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ABSTRACT
Recent studies on operational wireless LANs (WLANs) have
shown that user load is often unevenly distributed among
wireless access points (APs). This unbalanced load results
in unfair bandwidth allocation among users. We observe
that the unbalanced load and unfair bandwidth allocation
can be greatly alleviated by intelligently associating users to
APs, termed association control, rather than having users
greedily associate APs of best received signal strength.

In this study, we present an efficient algorithmic solution
to determine the user-AP associations that ensure max-min
fair bandwidth allocation. We provide a rigorous formula-
tion of the association control problem that considers band-
width constraints of both the wireless and backhaul links.
Our formulation indicates the strong correlation between
fairness and load balancing, which enables us to use load
balancing techniques for obtaining near optimal max-min
fair bandwidth allocation. Since this problem is NP-hard,
we present algorithms that achieve a constant-factor approx-
imate max-min fair bandwidth allocation. First, we calcu-
late a fractional load balancing solution, where users can
be associated with multiple APs simultaneously. This so-
lution guarantees the fairest bandwidth allocation in terms
of max-min fairness. Then, by utilizing a rounding method
we obtain an efficient integral association. In particular, we
provide a 2-approximation algorithm for unweighted greedy
users and a 3-approximation algorithm for weighted and
bounded-demand users. In addition to bandwidth fairness,
we also consider time fairness and we show it can be solved
optimally. We further extend our schemes for the on-line
case where users may join and leave. Our simulations demon-
strate that the proposed algorithms achieve close to optimal
load balancing and max-min fairness and they outperform
commonly used heuristic approaches.
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1. INTRODUCTION
In recent years, IEEE 802.11 wireless LANs (WLANs)

have been rapidly deployed in enterprises, public areas and
homes. Recent studies [1, 2, 3] on operational WLANs have
shown that user load is often distributed unevenly among
wireless access points (APs). In current WLANs, each user
scans the wireless channel to detect its nearby APs and as-
sociate itself with the AP that has the strongest received
signal strength indicator (RSSI), while ignoring its load. As
users are, typically, not uniformly distributed, most of them
may be associated with a few APs while adjacent APs may
carry only light load or be idle. This load unbalance among
APs is undesirable as it hampers the network from provid-
ing satisfactory service to its users. Initial studies [4, 5, 6]
show that the problem can be reduced by balancing the load
among the APs. This motivates the need for more efficient
methods to select the user-AP association, termed associa-
tion control. Obviously, association control can be used to
achieve different objectives. For instance, it can be used to
maximize the overall system throughput by shifting users to
idle or lightly loaded APs. Although, this plausible objective
can be obtained by each AP serving only its associated user
with maximal data rate, clearly, this is not a desired system
behavior. Consequently, a more desirable goal is to provide
network-wide fair bandwidth allocation among users inde-
pendent of their locations, while maximizing the fair share
of each user. This type of fairness is known as max-min
fairness. Informally, we say that an allocation of bandwidth
through user-AP association is max-min fair if there is no
way to give more bandwidth to any user without decreas-
ing the allocation of a user with less or equal bandwidth.
To achieve this objective, we present efficient user-AP as-
sociation algorithms that ensure max-min fair bandwidth
allocation among users and we show that this goal can be
obtained by balancing the load on the APs.

1.1 Related Work
Association control has already been considered by both

the research community and the industry. Various vendors
of WLAN products have incorporated load-balancing fea-
tures in their network device drivers, AP firmwares and



WLAN cards [7, 8]. In these proprietary solutions, the APs
broadcast their load to users in their vicinity in the Bea-
con messages and each user chooses the least loaded AP.
In [4, 5, 6], rather than using the RSSI as the association
criteria, the proposed heuristics define different metrics and
associate each user with the AP that optimizes these met-
rics. These metrics typically takes into account factors such
as the number of users currently associated with an AP, the
mean RSSI of users currently associated with an AP, the
RSSI of the new user and the bandwidth a new user can get
if it is associated with an AP. For example, Balachandran et
al. [5] propose to associate new users with the AP that can
provide a minimal bandwidth required by the user. If there
are multiple such APs, the one with the strongest signal is
selected. Most of these heuristics only determine the associ-
ation of newly arrived users, except the one in [6]. Tsai and
Lien [6] propose to reassociate users periodically each time
some bandwidth thresholds are violated.

