problem. However, we

5

Algorithm 1 Online Fractional FSG Path Allocation Problem
1: zrp← 0.
2: For each x(i): ai(max)←max(r′,p′)∈R×P a(i,r′, p′).
3: while ∑i a(i,r, p)x(i)< 1 do
4: Increase zrp continuously.
5: Increase each variable x(i) by the following increment

function:
x(i)←max{x(i),

1
Nai(max)

[

exp
(

B
2u(i) ∑(r′,p′)∈R×P a(i,r′, p′)zr′p′

)

−1
]

}

should either discard a request or allocate the whole request to
one path and thus we need an integral solution. We can show
that no online integral algorithm can always guarantee o(|R|)-
competitiveness. Therefore we have to rely on the competitive
ratio of the fractional solution and use a randomized rounding
method to obtain the integral solution based on the fractional
solution. First we compute the vector y corresponding to the
current solution z, i.e., for all r∈R and p∈Pr we set yrp= zrp

wrp .
For the request r, consider p1, . . . , pm as an ordering of the
possible paths. Since ∑i yrpi is always smaller than or equal
to one, we can consider the values of yrpi for 1 ≤ i ≤ m as
the distribution of request r over all the paths. Thus we like
to choose the path pi with probability yrpi and discard r with
probability 1−∑i yrpi . We pick a random number x ∈ [0,1)
and we choose path pk for r, iff ∑k−1

i=1 yrpi ≤ x< ∑ki=1 yrpi ; or
we discard r if x≥∑mi=1 yrpi . If a path was chosen, we assign
it to r unless this assignment together with previous integral
decisions violate some of the constraints, which in that case
we discard the request r. We will set the variables according
to this decision and continue to the next request.

V. MIDDLEBOX PLACEMENT

Most recent data center architecture designs [11], [10],
[20] have ignored middleboxes. One exception is the recent
Cisco multi-tenant data center architecture [5] which advocates
placement at the aggregation layer in a three-layer topology.
Due to cost, middleboxes can not be attached to every switch.
The question is how should they be placed to maximize
data center performance (ability to host maximal applications
requiring in-network policy enforcement)?

Insights on placement can shape the design of future policy-
aware data center network architecture. Ideally, we would like
to address this question independent of specific application
request sequences. However, we show that there is no good
guarantees for oblivious middlebox placement problem. There-
fore, we are obliged to consider request distributions in our
solution.

A. Negative results on request oblivious placement
One can show that similar to many other online problems3

no online algorithm can always guarantee a o(|R|)-competitive
solution to the Online (Integral) FSG Path Allocation Problem
when adversary has full control over the input.
Theorem 3: There is no o(|R|)-competitive algorithm for

the Online (Integral) Path Allocation Problem.

3For example the famous secretary problem

Proof. Consider an online algorithm and a simple path topol-
ogy with M> |R| compute nodes at its vertices. The adversary
will give a request which can be satisfied but will use all the
resources (i.e. the first request is just the topology itself). If the
algorithm does not assign the first request, then the adversary
will send only impossible requests as the remaining |R|− 1
requests and thus the algorithm will not satisfy any of the
requests. However if the algorithm assigns the first request,
then the adversary will send |R|−1 small requests which they
only need one compute node. Thus the competitive ratio in this
scenario would be |R|−1. This shows that no online algorithm
can be o(|R|)-competitive. !

B. Placement algorithm
Assume that we have a topology < G,C,n > and a set of

sample sequences of requests R1, . . . ,RK . Solving the relax-
ation of FSG for a set of requests Ri would give us a fractional
solution for middleboxes positions, i.e. the function Fi. The
function Fi gives us a distribution πi of n middleboxes over
the set of vertices, i.e., πi(v) = Fi(v)/n. However, πi is only
optimal for one set of requests, but we need a placement that
could give a maximum average solution for different scenarios.
Therefore we combine all LP-relaxations of different samples,
i.e., we duplicate the topology for any sample sequence, but
will use the same F(v) set of variables for all of these
topologies. The LP-relaxation is given below.

