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ABSTRACT
In this paper, we consider the multicast throughput opti-
mization problem in multi-hop wireless networks. Given a
source, and a set of receivers, we would like to find the set
of multicast trees and a schedule such that the rate that
the source can multicast to the receivers is maximized. We
consider two transmission models: broadcast and unicast.
In the broadcast model, a transmission is received by mul-
tiple downstream nodes in a multicast tree. In the unicast
model, a separate transmission has to be sent to each down-
stream node. We consider the fundamental constraint that
a node can not be involved in multiple communications at
the same time. We consider two multicast models: a sin-
gle multicast tree per session and multiple multicast tree
per session. In the single multicast tree case, (1) for the
unicast model, we show that the problem is NP-hard and
it is not approximable to a factor better than 1.5; we then
give a 1.5-approximation algorithm if all links have the same
data rate, a 5-approximation algorithm if all nodes have the
same transmission power and a 24-approximation algorithm
for a realistic heterogeneous ad hoc network where nodes
can have different transmission power. (2) for the broad-
cast model, we show that the problem is NP-hard and it is
not approximable to a factor better than 2; we then give a
simple 2-approximation algorithm to find the multicast tree
and the transmission schedule. In the multiple multicast
tree case, (1) for the unicast model, we show that the prob-
lem is APX-hard, and give a 1.5ρ-approximation where ρ
is the best approximation ratio of the minimal cost Steiner
tree problem; (2) for the broadcast model, our results in-
dicate that the problem is hard, may not be approximable
within a factor better than log(n) where n is the number of
multicast receivers. Our evaluation shows that the through-
put achieved by our algorithms is much better than both
the throughput achieved by using pruned shortest path tree
and by using optimal unicast.
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1. INTRODUCTION
Multicasting serves as an efficient communication mech-

anisms for point to multi-point applications. It is particu-
larly appealing for wireless networks due to the scarcity of
spectrum and due to the broadcast nature of wireless com-
munication. For example when omnidirectional antennas
are used, every transmission by a node can be received by
all nodes that lie within its communication range. Conse-
quently, if the multicast group membership includes multi-
ple nodes in the immediate communication vicinity of the
transmitting node, a single transmission suffices for reach-
ing all these receivers. This has resulted in the development
of multicast functions in the 3G data network infrastruc-
ture, spurred on by group communication applications such
as on-demand video streaming, group messaging and gam-
ing through hand-held wireless devices. 3G standard bodies
3GPP and 3GPP2 have been actively standardizing multi-
cast services [31, 30]. Multicasting is also an active area of
research in multi-hop wireless networks [3, 13, 9, 25, 6].
Multicasting in wireless ad hoc network is however not free

from the overhead of having to maintain the multicast tree
the links of which may break due to node mobility. Also the
lack of central coordination or authority that can keep track
of the node mobility (and hence topology changes) results
in communication and power overheads just for computing
and establishing multicast trees. These overheads must be
traded off against the spectrum efficiency and throughput
gains that result from using multicast over unicast. Most of
the previous work [3, 13, 9, 25] is for design of efficient pro-
tocols for multicasting in ad hoc networks to minimize the
overheads outlined above. In another line of research that is
present in the work of [33, 8, 27, 32] the main objective is to
compute multicast trees that minimize the total energy con-
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sumption for each unit of data transmission. However, not
much work has been done in characterizing the maximum
throughput gains that can be achieved over unicast by us-
ing multicast in wireless ad hoc networks. In this paper we
explore this fundamental throughput optimization problem.
A fundamental problem in multi-hop wireless networks is

that the throughput per node in a multi-hop wireless net-
works with n nodes scales as O(1/

√
n) [17, 26]. Multicast

is very appealing in enabling efficient communication be-
tween groups of nodes while minimizing the spectrum us-
age. In this paper, we consider the problem of optimiz-
ing the throughput for multicasting in a class of multi-hop
wireless networks. The communication model we consider
is the same as [1, 23, 2]. The main constraint imposed in
this model is that a node can not be involved in multiple
communications at the same time. We refer the violation
of this constraint as primary interference. As a result, in
this model, the problem of computing the multicast tree(s)
for which the throughput is maximized must also explicitly
deal with constraints imposed by link scheduling and hence
is very different from the multicasting problems considered
in the literature. A solution to our problem must include not
just the multicast tree(s) but also link schedules that sat-
isfy these constraints. In this paper, we consider a system
free of secondary interference (if links which do not share a
common node may not transmit at the same time, then we
say, the system has secondary interference). For our future
work, we will extend our solution to systems such as IEEE
802.11 which has secondary interference. Our results in this
paper serves as upper bounds for systems with secondary
interference.
The wireless media and MAC layer may or may not be

capable of supporting broadcast. An example for a network
that supports broadcast is where, each node transmits us-
ing a fixed frequency and omnidirectional antennas are used
(in this case, a node is subject to secondary interference).
An example for a network that does not support broadcast
is where, each node is configured to receive at a particu-
lar CDMA code. If broadcast is supported then a single
transmission suffices for sending a piece of data to all the
downstream nodes in a multicast tree. Otherwise if only
unicast is supported then a separate transmission is sent for
each downstream node in a multicast tree for each data item.
We consider both these possibilities in our model.
Given a particular source node, that wants to communi-

cate with a given set of receivers, the objective of this pa-
per is to determine the maximum rate at which the source
can multicast to the receivers. We consider particular node
deployment settings rather than random node deployment.
Traditionally the source and the receivers are connected with
a single multicast tree. Hence data arrives from the sender
to each receiver on a single path. However, the multicast
throughput can be improved if data from the sender to the
receiver is split over multiple paths. This corresponds to
splitting the data and sending it over multiple multicast
trees. In this case the sender and receivers may be connected
in more than one multicast tree. This has been considered
in the overlay network context [5, 15]. We consider both
these possibilities in our model.
Computing a throughput-optimal multicast tree can be

done easily in wired networks (not the overlay setting). This
is accomplished by adding links in order of non-increasing
bandwidth until in the resultant network the source is con-