Load balancing has also been considered in cellular net-
works, both TDMA and CDMA networks. Usually, it is
achieved via dynamic channel allocation (DCA) techniques [9].
These methods are not applicable in WLAN setting where
each AP normally uses one channel and channel allocation
is fixed. They are also not applicable to CDMA packet data
networks [10]. Another approach is to use cell overlapping
to reduce the blocking probability of calls and maximize the
network utilization. In [11, 12], a newly arrived mobile sta-
tion is associated with the base station with the greatest
number of available channels. In [13], Lagrange and Jabbari
address fairness issues in this approach by restricting the
number of available channels for new calls that are made in
overlapping areas. Tinnirello and Bianchi [14], propose to
take into account the channel conditions of mobile stations
associated with a base station. Recently, load balancing
integrated with coordinated scheduling technique has been
studied in [10] for CDMA networks. However, these tech-
niques are not suitable to our goal, since they consider dif-
ferent objective functions, e.g., blocking probability, or they
do not provide any guarantee on the bandwidth allocated to
each user.

Load balancing and max-min fairness have been exten-
sively studied in the literature and we discuss here just the
most relevant ones for our study. Most of the work on max-
min fairness addresses the problem of allocating bandwidth
to a set of pre-determined routes in a wired network [15, 16,
17]. The problem of selecting routes for providing max-min
fair bandwidth allocation to a set of connections is much
harder and has been studied in [18, 19]. Megiddo [18] ad-
dresses the problem in the setting of single-source fractional
flow and presents a polynomial time algorithm that finds an
optimal max-min fair solution. Extending this work, Klein-
berg et al. [19], consider the problem where a connection
is routed along a single path. In particular, their approach
can be applied to the load balancing problem of parallel
machine scheduling [20] where each job imposes the same
load per unit time on the subset of machines in which it
can be run, i.e., a load conserving system. This problem
is a special case of our problem where each user has the
same bit rate to the APs it can associate with. They argue
that a coordinate-wise constant-factor approximation can-
not be found for this problem, and presented a prefix-sum
2-approximation algorithm to the allocation of fairest frac-
tional solution. In other words, for every integer k > 0, the
sum of the first k coordinates of the calculated allocation

vector sorted in increasing order is at most twice the sum of
the first k coordinates of the allocation vector of the fairest
fractional assignment. They use Megiddo’s algorithm [18]
to compute a fractional solution and invoke the rounding
scheme of Lenstra, Shmoys and Tardos [20] for obtaining an
integral solution. However, their result cannot be directly
applied to our problem since each user gets different rate
from different APs, i.e. our jobs are not load conserving.
In the context of online load balancing of unrelated parallel
machines, Aspnes et al. [21] and Goel et al. [22] present an
algorithm with a logarithmic competitive ratio when com-
pared with the offline optimal allocation. We will apply
these results to deal with the online case of our problem.

1.2 Our Contributions
In this paper, we present an algorithmic solution for de-

termining use-AP association that ensures a network-wide
max-min fair bandwidth allocation to the users. This goal is
obtained by utilizing sophisticated algorithms that balance
the load on the APs. Since some WLAN deployments utilize
low capacity backhaul links for connecting the APs to a fixed
backbone, e.g., T1 lines, our solution considers capacity con-
straints of both the wireless channels and the backhaul con-
nections. Previous studies in WLANs and cellular networks
have not explicitly considered fairness in conjunction with
load balancing. Actually, as we show in our simulations, if
load-balancing is not done carefully, users may experience
even poorer connections compared with the strongest re-
ceived signal approach. To the best of our knowledge, we
are the first that present a comprehensive association con-
trol scheme that provides guarantees on the quality of the
bandwidth allocation against the optimal solution. Our so-
lution can be used as the theoretical foundation of practical
network management systems.