Maximize. ∑
k∈[K]

∑
r∈Rk

∑
p∈Pk

yrp (OPL)

∀k ∈ [K] & ∀r ∈ Rk : ∑
p∈Pk

yrp ≤ 1 (OPL.A)

∀k ∈ [K] & ∀v ∈Vk : ∑
r∈Rk

∑
p∈Pk

yrpcrpv ≤C(v) (OPL.B)

∀k ∈ [K] & ∀v ∈Vk : ∑
r∈Rk

∑
p∈Pk

yrp frpv ≤ F(v) (OPL.C)

∀k ∈ [K] & ∀e ∈ Ek : ∑
r∈Rk

∑
p∈Pk

yrpbrpe ≤ B(e) (OPL.D)

∀k ∈ [K] : ∑
v∈Vk

F(v)≤ n (OPL.E)

yrp ∈ {0,1}
F(v) ∈N

By solving the LP-relaxation for all samples together, we
can get the distribution Γ over the vertices which gives the
optimum average solution for all the samples. Finally, we
assign 0Γ(v)n1 middleboxes to every vertex v and assign the
remaining middleboxes one by one to the vertices with highest
Γ(v). After finding the proper placement, we run the online
algorithm in Section IV-A2 to give a solution for the online
stream of requests.

VI. EVALUATION

When enterprises deploy their applications in remote public
data centers, policies can be enforced either in remote data
centers or back in the base enterprise networks (base networks
for short). We first evaluate the cost and the feasibility of
enforcing policy constraints in base networks. We show that it
may not be feasible if the enterprise can only use tree-based

6

routing to enforce policies. It also incurs substantial cost in
terms of path length.

We then consider enforcing policies locally in remote data
center. We evaluate our embedding algorithm, and impacts of
different middlebox placements.

A. Methodology

An enterprise network topology and application policies:
We obtain router, middlebox and switch configuration files of
a campus network with more than 50 routers and more than
1000 switches.

We first extract the route distribution graph, and layer-
three topology using a tool in [2]. We insert the link-layer
topology into the layer-three topology due to the fact that
switch configurations are not adequate.

We then infer the middlebox traversal policy based on the
topology properties and the route distribution graph. We ex-
amine the possible paths between two endpoints (represented
as two subnets or two VLANs). From the path, we determine
the middleboxes traversed and store this sequence as the way-
points for this particular path.

For scope, if both endpoints are in the same VLAN, then
the scope is all nodes in the broadcast domain. If they are
not in the same VLAN, we use all reachable nodes (based
on route distribution graph and ACLs) in the security zone as
the scope. We compare the tree routing case and the pswitch
case. We pick 7 layer-two networks as the application network
topologies to migrate to a remote data center. We assume the
remote data center has no middleboxes. We evaluate the two
mechanisms: tree routing and pswitch. We leave the evaluation
of Openflow mechanism to future work.
Policy-aware data center network topology: We use sim-
ulation to study the performance of our embedding algo-
rithms. We use three typical data center structures Bcube [11],
Dcell [13], and fat-tree [1]. We use Bcube3 which has 2187
leaf nodes and 4 levels of 3-port mini-switches. Each leaf node
has 300 VMs. Each switch has 150 middlebox instances. Each
link has a bandwidth of 1Gbps. We use Dcell(32,1) which
has 1056 leaf nodes. Each leaf node has 500 VMs, and each
switch has 1000 middlebox instances, each link has bandwidth
1Gbps. We use fat-tree with k = 24. This gives us 3456 leaf
nodes. Each link node has 400 VMs. We use the Google cluster
dataset [9] for request size distribution. This dataset gives a
normalized job size distribution extracted from Google product
workloads. The distribution shows more than 51% jobs are
the smallest. 20% middle sized jobs use 65% of the total
resources. This distribution is used for both the VM demand
and middlebox demand of application embedding requests.
The average number of VMs and middleboxes per request
is 50 and 60 respectively. The average bandwidth demand
per request is 350Mbps which is generated from a Poisson
distribution. We use Amazon EC2 pricing schemes for VMs
($0.048/h per VM) and bandwidth (0.01$/GB). Middleboxes
are assumed to be 4 times more expensive than VMs.

B. Results on enforcing policy in base networks

Feasibility: We first study the feasibility of satisfying in-
network policies. Figure 4 shows the results of policy violation

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7

Fr
ac

tio
n

of
 v

io
la

tio
n

Index of applications

Tree routing

Fig. 4. Fraction of paths with policy violations in the case of tree-routing.

using tree routing. We see that tree routing may not always
find a feasible solution. In 5 out of 7 applications, tree
routing fails to find a feasible solution. The number of policy
violations (varies from 0 to 91%) depends on the set of
policies associated with the L2 networks. Using pswitch we
find feasible solutions in all cases.
Costs: In the next experiment, we evaluate the cost of enforc-
ing policies by considering the average path length for com-
munication between points in relocated layer-two networks
and other endpoints in the network. We only look at source-
destination pairs whose policies are satisfied. The path length
is defined as the number of network devices a packet must
traverse from source to destination (i.e., network hops).