nected to all receivers. Any spanning tree of the result-
ing network can be used as a multicast tree and achieves
a throughput of fmin where fmin is the bandwidth of the
last link added. This is because the rate of a multicast tree
(without the scheduling constraints) is the smallest band-
width link in the tree. Note that any optimal multicast tree
cannot have higher than fmin throughput since by construc-
tion links of bandwidth strictly greater than fmin do not
connect the source to all receivers. However, the problem
is much harder in the wireless context due to the schedul-
ing constraint where a node can not be involved in multiple
communications at the same time. In this paper, we show
that the problem is NP-hard in both the unicast and broad-
cast model, even for a geometric setting and where the link
rates (bandwidth) are a function of the link distance. In
particular we show that there does not exist a polynomial
time algorithm that can always find a solution that achieves
at least 2/3 of the optimal rate in the unicast model and half
of the optimal rate in the broadcast model. For the unicast
model, we give a 5 approximation algorithm to compute
a near optimal multicast tree where nodes have the same
transmission power. We then show how we can extend to
the case where nodes can have different transmission power.
For the broadcast model, we give a simple 2-approximation
algorithm. Note that this algorithm is the best possible
polynomial time algorithm in terms of estimating the worst
case throughput. We then consider the case where multiple
multicast tree can be used for one session. We show that the
problem for the unicast model is APX-hard and give a 1.5ρ-
approximation algorithm where ρ is the best approximation
ratio of the minimal cost Steiner tree problem. Our results
for the broadcast model indicates that the problem may be
hard to approximate within a factor better than log(n). All
our results except noted in the unsplittable unicast model,
apply in the general setting where transmission power of
nodes can be different. The focus of this paper is on a single
multicast session; we assume only primary interference and
all our algorithms are centralized.
The rest of the paper is organized as follows. We motivate

our problem using simple examples in Section 2. We state
our model and formulate our problem in Section 3. For the
unsplittable case, we present hardness results and approx-
imation algorithms for the unicast model and the broad-
cast model in Section 4 and 5 respectively. We study the
splittable case in Section 6. We evaluate our algorithms in
Section 7. We give related work in 8. We present our con-
clusions and discuss future work in Section 9.

2. MOTIVATION
For point to multi-point communication in wireline net-

works using multicast is evidently more efficient than the
brute force approach of sending the same information from
the source individually to each of the receivers. In this sec-
tion we show that this is also the case for wireless ad hoc net-
works in spite of fundamental communication constraints,
such as a node can not be involved in multiple communi-
cations (broadcast or unicast) at the same time. We show
that these gains hold even if the underlying wireless media
can only support unicast. We also show the advantage of
having multiple multicast trees over single multicast trees.

Illustrating the benefit of multicast over unicast
for wireless ad hoc networks-the single tree case:
In Figure 1, suppose u wants to send the same data to
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Figure 1: Benefit of Multicast Transmission Over
Unicast Transmission

v1, v2, · · · , vn. Link (u,w) has a data rate of 1 unit. All
other links have a data rate of n units. If unicast transmis-
sion is used to emulate multicast, then the same data has
to traverse link (u, w) n times. The achievable (multicast)
throughput between u and each vi is therefore at most 1/n.
If however even when the underlying wireless media does

not support broadcast but when communication happens
over a single multicast tree and the fundamental wireless
communication constraints are imposed, the multicast ses-
sion throughput is at least 1/2. This may be achieved as
follows. Consider a schedule over a sequence of time slots
(any node is involved in at most one communication in each
time slot) where only link (u,w) is active in a contiguous
sequence of n slots followed by the next n time slots ac-
tivating only the i-th link (w, vi) in the i-th slot. Since
each data item is sent only once over link (u, w) the claimed
bound is obtained. When the underlying wireless media is
capable of broadcast the multicast throughput can be as
large as n/(n+1). This is because now all the links (w, vi),
∀ i = 1, 2, · · · , n can be active simultaneously in a single
slot.

A fundamental observation: The above example shows
that the achievable unicast throughput can be arbitrarily
worse than the multicast throughput for point to multipoint
communications in wireless ad hoc networks. We now show
that this observation holds in almost all uniform rate wire-
less ad hoc networks, even if unicast is allowed to split the
flows between a sender and receiver over multiple paths.
Consider a network in which all links have the same rate R.
Due to the fundamental constraint that in the unicast mode
of communication, only one outgoing link incident on the
node can be active at any given time [23] the total flow go-
ing out of the links incident on the source node is at most R.
Hence the total throughput out of the source is at most R.
Since the source has to send one copy per receiver the opti-
mal throughput of at least one receiver is upper bounded by
R/n where n is the number of receivers. It can be seen that
the multicast rate, even when the underlying wireless media
only supports unicast, is at least R/d where d is the degree of
any multicast tree. Note that for bounded degree networks
this immediately implies a big gap between the achievable
point to multipoint communication throughput in the two
model. In unbounded degree networks, since there are a
large number of links, it is highly likely that a multicast
tree of small degree exists thus also implying a big gap1.

1 Note that the above simple relationship does not hold for
non-uniform rate network. Nonetheless, we observe a big
gap in our simulation in Section 7.
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Figure 2: Benefit of Multiple Trees over a Single
Tree

The above observation suggests that these big throughput
gaps are likely, however one natural question is whether we
can find efficient multicast trees that approximate the op-
timal throughput. Note that in the uniform link rate case
this problem is one of minimizing the degree of the multicast
tree, a well studied problem. However in non-uniform link
rate case (especially when the rates are distance dependent
as stipulated by the underlying wireless channel) some more
innovations are needed both in determining bounds on how
close it is possible to approximate the optimal solution and
in designing efficient algorithms that approximate the opti-
mal solution well. This work addresses these questions and
others regarding the benefit of multiple multicast trees over
single multicast tree.

Illustrating the benefit of multiple multicast tree
over single multicast tree: We see that multicast has a
clear advantage over unicast for point to multi-point com-
munication. We now show the advantage of using multiple
multicast trees. For simplicity, we use a single receiver. In
Figure 2, u wants to send data to v. All links have a data
rate of 1 unit. If we restrict multicast to be a single tree (in
this case, it is a path), then the achievable throughput is at
most 1/2 unit. This is because if for instance path u, w1, v is
used for multicasting, then at least one of the links (u,w1)
and (w1, v) is activated at most half of the time. If we allow
multiple multicast trees, then the achievable throughput is
at least 1 unit. This can be achieved as follows. The data
to be sent is split into two portions of equal size and the
portions are routed over two multicast trees (paths in this
case): u,w1, v and u,w2, v. Consider a sequence of slots such
that link (u,w1) and link (w2, v) are activated in odd slots;
and link (u,w2) and link (w1, v) are activated in even slots.
Hence the source is able to send data at the rate of one unit
and the receivers also receive data at the same rate. It is
easy to see that we can replicate the structure to create ex-
amples for more than one receivers where multiple multicast
trees have a clear advantage.