In our scheme, each mobile device is equipped with client
software for monitoring the wireless channel quality that
the user experiences from each one of its nearby APs. The
client provides this information to a network control center
(NOC) that determines the users’ associations and updates
the clients about its decisions. Accordingly, the users switch
their associations. In this study, we do not address the issue
of providing fair service for users associated with a given AP.
We assume that such a mechanism is deployed at each AP,
for instance, by using the emerging IEEE-802.11-e extension
[23] or any fair scheduling mechanism, such as [24], [25] [26],
and we build our association control solution on top of it.

To achieve our objectives we need a formal definition of
the load of an AP. However, there is no such common no-
tion in the literature. Several studies have already shown
that naive definitions such as the number of users that are
associated with an AP or the AP throughput do not reflect
the AP load [1, 2, 3]. To this end, we introduce a rigor-
ous definition of the load of an AP in WLANs. Generally
speaking, the load that a user generates on its associated
AP is inversely proportional to their effective bit rate. Our
definition enables us to prove the strong correlation between
balancing the load on the APs and providing fair service to
the users. Moreover, it allows us to provide a rigorous for-
mulation of the association control problem. Since the latter
is NP-hard we develop several approximation algorithms for
different settings of the fair service problem. Intuitively,
we would like to guarantee to each user a bandwidth of at
least 1/ρ of the bandwidth that it receives in the optimal
(integral) solution, for a constant ρ ≥ 1. However, due to



the unbounded integrality gap, it is impossible to provide
this type of approximation [19]. Accordingly, our guaran-
tees are relative to an optimal fractional solution, where
users can be associated with multiple APs simultaneously.
First, we calculate a fractional load balancing solution that
guarantees a max-min fair bandwidth allocation. It is the
fairest among all allocations and we use it as the basis to
compare with our integral solution. Then, we extend the
rounding method of Shmoys and Tardos [27] to obtain an
efficient solution where each user can only associate with
one AP. In particular, we provide a 2-approximation algo-
rithm for unweighted greedy users and a 3-approximation
algorithm for weighted and bounded-demand users. In ad-
dition to bandwidth fairness, we also consider time fairness
and we present an optimal algorithm. We further extend
our schemes for the online case where users may join and
leave. Our simulations demonstrate that the proposed algo-
rithms achieve close to optimal load balancing and max-min
fairness and they outperform popular heuristic approaches.
Furthermore, our simulations show that in the presence of
hot-spots our algorithms also provide higher network uti-
lization than the one obtained by the strongest signal ap-
proach. Although, this work was done in the context of
WLAN management, the methods developed in this work
may be applicable to cellular networks as well.

2. THE NETWORK AND THE SYSTEM
DESCRIPTION

2.1 The Network Model
We consider an IEEE 802.11 based wireless LAN (WLAN)

that comprises a large number of access points (APs). We
use A to denote the set of access points and let m de-
notes their number, i.e. m = |A|. All the APs are at-
tached to a fixed infrastructure, which connects them to
wired data networks such as the Internet. This infrastruc-
ture provides to each AP a ∈ A a fixed transmission bit
rate of Ra bits/second. Each AP has a limited transmission
range and it can serve only users that reside in its range.
We define the network coverage area to be the union of the
area covered by each AP in A.

We use U to denote the set of mobile users that reside
in the network coverage area and let n = |U | denotes the
total number of users in U . We assume that the users have
a quasi-static mobility pattern. In other words, the users
are free to move from place to place, but they tend to stay
in the same physical locations for long time periods. This
assumption is backed up by recent analysis of mobile user
behavior [1, 2]. Each user is associated with a single AP
to obtain connectivity service over a wireless channel. Note
that the channel condition between an AP and a user is dy-
namic. However, since our goal is to achieve a long-term1

fairness, our decisions are based on the long-term channel
conditions observed by the users and the APs. The latter
are mainly influenced by path loss and slow fading. For each
user u ∈ U and each AP a ∈ A, we use ra,u to denote the
average effective bite rate2 with which they can communi-
cate.