Figure 5 shows the trade-off of the two mechanisms in
terms of path length. In the cases (applications indexed 5
and 6) that tree routing is feasible, both mechanisms have
the same average path length and so both cases use simple
path (no cycles). In the cases (applications indexed 2 and 3)
that tree routing has the largest percentage of violations (91%
and 80%), the path lengths differ the most. That is, the path
length of the pswitch case is 7.6 and 6.5 hops longer than
that of the tree routing case. This is due to the fact that the
algorithm for the pswitch case finds non-simple paths to satisfy
policies. This is not possible in the tree routing case. For the
intermediate cases (applications indexed 1 and 4) where policy
violation percentage is 31% and 21%, the path length of the
pswitch case is only 2.4 and 1.5 hops longer than that of the
tree routing case. This means that most of the policies can be
satisfied by simple paths.

C. Results on application embedding and middlebox place-
ments

Topology Accepted BW VM Middlebox First Reve-
Requests Usage Usage Usage Reject nue($)

FatT I 5562 41.1% 38.2% 70.2% 146 92837
FatT II 5442 38.8% 37.4% 68.2% 179 84727
FatT III 5412 43.9% 38.1% 66.1% 201 83019
Bcube 5910 37.1% 58.1% 59.9% 229 93475
DCell 4329 46.1% 51.3% 53.1% 148 75738

TABLE I
PERFORMANCE OF FRACTIONAL FSG EMBEDDING ALGORITHM UNDER

DIFFERENT PLACEMENT STRATEGY

7

 0

 2

 4

 6

 8

 10

1 2 3 4 5 6 7

Av
er

ag
e

pa
th

 le
ng

th

Index of applications

Tree routing
pswitch

Fig. 5. A comparison of the average path length for tree routing and pswitch.
Topology Accepted BW VM Middlebox First Reve-

Requests Usage Usage Usage Reject nue($)
FatT I 5281 38.8% 33.1% 67.2% 184 77261
FatT II 4991 38.3% 33.2% 65.9% 204 73332
FatT III 4865 49.1% 36.2% 66.4% 155 72918
Bcube 5113 37.2% 79.6% 58.6% 223 82616
DCell 3661 56.9% 47.2% 50.2% 190 61294

TABLE II
PERFORMANCE OF INTEGRAL FSG EMBEDDING ALGORITHM UNDER

DIFFERENT PLACEMENT STRATEGIES.

We investigate three middlebox placement strategies for fat-
tree: (1) FatT I: all are attached to aggregation switches, each
has 3000 instances; (2) FatT II: half attached to aggregation
switches, half attached to access switches, each switch has
1500 middlebox instances; (2) FatT III: all are attached to
access switches, each has 3000 middlebox instances. For
Bcube and Dcube, we place middleboxes uniformly, each
switch has 150, and 1000 middlebox instances respectively.

We compare our fractional solution with our integral solu-
tion. Our performance metrics are total accepted number of
application requests overall and total accepted requests before
the first rejection, the resource utilization in terms of VMs,
middleboxes, and network bandwidth. Utilization is defined
as the total usage by all admitted requests divided by the
total resource. Our results are shown in Table I and II. As
expected, the fractional solution typically performs better in
terms of total accepted requests and total revenue. However,
the difference in terms of total accepted requests are smaller
than 16% in all cases. This shows that our integral solution is
very close to optimal.

In terms of impact of middlebox placement strategies, we
see that placing at the aggregation switches performs the best.
The reason is that many requests can not be localized to a
single rack, if VMs of one rack have to go to anther rack’s
access switch for middlebox service, then the path is much
longer than just go to a middlebox in the aggregation switch.

VII. RELATED WORK

With the exception of [16], previous studies on policy
enforcement in public data centers or enterprise networks have
focused on end-point policies [7], [23] and access control
policies [14], [21], [24], [22], [3], [18], [2]. In [16], we have
focused on policy preserving network extension. It does not
consider application request embedding. Previous work on

application embedding in public data centers [12] does not
consider policy enforcement.

VIII. CONCLUSION AND FUTURE WORK

We conduct the first study on satisfying application-wide,
in-network policies, and other realistic requirements such as
bandwidth and reliability. we precisely encode application re-
quirements using flow security graph, middlebox configuration
states and policy specification. We characterize feasibility of
policy enforcement based on enforcement mechanisms. We
then propose an effective online algorithm to map enterprise
application onto public data center topology. Our study moti-
vates the need of flexible policy enforcement mechanisms such
as Openflow and pswitch, and the design of policy-aware data
center network architecture.