3. MODEL AND PROBLEM FORMULATION
We consider a multi-hop wireless network with n nodes.

The nodes communicate with each other via wireless links.
Each node in the network can communicate directly with a
subset of the other nodes in a network. Any time a node u
can transmit directly to node v, we represent this fact by a
directed edge (link) from node u to node v. We represent
the nodes in the network and the possible communications
among nodes by a directed graph G = (V,E). Here V rep-
resents the set of nodes in the network and E the set of
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directed edges (links) in the network. We assume that there
are m links in the network. We do not require that the links
be bidirectional. We assume we are given a set of nodes
Υ ⊆ V where one node s ∈ Υ is designated as the source
and the other nodes in Υ are designated as receivers. We
assume that system operates in a synchronous time-slotted
mode. For a system that operates in an asynchronous mode,
the results in this paper can provide upper bounds on its per-
formance. We use N(v) to denote the set of links incident on
node v. Let σ(e) represent the path loss on link e. This path
loss depends on the distance d(e) of the receiving end from
the sending end of link e. Specifically σ(e) = 1

d(e)β where

β ∈ [2, 4] [29]. Thus if P (e) is the transmitted power used
by the node at the sending end of link e then the received

power at the node on the other end is P = P (e)

d(e)β .

3.1 Interference Model
The interference model that we consider is a synchronous

time-slotted joint TDMA/CDMA system where the nodes
use unique signal sequences. This is one of the systems con-
sidered in [11, 18]. Another view of this system is to view
the communication as taking place in a spread spectrum
mode. We assume that the hopping sequences for different
link transmissions in the same neighborhood is designed so
that there is no interference between different link trans-
missions in the same time slot. However, we require that
a given node can only be involved in at most one commu-
nication in any time slot. Note that this communication
may be a broadcast. If a solution requires a node to partici-
pate in multiple communications in the same time slot then
we say that the solution has a primary conflict. Therefore
we are required to construct primary conflict-free schedules.
We assume that a total bandwidth of W Hertz is available
for use in this multi-hop network. Since we assume that two
primary conflict-free link transmissions do not interfere with
each other, we assume that each link transmission uses the
entire bandwidth W . We also assume that each link can
be modeled as an Additive White Gaussian Noise (AWGN)
channel [10] with a noise spectral density N0 so that the
theoretical upper bound on the rate R(e) obtained at the
receiver for link e, where the sender for link e transmits at
power e is given by

R(e) = W log2(1 +
σ(e)P (e)

N0W
) bits/second.

Recall that σ(e) = 1
d(e)β . Thus

R(e) =W log2(1 +
P (e)/d(e)β

N0W
) bits/second.

3.2 Problem Formulation
The Multicast Throughput Optimization Problem (MTOP)

is divided into 4 categories: based on whether the underly-
ing physical (wireless) media supports broadcast or not and
whether the solution is a single multicast tree or multiple
multicast trees (the former refers to unsplittable multicast
and the latter to splittable multicast). From here on we
will refer to these problems by the abbreviation YXMTOP
where X is B or U for broadcast or unicast and Y is U
or S for unsplittable or splittable multicast. Thus for ex-
ample UBMTOP refers to the problem of computing the
best single multicast tree when the physical media supports
broadcast. A solution to the MTOP problem is designated

by a collection of tuples (S1, T1), (S2, T2), . . . (Sp, Tp). Here
Ti is a multicast tree and each si(t) ∈ Si is a subset of links
of Ti for every time slot t = 0, 1, 2, . . . such that in each
slot t the set of links ∪isi(t) have no primary conflicts. Let
s(t) = ∪isi(t) and S denote the link schedule over time:
s(0), s(1), s(2), . . . . We assume that S is cyclic with some
bounded cycle length. Let γ denote the set of links in ∪iTi.
Thus we can define for every link e ∈ γ its frequency f(e) in
S, defined as the fraction of slots in which link e is present
in S. For the UBMTOP or the UUMTOP problem (here
p = 1) the maximum multicast throughput is then given by
mine∈γ f(e)R(e). Recall that R(e) is the maximum possible
rate for link e. Likewise for the SBMTOP or the SUM-
TOP problem we define the multicast rate Ri of a Tree
Ti, 1 ≤ i ≤ p to be Ri = mine∈Ti fi(e)R(e), where fi(e)
is the fraction of slots in which link e is present in Si. Then
for these problems the maximum multicast throughput is
given by

P
i Ri. This is because data from the source can

arrive independently over these p trees at rates R1, R2, . . . Rp

respectively to each receiver.

4. THE UNSPLITTABLE UNICAST MODEL
In this section we show that the UUMTOP cannot be

approximated to a factor better than 3
2
(66.66% of the op-

timal). When all the nodes of the ad hoc network use the
same power we provide an efficient polynomial time algo-
rithm for estimating the maximum multicast throughput to
within a factor of 20% of the optimal. We then extend our
algorithm to the case where nodes can have different trans-
mission powers. In practice we believe that the performance
of the algorithm is much better than its worst case behavior.
To illustrate our ideas we first show the hardness result

in an abstract model where the link rates are independent
of the distance and the transmit power. In this abstract
model we also design an efficient approximation algorithm
whose performance achieves the best possible bound, as de-
termined by our hardness results. We then extend these re-
sults to the more realistic setting where the link rates are de-
termined based on distances for an Additive White Gaussian
Noise (AWGN) channel (as described in Section 3). For the
same setting we then design a 5-approximation algorithm
when all nodes have the same power. Finally, we show how
we can extend our results to the case where nodes can have
different transmission power. We consider a realistic hetero-
geneous ad hoc network setting as an example and give a
24-approximation algorithm.
Before we delve into the results, we first give some useful

definitions and facts.

Definition 1. Degree of a graph G is the maximum num-
ber of links incident on any node of G.

Remark 1. Undirected graph: In this section we as-
sume that all nodes have the same power. All our approx-
imation and hardness results apply under this restriction.
Note that under this assumption the two directed links be-
tween any two nodes are symmetric (have the same rate).
Hence in this section we assume that the underlying graph
for the given ad hoc network is undirected.

Remark 2. Unit disk graphs [7]: Since all nodes are
assumed to have the same power P they should all have the
same range. Thus we can assume that there is a critical
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distance D such that there is a link e ∈ E between two nodes
if and only if they are at most D distance apart. Thus the
set of ad hoc network considered here include all unit disk
graphs for all values of D.

Recall that a solution to the MTOP problem is designated
by a collection of tuples (S1, T1), (S2, T2), . . . (Sp, Tp). Here
Ti is a multicast tree and Si is the schedule of its links. Note
that in the unsplittable model p = 1. Hence in this section
we will denote the solution by a single tuple (S,T ).