Throughout this study, we first consider greedy users that

1Long-term time scale is measured in terms of tens of sec-
onds, which is still attractive for all practical purposes.
2The effective bit rate also takes into account the overhead
of retransmissions due to reception errors.

consume all the bandwidth allocated to them by the network
and always have traffic to send or receive. Furthermore, we
assume that each user u ∈ U has a weight wu that specifies
its priority. This weight is used to determine the bandwidth
allocation, bu, it entitles to have with respect to the other
users. For instance, a user u ∈ U entitles to have a band-
width of bu = wu

wv
· bv of any other user v ∈ U in a nearby

location. We then consider bounded-demand users that have
specific maximal bandwidth demands, du, that upper bound
their bandwidth needs. We assume that, each AP runs a
scheduling algorithm that allocates bandwidth fairly to its
associated users, e.g., by using one of the mechanisms de-
scribed in [23, 26].

2.2 The System Description
In this work we develop an algorithmic solution that de-

termines the appropriate user-AP association for providing
a long-term max-min fair service to all the mobile users. As
such, our solution can be used as the theoretical foundations
in the design of practical network management systems. It
is well known that data flows have bursty characteristics
and they generate dynamic load on the APs. Therefore,
it is practically impossible to provide short-term fairness
through association control to the users in multiple-AP net-
works without generating high communication overhead and
disrupting ongoing sessions. Consequently, our scheme ad-
dresses the need to provide long-term fairness in both the
worst and average case without interfering with the net-
work operation. By using the greedy user model, our scheme
maximizes the minimal bandwidth allocated to each user in
worst case scenarios. Moreover, the bounded demand model
can be used to maximize the average throughput that each
user experiences in a fair system. In other words, our system
takes into account the difference between users’ average de-
mands and balances their load among the APs. This makes
sure that users with high average bandwidth requirements
will be evenly distributed among the APs.

We now discuss the main implementation aspects of an
association control system. First, the system requires rel-
evant information on each user u ∈ U , such as its weight
wu, its average bandwidth demand du and the effective bit
rate ra,u that it experiences from each AP a ∈ A. Second,
it needs an algorithm to determine the appropriate user-AP
association. Third, it needs a mechanism to enforce these
association decisions.

We observe that the required information, mainly the ef-
fective bit rate ra,u between every user u and every AP a
are not available from the existing 802.11 AP products, be-
cause an AP maintains the bit rate information only for the
users who are currently associated with it. In fact, the ef-
fective bit rates can only be measured from the user side,
by monitoring the signal strength of beacons from nearby
APs. To this end, we assume that every user computer is
equipped with a client software that periodically collects the
bit rate information and evaluates its average bandwidth de-
mand. The collected information is reported to a network
operation center (NOC) which runs our algorithm to come
up with the user-AP association decisions. Since the users
are free to move, the NOC periodically recalculates the op-
timal user association by using one of the offline algorithms,
described in Sections 4 and 5. Between two successive ex-
ecutions of the offline algorithm, the NOC uses an online
method that maintains the APs’ load as balanced as pos-
sible. We elaborate on the online algorithm in Section 6.
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Figure 1: Examples of bottlenecks both over the

wireless and the wired channels.

After determining a user association, the NOC notifies the
user client software of his decision. The client changes the
user association accordingly.

2.3 Wireless and Wired Bottlenecks
It is commonly believed that in wireless systems the wire-

less channels are the scarce resources that determine the
bandwidth allocation. Although this is true in many cases,
there are many WLANs where this assumption is not valid.
For instance, consider an IEEE 802.11 network where the
APs are connected to the infrastructure over T1 lines, with
capacity around 1.5 Mbps, as illustrated in Example 1. Note
that T1 lines are commonly used as the access link that con-
nects small and medium companies to the Internet. Exam-
ple 1 demonstrates the need to consider both the wireless
and the wired channel when calculating load balanced asso-
ciations.