There are many avenues for future work. We would like to
consider designing policy-aware data center network architec-
ture. We are also planning to conduct experiments in a cloud
computing testbed which connects a corporate data center with
Amazon Virtual Private Cloud.

IX. ACKNOWLEDGEMENT
H. Zhao and D. Li are partly supported by 973 Program

of China under Grants 2012CB315803, and NSFC program
under Grants No. 61170291 and 61161140454. We appreciate
the help of A. Voellmy, M.F. Nowlan, and R. Beebee.

REFERENCES

[1] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A
scalable, commodity data center network architecture. In Proceedings
of ACM SIGCOMM, pages 63–74, New York, NY, USA, 2008. ACM.

[2] Theophilus Benson, Aditya Akella, and David Maltz. Mining policies
from enterprise network configuration. In IMC, 2009.

[3] Theophilus Benson, Aditya Akella, and David Maltz. Unraveling the
complexity of network management. In Proceedings of USENIX NSDI,
pages 335–348, Berkeley, CA, USA, 2009. USENIX Association.

[4] N. Buchbinder and J. Naor. Online primal-dual algorithms for covering
and packing. Math. Oper. Res., 34(2):270–286, 2009.

[5] Cisco. Cisco virtualized multi-tenant data center, version 2.0
compact pod design guide. http://www.cisco.com/en/US/docs/solutions/
Enterprise/Data Center/VMDC/2.0/design guide/vmdcCPoDDesign20.
pdf.

[6] Cisco Inc. Data center interconnect: Layer 2 extension between remote
data centers.

[7] Cisco Inc and Vmware Inc. Virtual networking features of
the vmware vnetwork distributed switch and cisco nexus 1000v
switches. available at http://www.vmware.com/files/pdf/technology/
cisco vmware virtualizing the datacenter.pdf, 2009.

[8] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W.H. Freeman and Co., San
Francisco, CA, 1979.

[9] Google. Google cluster data. http://code.google.com/p/
googleclusterdata/.

[10] Albert Greenberg, Navendu Jain, Srikanth Kandula, Changhoon Kim,
Parantap Lahiri, Dave Maltz, Parveen Patel, and Sudipta Sengupta. Vl2:
A scalable and flexible data center network. In Proceedings of ACM
SIGCOMM, August 2009.

[11] Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang,
Yunfeng Shi, Chen Tian, Yongguang Zhang, and Songwu Lu. Bcube: a
high performance, server-centric network architecture for modular data
centers. In Proceedings of ACM SIGCOMM, pages 63–74, New York,
NY, USA, 2009. ACM.

[12] Chuanxiong Guo, Guohan Lu, Helen J. Wang, Shuang Yang, Chao
Kong, Peng Sun, Wenfei Wu, and Yongguang Zhang. Secondnet: a data
center network virtualization architecture with bandwidth guarantees.
In Proceedings of Co-NEXT, pages 15:1–15:12, New York, NY, USA,
2010. ACM.

8

Fm

MF

dF

MT

R

dT

x1 xk

TpT1 Fp+1

Fig. 6. Construction for 3-SAT reduction.

[13] Chuanxiong Guo, Haitao Wu, Kun Tan, Lei Shi, Yongguang Zhang, and
Songwu Lu. Dcell: a scalable and fault-tolerant network structure for
data centers. In Proceedings of ACM SIGCOMM, pages 75–86, New
York, NY, USA, 2008. ACM.

[14] Mohammad Hajjat, Xin Sun, Yu-Wei Eric Sung, David Maltz, Sanjay
Rao, Kunwadee Sripanidkulchai, and Mohit Tawarmalani. Cloudward
bound: Planning for beneficial migration of enterprise applications to
the cloud. In Proceedings of ACM SIGCOMM, 2010.

[15] D. Joseph, A. Tavakoli, and I. Stoica. A policy-aware switching layer
for data centers. CCR, 2008.

[16] Li Erran Li, Michael F. Nowlan, Yang Richard Yang, and Ming Zhang.
Mosaic: Policy homomorphic network extension. In Proceedings of the
ACM Large-Scale Distributed Systems and Middleware (LADIS), 2010.

[17] J. F. Lynch. The equivalence of theorem proving and the interconnection
problem. ACM SIGDA Newsletter, 5(3):31–36, September 1975.

[18] Ankur Kumar Nayak, Alex Reimers, Nick Feamster, and Russ Clark.
Resonance: dynamic access control for enterprise networks. In Proceed-
ings of the 1st ACM workshop on Research on enterprise networking
(WREN), pages 11–18, New York, NY, USA, 2009. ACM.