Remark 3. Primary conflict free schedules in the
unicast model: Note that if S is a primary conflict free
schedule of links of a tree T of G over time (with s(t) ∈ S the
primary conflict free schedule for time slot t), then s(t) ∈ S
the schedule at time slot t can contain at most one link of
T incident on any node v. Thus if f(e) is the fraction of
slots of S in which link e is present then for any node v we
must have

P
e∈N(v)∩T f(e) ≤ 1. Recall that N(v) is the set

of links incident on node v. In particular at least one link e
must satisfy f(e) ≤ 1/δ where δ is the degree of T .

We will rely on the following result [24] about edge color-
ing of trees.

Theorem 1. [24] Any tree with degree δ can be edge col-
ored with δ colors.

The above result of [24] is more general and applies to any
bipartite graph and even if there are parallel links.

Remark 4. The above result is relevant for the UUM-
TOP since it implies that when all the link rates are at least
(equal to) R then for any multicast tree T the maximum
multicast throughput is at least (exactly) R/δ, where δ is
the degree of T . This is because by Remark 3 this rate is
mine Rf(e) ≤ R/δ if all link rates are R. Also if C is a δ
edge coloring of T then a primary conflict free schedule S can
be defined by scheduling every color class (the links therein)
of C once every δ time slots. Note that in this schedule S,
link e is present in at least 1/δ fraction of the slots. Thus
implying for this S the multicast throughput of T is at least
R/δ.

4.1 Tight Results for Single Rate Ad Hoc
Networks

In this section, we consider an abstract model where all
the link rates are equal to a common rate R. We show
that there does not exist any polynomial algorithm that can
estimate the multicast rate better than 2/3 of the optimal
in the worst case. We then give an approximation algorithm
that estimate the multicast rate to within 2/3 of the optimal
in the worst case. Therefore, our results are tight for this
special case.

Lemma 1. In the abstract model the maximum multicast
throughput for the UUMTOP cannot be approximated to within
66.67% of the optimal multicast rate unless P=NP.

Proof. We show a reduction from the Hamiltonian Path
problem which is known to be NP hard even for points in
the plane and even for unit disk graphs [14, 19]. Given an
instance G = (V,E) of the Hamiltonian Path problem we
create an instance of the UUMTOP in the abstract model by
setting the rates of all links e ∈ E to a common value R. We

require a multicast session consisting of all the nodes v ∈ V ,
one of them is designated to be the sender and all others are
designated as receivers. We claim that the optimal multicast
throughput of this instance of the UUMTOP is R/2 if and
only if there is a Hamiltonian path in G. In fact we can claim
something stronger that in case there is no Hamiltonian path
in G then this rate is at most R/3. This however implies that
we cannot compute the maximum multicast throughput for
the UUMTOP to within 66.67% of the optimal multicast
rate (unless P = NP ), because otherwise we will be able to
tell whether G has a Hamiltonian path in polynomial time.
We now establish our claims. Let G have a Hamiltonian
path T . Then we can use T as the multicast tree for the
UUMTOP instance. Note that T has degree 2. Thus by
Remark 4 the multicast rate of T is R/2. If G does not have
a Hamiltonian path then any multicast tree of G must have
degree at least 3. Hence the maximum achievable multicast
throughput is at most R/3, thus establishing the result.

Now we show an algorithm that can compute the maxi-
mummulticast throughput for the UUMTOP in the abstract
model to within 66.66% of the optimal multicast rate. Note
that if we can find a multicast tree of the given wireless
ad hoc network G of degree δ then we have a solution (see
Remark 4) that achieves rate R/δ. Thus we need to find
a multicast tree of minimum degree of G. Note that this
is a hard problem but however it can be approximated to
within an additive factor of plus one of the optimal. More
specifically given a graph G and a set of terminals, a steiner
tree of degree δ+1 can be found in polynomial time where δ
is the lowest degree of any steiner tree of G [12]. Using this
algorithm we can estimate the maximum multicast through-
put for this problem to within a fraction δ

δ+1
≥ 0.666, since

δ the degree of the optimal multicast tree has to be at least
2. Thus we can claim:

Lemma 2. In the abstract model the maximum multicast
throughput for the UUMTOP can be approximated to within
66.66% of the optimal multicast rate.

From Lemma 1 and Lemma 2, we know that the algorithm
in [12] is the best possible polynomial time algorithm in
terms of worst case performance unless P = NP .

4.2 Hardness Results for the AWGN Channel
Model

We extend our hardness result to the Additive White
Gaussian Noise (AWGN) channel model(as described in Sec-
tion 3). In our proofs below we will assume that all nodes
have power P . Note that this also implies that the under-
lying graphs are unit disk graphs (see Remark 2) for all
possible values of D. Recall that if d(e) is the length of a
link (distance between its end-points) then the rate of this

link R(e) is given by R(e) = W log2(1 + P/d(e)β

N0W
). Since

P,N0,W are fixed we can write this as R(e) = W log2(1 +
C1/d(e)

β) for some fixed value C1. In the following we will
use dmax and dmin to denote the largest and smallest link
lengths (maxe∈E d(e) and mine∈E d(e)) respectively. In all
our proofs we can safely assume that dmin > 0.

Theorem 2. In the AWGN model, the maximum multi-
cast throughput for the UUMTOP cannot be approximated to
within 66.67% of the optimal multicast rate unless P=NP.
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Proof. We use the same reduction as in proof of Lemma 1
from the Hamiltonian Path problem for points in the plane
(for the unit disk graph). Let the given graph have a Hamil-
tonian path T . Then when we use T as the multicast tree
for the UUMTOP instance then the minimum multicast
throughput we can get is at least

W

2
log2(1 +

C1

dβ
max

).

This follows since in the worst case all links in T may have
rate W log2(1 + C1

d
β
max

) and since every node has degree 2

in T . On the other hand if the given graph does not have
a Hamiltonian path then any multicast tree T must have
degree 3 and hence the maximum multicast throughput is
at most

W

3
log2(1 +

C1

dβ
min

).

This is because in the best case all links of all nodes of degree
3 in T may have rate W log2(1 +

C1
d

β
min

). Note that if

α
W

2
log2(1 +

C1

dβ
max

) ≥ W

3
log2(1 +

C1

dβ
min

)

then any approximation algorithm that can estimate the
maximum multicast throughput for the UUMTOP within
µ fraction (µ > α) of the optimal throughput can be used
to tell if there is a Hamiltonian path in G. Hence such an
approximation algorithm cannot exist unless P = NP . We
now show that it is possible to scale the distances in G such
that α = 2

3
. This therefore implies the claimed bound.