Example 1. Consider a wireless system with 2 access
points, a and b, and 6 users, enumerated from 1 to 6, as
depicted in Figure 1. Users 1, 2, 3 and 4 experience a bit
rate of 2 Mbps from both APs, while users 5 and 6 have a
bit rate of 1 Mbps from both APs. The APs are connected
to a fixed network with T1 lines with capacity of 1.5 Mbps.
In the following we consider two possible associations and
we analyze the average bandwidth that they provide to the
users.
Case I: A fair user association only from the wireless per-
spective - Consider the association depicted in Figure 1-(a).
Here, the system can allocate a bandwidth of 0.5 Mbps to
each user over the wireless links. However, while AP a can
allocate a bandwidth of 0.5 Mbps to users 5 and 6 on its T1
line, AP b can only provide 3

8
Mbps to its associated users

over its T1 line. In this case, the wireless link of AP a is
the bottleneck that affects the bandwidth allocation. Mean-
while, the wired link is the bottleneck of AP b.
Case II: A fair user association - Consider the association
shown in Figure 1-(b). This association provides a band-
width of 0.5 Mbps to each user over the wired and wireless
channels. Observe that in this case different users may gain
different service time on the wireless links and wired back-
hauls. For instance, user 5 captures 1

3
of the service time of

the T1 link of AP a, while, it is served 1
2

of the time by its
wireless channel. This ensures that user 5, indeed, receives
a bandwidth of 0.5 Mbps. 2

3. FAIRNESS AND LOAD BALANCING
In this section we provide formal definitions of fair band-

width allocation and load balancing. Additionally, we de-
scribe some useful properties that we need for constructing
our algorithmic tools. For the sake of simplicity, these defini-
tions are given only for greedy users. We extend our defini-
tions for bounded demand users in Section 5. In the follow-
ing, we consider two association models. The first is a single-
association model, so-called an integral-association, where
each user is associated with a single AP at any given time.
This is the association mode that is used in IEEE 802.11
networks. The second is a multiple-association model, also
termed a fractional-association, that allows each user to be
associated with several APs and to get communication ser-
vices from them simultaneously. Accordingly, a user may
receive several different traffic flows from different APs, and
its bandwidth allocation is the aggregated bandwidth of all
of them. This model is required to develop our algorithmic
tools for the integral-association case. For both association
models, we denote by Ua all the users that are associated
with AP a ∈ A and Au denotes the set of APs that user
u ∈ U is associated with.

3.1 Max-Min Fairness
Consider a wireless network as described in Section 2.1.

A bandwidth allocation is a matrix, B = {ba,u|u ∈ U, a ∈
A}, that specifies the average bandwidth, ba,u, allocated
to each user u ∈ U by every AP a ∈ A. We denote by
bu =

�
a∈A ba,u the aggregated bandwidth allocated to user

u and let b̄u = bu/wu be its normalized bandwidth (NB) al-
location. On average, AP a is required to serve user u a
period of ba,u/ra,u over the wireless channel and a period
of ba,u/Ra over the infrastructure link, at every time unit.
Consequently, we say that a bandwidth allocation B is feasi-
ble if every AP a ∈ A can provide the required bandwidth to
all its associated users both in the wireless and the wired do-
mains, that is,

�
u∈U ba,u/ra,u ≤ 1 and

�
u∈U ba,u/Ra ≤ 1.

In the case of an integral-association, we also require that
each user is associated with a single AP.

Intuitively, a system provides a fair service if all users
have the same allocated bandwidth3. Unfortunately, such
a degree of fairness may cause significant reduction of the
network throughput, since all users get the same bandwidth
allocation as the bottleneck users, as we illustrate in Exam-
ple 2 below. The common approach to address this issue
of fair allocation that also maximizes the network through-
put is to provide max-min fairness [17]. Informally, a band-
width allocation of a weighted system is called max-min fair
if there is no way to increase the bandwidth of a user with-
out decreasing the bandwidth of another user with the same
or less normalized bandwidth. Consider a bandwidth allo-
cation B and let b̄u be the normalized bandwidth allocated
to user u ∈ U . We define the normalized bandwidth vector
(NBV), ~B = {b̄1, · · · , b̄n} as the users’ normalized band-
width allocations sorted in increasing order and users are
renamed according to this order.

Definition 1 (Max-Min Fairness). A feasible bandwidth
allocation B is called max-min fair if its corresponding NBV
~B = {b̄1, · · · , b̄n} has the same or higher lexicographical

value than the NBV ~B′ = {b̄′1, · · · , b̄′n} of any other feasible

bandwidth allocation B′. In other words, if ~B 6= ~B′ then

3The same normalized bandwidth in the case of weighted
system.
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Figure 2: Examples of a wireless system with 3 APs

and 5 users.

there is an index j such that b̄j > b̄′j and for every index

i < j, it follows that b̄i = b̄′i.