[19] Openflow. The openflow switch specification. http://OpenFlowSwitch.
org.

[20] Andreas Pamboris, Nathan Farrington, Nelson Huang, Pardis Miri,
Sivasankar Radhakrishnan, Vikram Subramanya, and Amin Vahdat.
Portland: A scalable fault-tolerant layer 2 data center network fabric.
In ACM SIGCOMM, August 2009.

[21] Lucian Popa, Minlan Yu, Steven Y. Ko, Sylvia Ratnasamy, and Ion
Stoica. Cloudpolice: taking access control out of the network. In
Proceedings of the Ninth ACM SIGCOMM Hotnets Workshop, pages
7:1–7:6, New York, NY, USA, 2010. ACM.

[22] Yu-Wei Eric Sung, Sanjay G. Rao, Geoffrey G. Xie, and David A. Maltz.
Towards systematic design of enterprise networks. In Proceedings of
ACM CoNEXT, pages 1–12, New York, NY, USA, 2008. ACM.

[23] Voltaire Inc. Voltaire vantage 6024 switch. available at http://www.
voltaire.com/Products/Ethernet/voltaire vantage 6024, 2010.

[24] Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang, A. Greenberg,
Gisli Hjalmtysson, and Jennifer Rexford. On static reachability analysis
of ip networks. In Proceedings IEEE INFOCOM, volume 3, pages
2170–2183 vol. 3, March 2005.

X. PROOF OF NP-HARDNESS OF FEASIBILITY FOR FAT
TREE TOPOLOGY

Proof. For tree based routing, we show that the decision
problem is hard even if the network has a fat tree topology.

We reduce the NP-complete problem MONOTONE 3-SAT [8]
to our problem. From an instance of MONOTONE 3-SAT with
variables x j, 1 ≤ j ≤ n, and clauses Ti, 1 ≤ i ≤ p, with un-
negated variables and clauses Fi, p+1 ≤ i ≤ k, consisting of
negated variables we construct an instance of the k-paths-tree
problem as illustrated in Figure 6.

More formally, we define an instance of the k-paths-tree
problem as follows. Let Ti = xi,1 ∨ xi,2 ∨ xi,3 and Fi = xi,1 ∨
 xi,2∨ xi,3. Define

V = {R,MT ,MF ,dT ,dF ,x1,x2, . . . ,xn,

T1,T2, . . . ,Tp,Fp+1,Fp+2, . . . ,Fk}.

Let Ej = {x jdT ,x jdF}, 1≤ j≤ n. Finally, for 1≤ i≤ p define
E ′i = {Tixi,1,Tixi,2,Tixi,3} and for p+ 1 ≤ i ≤ k define E ′i =
{Fi xi,1,Fi xi,2,Fi xi,3}. Then let

E = {RMT ,RMF ,MTdT ,MFdF}
n⋃

j=1
Ej

p⋃

i=1
E ′i .

In the k-paths-tree instance let G = (V,E) be the graph. We
define the source nodes si as si = Ti if 1 ≤ i ≤ p and si = Fi
if p+1≤ i≤ k. The middle nodes are defined as mi =MT if
1≤ i≤ p and mi =MF if p+1≤ i≤ k.

Suppose there is a solution to the MONOTONE 3-SAT in-
stance. Consider one such solution S. We will construct a
solution P to the k-paths-tree instance. Put the edges MTR
and MFR into the set P. For every Ti there is some xi, j that
is true in S and so choose one such xi, j and put the edges
Tixi, j and xi, jMT into the set P. Similarly for every Fi there is
some xi, j that is false in S and so we choose one such xi, j and
put the edges Fixi, j and xi, jMF into the set P. It can be easily
checked that P forms a tree and the path from each source
node to R goes through its corresponding middle node. That
is, P is a solution to the k-paths-tree instance.

Now suppose we have a solution P to the k-paths-tree
instance. Consider any sources Ti and Fh. The path from Ti
to R in P is called a true path and must be of the form
Tixi, jdTMTR and the path from Fh to R in P is called a false
path and must be of the form Fhxh,sdFMFR and it must be
that xi, j 3= xh,s since otherwise xi, jdTMTRMFdFxh,s would be
a cycle in P contradicting the fact that P is a tree. Therefore
it makes sense to set the variable xi, j to True if there is a true
path through it in P and otherwise set it to False. Then since P
is a solution to the k-paths-tree instance, there must be a path
from every Ti and Fi to R in P and hence for every clause Ti
there is a variable xi, j that has been set to True and for every
clause Fh there is a variable xh,s set to False. That is we have
a solution to the MONOTONE 3-SAT instance. !

9