Note that one can scale all distances d(e) to kd(e) by
scaling the coordinates of the location of all nodes v ∈ V by
multiplying them by k. We also adjust D the unit disk dis-
tance to kD (see Remark 2). Note that, the received signal
strength and noise from other transmissions will also scale
so that the signal to noise ratio will not change (here we as-
sume that the additive white noise is negligible). Therefore,
there is no change in the links in the graph. This scaling
therefore does not affect any paths in the graph and in par-
ticular the Hamiltonian path. In the new graph the new
values for dmax and dmin are kdmax and kdmin respectively.
Let

k =
C

1
β

1 d2
min

θd3
max

for some large value θ. Note that then

W
3
log2(1 +

C1
(kdmin)β )

W
2
log2(1 +

C1
(kdmax)β )

=
log2(1 + p3βθβ)2

log2(1 + p2βθβ)3

where p = dmax
dmin

. For large values of θ this ratio approaches

4/6 = 2/3 since

log2(p
6βθ2β)

log2(p
6βθ3β)

=
log2 p

6β + 2β log2 θ

log2 p
6β + 3β log2 θ

.

From this it follows that α = 2
3
.

4.3 A 5-Approximation Algorithm For Ad Hoc
Networks with Uniform Transmission Power

Now we design an approximation algorithm for the UUM-
TOP for unit disk graphs. Given a unit disk graph G, the

algorithm runs a Kruskal like minimum spanning tree algo-
rithm by sorting the links based on their lengths. It then
considers the links in non-decreasing order of their length.
It starts out with an empty tree T . At any time when con-
sidering link e of G, if link e does not form a cycle in T
it adds e to T . The algorithm pauses at the first instance
when all the terminals (multicast receivers and sender) are
in one connected component of the tree T formed so far. Let
the last link e to be added at this moment has length d(e).
The algorithm then continues the Kruskal algorithm for all
remaining unconsidered links of length d(e). At the point
when the Kruskal algorithm stops, let V ′ ⊆ V be the set of
vertices in the connected component of the tree T that con-
tains all the terminals. Let G′ = (V ′, E′) be the subgraph of
G that is induced by the vertices V ′ (contains all the links
of G that are between pairs of nodes in V ′). The algorithm
then finds a degree 5 minimum spanning tree (cost is link
length) of G′, using a result of [28]. This tree is output as
the multicast tree of G. We first show that the algorithm
can be implemented in polynomial time and then we will
show its performance bound.

Lemma 3. The algorithm outputs a multicast tree of G of
degree at most 5 in polynomial time.

Proof. Consider the Euclidean graph over the vertices
V ′ where there is a link between every pair of points u, v ∈
V ′ of length equal to the Euclidean distance between u and
v. Note that the links of G′ are a subset of the links in this
Euclidean graph. Recall that by construction all nodes (V ′)
in this Euclidean graph can be connected into one compo-
nent by just using the links of length d(e) or less. Consider
any (MST) minimum spanning tree (cost is link length) of
this Euclidean graph. It cannot have any link of length ex-
ceeding d(e), because if (u, v) is one such link then consider
the two connected components of the MST obtained by re-
moving link (u, v) from the MST. There must be a link of
length at most d(e) connecting these connected components
in the Euclidean graph because by construction all nodes
in V ′ can be connected into one component by using just
the links of length d(e) or smaller. Let (x, y) be one such
link. Then by adding (x, y) to the MST and by removing
link (u, v) in the resulting cycle we get another MST of less
cost a contradiction. Thus any MST of the Euclidean graph
must only include the links of G′. By the result of [28] a
MST of any Euclidean graph of degree at most 5 exists and
can be computed in polynomial time. Let T be one such
tree. Then T is a spanning tree of G′ and hence a multicast
tree of G and has degree at most 5. Note that T is output
by our algorithm.

Theorem 3. The multicast throughput of the tree output
by the algorithm is at least 20% of the optimal multicast
throughput.

Proof. Let d(e) be the length of the last link added by
the Kruskal algorithm at which point all the terminals (mul-
ticast receivers and sender) are in one connected component
for the first time. This implies that it is not possible to con-
nect all the terminals using only the set of links of length
strictly less than d(e). Hence the optimal multicast tree
must use a link of length at least d(e). Thus the optimal
multicast rate is at most ROPT ≤ W log2(1 + C1/d(e)

β).
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Note that by Lemma 3 the multicast tree output by the
algorithm has only links of length at most d(e) and it has
degree at most 5. Hence the rate of all links in this tree
is at least R ≥ W log2(1 + C1/d(e)

β). By Remark 4 this
implies that the multicast throughput of the tree output by
the algorithm is at least

W

5
log2(1 +

C1

d(e)β
) ≥ ROPT

5

Note also that the method given in Remark 4 can be used
to compute the associated primary conflict free schedule in
polynomial time, thus establishing the result.

4.4 Extension to Ad Hoc Networks with
Non-uniform Transmission Power

For ease of explanation, we illustrate our algorithm us-
ing a realistic ad hoc network setting. We assume λ ≤
Pmax/Pmin ≤ 16 where Pmax is the maximum transmis-
sion power and Pmin is the minimal transmission power,
and the path loss exponent β = 4. This power setting is
realistic, e.g. cisco350 AP’s maximum transmission power
is 100mW and minimal transmission power for low-power
setting is typically above 10mW.
For ease of presentation we omit the details and only

present a sketch of our arguments for the algorithm and
its analysis. Our algorithm has two steps. In the first step
we use a binary search to find the minimal rate Rc such that
the graph G′

c constructed below connects all the terminals of
the multicast session. For a given Rc, let dc be the distance
such that Rc =W log2(1+Pmin/(N0Wd4

c)). We construct a
graph Gc = (V,Ec) where an edge exists between two nodes
iff the distance between them is no greater than dc. If Gc

connects all the terminals, then we complete the first step. If
not, we add all the remaining edges such that the data rate
of these edges is no smaller than Rc. Call the resulting graph
G′

c. If G
′
c connects all the terminals, we complete our binary

search. In the second step, we run the 5-approximation algo-
rithm for each connected component in Gc. As a result, we
get a tree Ti for each connected component i. Let K be the
number of connected components. We then add edges in G′

c

to connect Ti,∀i = 1, 2, · · · ,K into one tree T . We observe
that the optimal multicast rate ROPT ≤ Rc since it is not
possible to connect all the terminals using only links with
rate larger Rc. We also observe that there are at most 19
neighboring components (with λ ≤ 16 and β = 4, all edges
in G′

c are of length less than 2dc and nodes of any two dis-
tinct connected components are at least dc apart. Z. Gaspar
and T. Tarnai in [16] gives an upper bound 19. ). Observe
that Gc is a Euclidean graph, thus the maximal node degree
of any Ti is at most 5. Therefore, the maximal degree of
the resulting multicast tree T is at most 24. By Remark 4,
the throughput of this algorithm is at least Rc/24. In other
words, this algorithm is 24-approximation algorithm for this
realistic setting of ad hoc networks. It is easy to see that
the algorithm can be extended to other power settings. All
that changes is the approximation factor.