Example 2. Consider a wireless system with 3 APs, A =
{a, b, c}, and 5 users, U = {1, 2, 3, 4, 5}, as depicted in Fig-
ure 2-(a). In this figure, doted lines represent possible asso-
ciation and the number near each line represents the bit rate
ra,u of the corresponding wireless link. All the users have
weight 1 and we assume that all the APs are connected to a
high bandwidth infrastructure. Figure 2-(b) presents a feasi-
ble fair association in which every user receives a bandwidth
b = 1, where the solid lines represents the users’ associations.
Note that this is the maximal bandwidth that can be allo-
cated to user 1. Thus, one can argue that this is the optimal
bandwidth allocation. However, in Figures 2-(c) and (d), we
describe two feasible associations, in which each user get at
least 1 unit of bandwidth. Here, the solid lines indicates an
integral association and the dashed line represents fractional
association. Figure 2-(c) presents the integral max-min fair

allocation with NBV ~B = {1, 1, 1, 2, 2}. While, Figure 2-(d)
introduces the fractional max-min fair allocation with NBV
~B = {1, 4

3
, 4

3
, 4

3
, 4

3
}. 2

Clearly, the NBV of a fractional max-min fairness allo-
cation always has the same or higher lexicographical value
than the NBV of the integral max-min fairness allocation.
We will use this property to construct our solution for the
integral-association case. Furthermore, consider a max-min
bandwidth allocation B of either a fractional or an integral
association. The users can be divided into fairness groups,
such that each fairness group, Fk ⊆ U , consists of all users
that experience the same normalized bandwidth allocation,
denoted by b̄k.

Theorem 1. Let B be a max-min fair bandwidth alloca-
tion and let {Fk} be its corresponding fairness groups. Then
all the users served by a given AP belongs to the same fair-
ness group. Formally, for each fairness group Fk, � u∈Fk� a∈Au

Ua = Fk.

Proof: Initially we prove that � u∈Fk
�

a∈Au
Ua ⊇ Fk. This

is trivial since every user u ∈ Fk is included in the set
Ua for each AP a it is associated with. Now, we turn to
prove that � u∈Fk

�
a∈Au

Ua ⊆ Fk. In the case of an inte-

gral association, this is satisfied since each user is associated
with a single AP and this AP guarantees the same normal-
ized bandwidth allocation to all its associated users. For
fractional-association, lets suppose that this property is not
valid. Thus, there is an AP a that serves users of two differ-
ent fairness groups Fj and Fi. Suppose that b̄j < b̄i. Thus,
AP a may increase the bandwidth of its associated users in
Fj on behalf of its associated users in Fi. This results in
a NBV with a higher lexicographical value. However, this
contradicts the assumption that the given allocation is max-
min fair. 2

3.2 Min-Max Load Balancing
It is widely accepted that the prime approach for obtain-

ing a fair service is balancing the load on the access points.
However, for WLANs the notion of load is not well defined.
Several recent studies [1, 2, 3] have shown that neither the
number of users associated with an AP nor its throughput
reflect the AP’s ”load”. This motivates the need for an ap-
propriate definition. Intuitively, the load of an AP needs to
reflect its inability to satisfy the requirements of its associ-
ated users and as such it should be inversely proportional to
the average bandwidth that they experience. Our load def-
inition captures this intuition and it is also aligned with
the standard load definition that are used in the computer
science literature, e.g., scheduling of unrelated parallel ma-
chines [28]. Consequently, we are able to extend existing load
balancing techniques to balance the AP loads and obtain a
fair service.

For our needs, we define the notion of fractional associa-
tion. A fractional association is a matrix X = {xa,u|a ∈
A ∧ u ∈ U}, such that for each user u ∈ U , Equation�

a∈A xa,u = 1 holds. Each parameter xa,u ∈ [0, 1] specifies
the fractional association of user u with AP a. Generally
speaking, xa,u reflects the fraction of user u’s total flow that
it expects to get from AP a. A fractional association X
is termed feasible if the users are associated only with APs
that can serve them, i.e., for each pair a ∈ A and u ∈ U , it
follows that xa,u > 0 only if ra,u > 0. Moreover, a feasible
association matrix that consists of just 0 and 1 is termed an
integral association.