5. THE UNSPLITTABLE BROADCAST
MODEL

In this section we show that the UBMTOP cannot be ap-
proximated to a factor better than 2 (50% of the optimal).
We also provide a matching upper bound by designing an
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Figure 3: The UBMTOP problem is not approx-
imable within a factor of 2

efficient polynomial time algorithm for estimating the max-
imum multicast throughput to within a factor of 50% of the
optimal. In practice we believe that the performance of the
algorithm is much better than its worst case behavior. We
show our results for the setting when the links may have
arbitrary rate setting. Our results also hold in the more re-
alistic setting where the link rates are distance dependent as
in AWGN channel. However, for lack of space we omit the
details. Unlike the unicast model where at most one link
incident on a node can be active, in the broadcast model,
all outgoing links of a node can be active. However, the
same data must be sent to each of the downstream receivers
at the same time. We assume a node can choose a subset
of downstream receivers to receive a transmission. Other
downstream nodes can receive a different transmission from
a different sender at the same time. This capability can be
achieved by beam-forming directional antenna or each node
is scheduled to receive a transmission with a predetermined
CDMA code. We remark that we do not claim that this
model will be used in practice. However, results obtained
from this model serve as a upper bound for practical wireless
networks such as 802.11 multi-hop wireless networks when
we consider primary interference only. For our future work,
we would like to incorporate secondary interference in our
model.

5.1 Hardness Results

Theorem 4. The throughput of the UBMTOP problem
can not be approximated to a factor strictly better than 50%
of the optimal multicast rate unless P=NP.

Proof. We show that the UBMTOP problem is NP-hard
via a reduction from 3SAT. Given an instance of a 3SAT
problem, we create a gadget as illustrated in Figure 3. There
is a source node u (sender). For each variable xi and its
negation x̄i, we create a subtree rooted at vi. We create
three other nodes wi

1, wi
2, and wi

3. We connect vi to wi
1

and wi
3. We connect both wi

1 and wi
3 to wi

2. We create a
node for each clause and set these nodes to be receivers. For
each clause node with variable xi, we connect it to wi

1. For
each clause node with variable x̄i, we connect it to wi

3. We
connect the source node u to each vi. All links have a rate
of c except the three links (u, vi), (wi

1, wi
2) and (wi

2, wi
3).

These three links have a rate of infinity (much larger than
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c). We claim that a truth assignment to the given 3SAT
formula exists if and only if there exists a multicast tree that
achieves an optimal throughput of c. Let T be an optimal
tree that achieves this rate. Let vi be a node such that
some clause node uses vi to get its data from u. Note that
in T node u must broadcast to node vi using link (u, vi).
Also note that in T node vi must broadcast to at least one
node wi

1 and wi
3. In other words T must contain at least

one of the two links (vi, wi
1) and (vi, wi

3). Note that if
T contains link (vi, wi

1) then node wi
1 cannot broadcast

to any clause nodes connected to it. This is because node
wi

1 can only be involved in at most one communication at
any given time (either broadcasting or receiving data on
link (vi, wi

1) and hence the achieved multicast throughput
would be c/2 < c. This implies that if T contains link
(vi, wi

1) then it does not contain any link that connects wi
1

to any clause node with variable xi. Likewise it can be shown
that if T contains link (vi, wi

3) then it does not contain any
link that connects wi

3 to any clause node with variable x̄i.
Thus T contains exactly one of the two links (vi, wi

1) and
(vi, wi

3). Note that if it contains link (vi, wi
1) then it must

also contain links (wi
1, wi

2) and (wi
2, wi

3) and node wi
3

can cover (broadcast) all the clause nodes connected to it.
This is equivalent to x̄i being true. Likewise the other case
corresponds to xi being true. Hence given the tree T we
can find a satisfying assignment. By reversing the process,
given a satisfying assignment we can construct the tree T
that achieves a multicast rate of c. For instance if in the
satisfying assignment x̄i is true then the tree T uses the
path u, vi, wi

1, wi
2, wi

3 and in addition contain links joining
node wi

3 to some of the clause nodes connected to it (that
are not covered by any other variable).

5.2 A 2-Approximation Algorithm
We sort the links by rate. We add one link at a time

in non-increasing order until the source connects to all re-
ceivers. Denote this subgraph as G′. We denote the rate of
the edge last added as R∗. We then find a tree T in G′ by
pruning all the unnecessary edges.

Theorem 5. The multicast throughput of the tree output
by the algorithm is at least 50% of the optimal multicast
throughput.

Proof. Let the source in the tree T be at level 0. A node
is at level i if it is i hop away from the source in T . Let the
maximal levels in T be h. In a primary conflict free schedule
for the links of T nodes at alternate levels are scheduled to
broadcast at the same time. Thus a set of links L1 is active
in one slot followed by the remaining links L2 in T in the
next slot, and this schedule is repeated forever. Thus in this
primary conflict free schedule each link e is active in half of
the slots (f(e) = 0.5). Let R1 be the minimum rate among
links in L1 and R2 the minimum rate among links in L2.
Note that by construction R1, R2 ≥ R∗. Thus the multicast
rate for this schedule is mine∈T f(e)R(e) ≥ R∗/2. Note
that the optimal multicat tree must contain a link of rate at
most R∗ since links with rate strictly more than R∗ cannot
connect source to all receivers. Thus the optimal multicast
rate can not be better than R∗. Therefore, our algorithm
is a 2-approximation algorithm. Given our hardness result,
this algorithm is the best possible in terms of worse case.

6. THE SPLITTABLE MODEL
In the splittable model we allow the data from the sender

to the receiver to arrive on multiple paths. This is equiv-
alent to the sender using multiple multicast trees to send
its data. Recall that a solution to these problems is a col-
lection of tuples (S1, T1), (S2, T2), . . . (Sp, Tp). Here Ti is a
multicast tree and each si(t) ∈ Si is a subset of links of Ti

for every time slot t = 0, 1, 2, . . . such that in each slot t
the set of links ∪isi(t) have no primary conflicts. We let
s(t) = ∪isi(t) and S denote the links schedule over time
s(0), s(1), s(2), . . . . Recall that in the splittable model we
can define the multicast rate Ri of a Tree Ti, 1 ≤ i ≤ p
to be Ri = mine∈Ti fi(e)R(e), where fi(e) is the fraction of
slots in which link e is present in Si. Then for these prob-
lems the maximum multicast throughput is given by

P
i Ri.

This is because data from the source can arrive indepen-
dently over these p trees at rates R1, R2, . . . Rp respectively
to each receiver.
We now give an equivalent definition of the problem in

terms of the rates that will help us formulate a linear pro-
gram for solving it. Let γ denote the set of all possible
multicast trees over the terminals Υ. Obviously this is a
large set. Let xT ≥ 0 be the data rate assigned by the solu-
tion to multicast tree T ∈ γ. Note that our objective is to
maximize

P
T∈γ xT . Let ST be the link schedule associated

with tree T . Note that for an e ∈ T its frequency fT (e) in
ST must be at least xT /R(e). Recall that R(e) is the rate
of link e.
In the case that unicast is used by the underlying wireless

media, then at most one link incident on a node v can be
active in S in any given time slot. This translates into the
following linear constraint: (N(v) is the set of links incident
on node v in G)

X

e∈N(v)

X

T :e∈T

xT /R(e) ≤ 1, ∀v ∈ V. (1)

In the case of broadcast, consider a node v (which is not
the sender) in a tree T ∈ γ (with xT > 0) Let u be the par-
ent node of v and let u1, u2 . . . uk be the children of v in T .
Then in order to avoid primary conflicts the link (u, v) can-
not be active with any of the links (v, u1), (v, u2) . . . (v, uk)
in any given time slot when broadcast is used. Here there
are two possible models: when node v broadcasts on tree
T the rate at which data is sent on each outgoing link
(v, u1), (v, u2) . . . (v, uk) is the smallest rate among the rates
R((v, u1)), R((v, u2)) . . . R((v, uk)) or each link (v, ui) is still
able to transmit data at rate R((v, ui)) (for instance when
an antenna array is used for broadcast). For ease of presen-
tation we will only consider the latter model. Our results
can be extended to the other model but for lack of space we
leave the details for a full paper. In the following we denote
Rc

T (v) to be the minimum rate of the links to the children
of node v in tree T thus Rc

T (v) = min(v,u)∈T R((v, u)). If
no edge (v, u) exists in T then we set Rc

T (v) = ∞. Likewise
we denote Rp

T (v) to be the rate of the link to the parent of
node v in tree T . If no edge (u, v) exists in T then we set
Rp

T (v) = ∞.
Thus we have the following linear constraint for broadcast:

X

T :v∈T

(xT /R
c
T (v) + xT /R

p
T (v)) ≤ 1, ∀v ∈ V. (2)
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We now design efficient algorithms for the two models.

6.1 The Splittable Unicast Model
Here we are interested in finding a collection of multicast

trees and their schedule so as to maximize the total multi-
cast rate, when broadcast is not allowed by the underlying
wireless media. Recall that Equation (1) is a necessary con-
dition for a schedule to be primary conflict free. However it
may not be sufficient. Although it can be shown [18] that
if a set of xT values satisfy this constraint then by scal-
ing down these values by a factor of 2/3 we are guaranteed
that a schedule that is primary conflict free can be found.
However this may yield a solution which may not be opti-
mal but is guaranteed to be within 66.66% of the optimal.
The resulting primary conflict free schedule is found by an
edge coloring of the resulting graph [23] and we leave the
details for a full paper. This is the approach we follow. We
formulate the following linear program (LP):

Maximize
X

T∈γ

xT (3)

subject to
X

e∈N(v)

X

T :e∈T

xT /R(e) ≤ 1, ∀v ∈ V (4)

xT ≥ 0,∀T ∈ γ (5)

The dual of the linear program is as follows.

Minimize
X

v∈V

yv (6)

subject to

X

v∈V

X

e∈N(v)∩T

yv/R(e) ≥ 1, ∀T ∈ γ (7)

yv ≥ 0,∀v ∈ V (8)

Note that a feasible solution to the dual must satisfy the
constraint (7). Note that this constraint can be rewritten
as:

X

e=(u,v)∈T

(yu + yv)/R(e) ≥ 1,∀T ∈ γ.

Therefore, the dual LP is the following problem: Assign non-
negative weights yv to the nodes of the network such that
any steiner (multicast) tree of the network for terminals Υ
has total cost at least 1, and a linear function of the node
weight is minimized. Here the cost of a link e = (u, v) is de-
fined as (yu +yv)/R(e). Given a ρ approximation algorithm
of Steiner tree, we achieve an approximation algorithm of
1.5ρ for the UUMTOP.

Theorem 6. The LP (3) can be solved within a factor ρ
in polynomial time.

Proof. We only give a proof sketch for lack of space.
The proof is very much along the line of the proof of [20].
We present the proof for completeness. The idea is to solve
the LP using the ellipsoid method [22]. We do this by first
turning the dual LP into an LP where we are only inter-
ested in checking for feasibility. This is done using a binary

search over the possible values for the objective function (6).
Specifically, we add the inequality

X

v∈V

yv ≤ R.

to the dual LP, remove the objective function (6) and look
for the smallest value of R for which the modified dual LP
is feasible. If we had an optimal algorithm A for computing
the minimum cost steiner tree the feasibility check could
have been done as follows. For a given set of yv values we
can compute the minimum cost steiner tree (using the edge
costs described earlier) using A. If the cost of this steiner
tree is at least one then the given yv values are feasible.
Otherwise we have a steiner tree (the minimum cost steiner
tree) for which the constraints are violated. This tree then
becomes a separation constraint for the ellipsoid algorithm
or in other words A can be used as a separation oracle for
the ellipsoid algorithm on the feasibility LP.
Unfortunately an optimal algorithm A for computing the

minimum cost steiner tree is unlikely (unless P = NP). Now
let us assume that A is the best possible ρ approximation
algorithm for computing the minimum cost steiner tree. In
this case when A says that the minimum cost steiner tree is
of cost at least one, then the solution may not be feasible
since there is a possibility that the actual cost of the mini-
mum cost steiner tree is only 1/ρ. However this means that
if we replace every yv by ρyv then we have a feasible solution
to the LP. Also note that if A says that the minimum cost
steiner tree is of cost less than one then we are guaranteed
that the solution is not feasible. Thus if R∗ is the minimum
value of R for which the algorithm decides that the linear
program is feasible, then we know that the modified dual
linear program is infeasible for R∗ − ε (where ε depends on
the precision of the binary search) , and is feasible for R∗.
Therefore, the optimum solution of the dual program (6) is
between R∗ and ρR∗.
Note that the above algorithm lets us estimate the ob-