Consider a feasible association X , either integral or frac-
tional. We define the load induced by user u on AP a to be
the time that is required of AP a to provide user u a traffic
volume of size xa,u · wu. Thus, user u produces a load of
xa,u ·wu/ru,a on the wireless channel of AP a and a load of
xa,u · wu/Ra on its backhaul link. Consequently, we define
the load, ya, on AP a to be the period of time that takes
AP a to provide a traffic volume of size xa,u · wu to all its
associated users u ∈ Ua. Formally,

Definition 2 (Access-Point Load). The load on an AP
a ∈ A, denoted by ya, is the maximum of its aggregated loads
on both its wireless and infrastructure links produced by all
the users. Thus,

ya = max

���
u∈U

xa,u · wu

ru,a

,

�
u∈U

xa,u · wu

Ra �
Therefore, the load of an AP is given in terms of the time it
takes to complete the transmission of certain traffic volume



from each associated user. This is not surprising, since the
load should be inversely proportional to the bandwidth that
the AP provides to its users. Furthermore, the bandwidth
that AP a provides to user u is

ba,u = xa,u · wu/ya (1)

We define the load vector ~Y = {y1, · · · , ym} of an association
matrix X to be the n-tuple consisting of the load of each AP
sorted in decreasing order.

Definition 3 (Min-Max Load Balanced Association).
A feasible association X is termed min-max load balanced

if its corresponding load vector ~Y = {y1, · · · , ym} has the
same or lower lexicographical value than any other load vec-

tor ~Y ′ = {y′
1, · · · , y′

m} of any other feasible assignment X ′.

In other words, if ~Y 6= ~Y ′, then there is an index j such that
yj < y′

j and for every index i < j, it follows that yi = y′
i.

Example 3. Consider the wireless system described in
Example 2. Figure 2-(c) presents the min-max load balanced
association for the single-association case and its load vector

is ~Y = {1, 1, 1
2
}. While, Figure 2-(d) introduces the min-

max load balanced association for the multiple-association

case and its load vector is ~Y = {1, 3
4
, 3

4
}. Recall that in this

case the association of user 4 is xb,4 = xc,4 = 1
2
, thus the

load that it induces on each one of these APs is 1
2
× 1

2
= 1

4
.

2

Consider the min-max balanced association X and its cor-
responding load vector ~Y . Recall that users can be parti-
tioned into fairness groups. Similarly, APs can be parti-
tioned into load groups. Each load group, Lk ⊆ A contains
all the APs with the same load, denoted by yk. Furthermore,
lets assume that the indices of the load groups are assigned
in decreasing order according to their corresponding loads.

Theorem 2. Consider a min-max load balanced associa-
tion X and let {Lk} be its APs partitioned into load groups,
then each user is associated with APs with the same load,
i.e., , for each load group Lk we have � a∈Lk

� u∈Ua
Au = Lk.

The proof of Theorem 2 is along the same line of the proof
of Theorem 1.

Theorem 3. Consider a min-max load balanced associ-
ation X and consider any user u ∈ U and any one of its
associated APs a ∈ Au. Then, the bandwidth allocation for
user u determined by X is bu = wu/ya.

Proof: Since X is a min-max load balanced association, it
follows that

�
q∈Au

xq,u = 1 and all the APs q ∈ Au has the
same load ya as the selected AP a. By Equation 1, we have,

bu =

�
q∈Au

bq,u =

�
q∈Au

xq,u · wu/yq = wu/ya

2

From Theorems 2 and 3, we have Corollary 1.

Corollary 1. Consider a min-max load balanced associ-
ation X . X partitions the APs into load groups {Lk}, where
the load on each AP in a group Lk is yk. It also divides the
users into fairness groups {Fk′} such that all the users in
the same group experience the same normalized bandwidth
b̄k′ . Furthermore, the APs of a given load group Lk serve
only users from a corresponding fairness group Fk′ and the
normalized bandwidth that each user in Fk′ experiences is
1/yk.

a
 b
 c
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Figure 3: Examples of a single association that is

min-max load balanced but is not max-main fair.