jective function of the primal LP (3) within a factor ρ, but
it doesn’t give us the trees over which this solution can be
obtained. This is done by using a technique of [4]. Let χ be
the set of all trees which are generated as part of running the
ellipsoid algorithm (for which the constraints of the modi-
fied dual are violated). Since the ellipsoid algorithm runs in
polynomial time χ has a polynomial size. It can be shown
that the primal LP (3) doesn’t change if we set all xT = 0
for all T /∈ χ. Thus the modified primal LP (3) now has a
polynomial size and can be solved in polynomial time (using
any LP solver) to find the set of xT values (for T ∈ χ) for
which the primal LP achieves an objective value of R∗. Note
that the optimal objective value of the primal is guaranteed
to be at most ρR∗. Thus we can find in polynomial time
a set of multicast trees and their rates xT that satisfy the
constraints of the primal LP (3) and that approximate the
optimum objective value to within a factor ρ.

Theorem 7. There is a 1.5ρ approximation algorithm for
solving the UUTOP.

Proof. As described before by scaling down all the xT

values, obtained by solving the LP (3), by a factor of 2/3 we
are guaranteed a solution that can be scheduled and in addi-
tion the schedule can be found by an edge coloring approach.
Thus overall the algorithm achieves an approximation ratio
of 1.5ρ.
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Theorem 8. The UUTOP problem is NP-hard.

We omit the proof of the theorem for lack of space. It
is along the line of the proof in [20]. Moreover it can also
be shown that it is even hard to develop a polynomial time
approximation scheme for it. In other words, the problem
is APX-hard.

6.2 Splittable Broadcast Model
Our results for the splittable broadcast model are along

the same lines as those for the unicast model. However
the resulting problems in the broadcast model are much
harder since they require solving a node weighted steiner
tree problem (here weights are associated with nodes rather
than links). This problem can be shown to be Ω(log n) hard
to approximate by a reduction from set cover [14]. We omit
the details for lack of space.

7. EVALUATION
In this section, we evaluate the performance of our ap-

proximation algorithms. We place 100 nodes randomly in a
1600 meter by 1600 meter square. We generate 5 such in-
stances. Our results are averaged over the 5 topologies. We
evaluate the throughput of a single multicast session. We
vary the number of receivers from 5 to 30. The data rate of
a link is distance dependent. In practice, it has a few dis-
crete values, e.g. 802.11b has 4 different rates, 3G1xEV-DO
has 10 different rates. We pick 802.11b’s 4 different rates
in the outdoor setting. According to many vendors adver-
tised values, the threshold distance for the 4 rates (in Mbps)
11,5.5,2,1 is 250,350,400,500 meters respectively. Many mul-
ticast protocols typically compute a shortest path tree and
then prune unnecessary edges. We refer to this algorithm as
SPT. We compare our algorithm with SPT. We also com-
pare with the throughput upper bound of unicast, 11/n in
our setting where n is the number of receivers. Due to the
complexity of the splittable case, we only evaluate the un-
splittable case.
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Figure 4: Comparison of the 5-approx. algorithm
and SPT for unicast model and unicast upper bound

Figure 4 compares our 5-approximation algorithm and the
SPT for the unicast model and the unicast upper bound. For

all graphs, the throughput drops as the number of receivers
increase. However, the throughput of our algorithm drops
much more slowly because it tries to find low degree trees to
take care of primary conflict. SPT is degree agnostic. So the
maximum degree of SPT increases much faster as the num-
ber of receivers increase. Our algorithm is 7 time better than
SPT when the number of receivers is 5, 18 times better when
the number of receivers is 30. Our algorithm is also much
better than the achievable throughput of unicast even with
5 receivers. For the broadcast model, our 2-approximation
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Figure 5: Comparison of the 2-approximation algo-
rithm with SPT for the broadcast model

algorithm again performs much better than SPT as illus-
trated in Figure 5. When we compare the throughput of
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Figure 6: Comparison of the 5-approximation algo-
rithm and the 2-approximation algorithm

the 5-approximation algorithm for the unicast model and
the 2-approximation algorithm for the broadcast model (see
Figure 6), we see that the latter is only 32% better. This
shows that our 5-approximation algorithm is able to find
multicast trees with very low degree.

8. RELATED WORK
The work that is most closely related to this paper is that

of [23, 21]. Both of the two papers consider the achiev-
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able throughput for unicast transmissions between multi-
ple source-destination pairs. Kodialam and Nandagopal [23]
consider the same wireless communication constraint as ours.
For a given unicast traffic pattern, they provide a polynomial
time algorithm that computes routes and schedules such
that the resulting throughput is at least 67% of the opti-
mal. Jain et al. [21] consider more general wireless interfer-
ence model where it can take into account interference from
neighboring nodes, impact of directional antennas, availabil-
ity of non-interfering channels, etc. However, they can only
provide upper and lower bounds on the optimal throughput.
To the best of our knowledge, we are the first to consider
the problem of optimal multicast throughput in multi-hop
wireless networks.
Optimal multicast throughput problem has recently been

considered in the context of overlay networks [5, 15]. They
increase the multicast throughput by utilizing multiple mul-
ticast trees. We also consider the case of multiple multicast
tree. However, our problem is very different from theirs.
In [15] a physical link of the network may be traversed mul-
tiple times by a single multicast packet since it may be con-
tained in multiple logical links in the multicast tree. The
bandwidth used for all these traversals has to be summed
up and must not exceed the links capacity. This constraint
does not apply in our context. However, the constraint that
a node can not be involved in multiple communications does
not apply to their context. As a result, the solution of the
two problems are very different.

9. CONCLUSION AND FUTURE WORK
We believe we are the first to characterize the achievable

throughput of multicast in multi-hop wireless networks. We
consider primary interference in this paper. We consider
both broadcast transmission model and unicast transmis-
sion model. We present hardness results and approximation
algorithms for both the one multicast tree per session case
and multiple tree per session case. Our evaluation shows
that our algorithms perform very well when compared with
pruned shortest path tree algorithm and the optimal unicast
algorithm.
In our future work, we would like to tighten our analytical

bounds. In particular, we want to investigate the hardness
result for the multicast problem in the splittable broadcast
model and design better approximation algorithm for it. We
would also like to incorporate secondary interference in our
algorithm. In addition, we want to explore the joint opti-
mization problem when there are multiple active multicast
sessions in the network.
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