In the following we refer to the load group of the most
loaded APs and the corresponding fairness group as the
bottleneck groups. We now turn to prove the strong re-
lationship between fairness and load balancing in the case
of fractional-association. A sketch of Theorem 4’s proof can
be found in Appendix A.

Theorem 4 (The Main Theorem). In the fractional-
association case, a min-max load balanced association X de-
fines a max-min fair bandwidth allocation and vise versa.

Unfortunately, Theorem 4 is not satisfied in the case of a
single association, as we illustrate in Example 4. However,
by using approximation algorithm we can provide an approx-
imated solution to these NP-hard problems by rounding the
calculated fractional solutions, as described in Section 4.

Example 4. Consider the wireless system described in
Example 2. As mentioned above, Figure 2-(c) presents the

min-max load balanced association X . Its load vector is ~Y =
{1, 1, 1

2
} and its corresponding NBV is ~B = {1, 1, 1, 2, 2}.

However, the association X ′ presented in Figure 3 has the

same load vector while its NBV vector is ~B′ = {1, 1, 1, 1, 2}.
Observe that in both associations X and X ′, one of the two
APs b,c has a load 1 and the other has 1

2
. However, in

association X only two users are associated with each one
of these two APs, while in association X ′ three users are
associated with AP b whose load is 1 and only one user is
associated with AP c whose load is 1

2
. This disparity leads

to the sub-optimality of association X ′. 2

4. ASSOCIATION CONTROL OF GREEDY
USERS

In this section we present our algorithms that give ap-
proximate solutions to the integral max-min fair bandwidth
allocation for greedy users. This is a challenging problem,
as even identifying the users in the bottleneck fairness group
and finding their normalized bandwidth is NP-hard. From
Definition 2 and Equation 1, it follows that the minimal nor-
malized bandwidth allocation is maximized when the max-
imal load on the APs is minimized, i.e., when the load on
the APs is balanced. Our load balancing problem is actually
an extension of the scheduling unrelated parallel machines
problem [20, 27]. For this problem, Lenstra, Shmoys and
Tardos, in [20], proved that for any positive ε < 1

2
there is

no polynomial-time (1 + ε)-approximation algorithm exists,
unless P = NP . Moreover, in [20] and [27], they gave a
polynomial-time 2-approximation algorithms, which is cur-
rently the best known approximation ratio achieved in poly-
nomial time. However, unlike the solutions given in [20, 27]
that balance the load on the most loaded machines, our
solution seeks for a complete min-max load balanced as-
sociation. We consider three different settings. We pro-
vide a 2-approximation algorithm for unweighted users, a



3-approximation algorithm for weighted users and an opti-
mal solution for fair time allocation.

4.1 ρ∗-Approximation with Threshold
Intuitively, we would like to guarantee to each user a band-

width of at least 1/ρ of the bandwidth that it receives in the
optimal integral solution, for a constant ρ ≥ 1. However, due
to the unbounded integrality gap, it is impossible to provide
this type of approximation [19]. Let yint

a and yfrac
a be the

load on a given AP a ∈ A in the optimal integral and frac-
tional solutions, respectively. We show that there is neither
upper nor lower constant bounds for the ratio yint

a /yfrac
a .

Example 5. Consider a wireless network with 2 APs {a, b}
and 2 users {1, 2}, where ra,1 = rb,1 = c and ra,2 = rb,2 =
c/(2 · c − 1) for a given constant c > 1. In the optimal

fractional solution, the load on each AP is yfrac
a = yfrac

b =
1/2·(1/c+(2c−1)/c) = 1. However, in any integral solution,
one AP, let say a, experiences a load of yint

a = 1/c while the
other has a load of yint

b = (2c − 1)/c. Consequently, the

ratio yint
a /yfrac

a = 1/c and it cannot be lower bounded by
any constant. 2

Example 5 demonstrates the difficulty to provide guaran-
tees that are comparable with the integral solution. Accord-
ingly, our guarantees are relative to an optimal fractional
solution. Recall that the NBV of the latter has the same or
higher lexicographical value than the NBV of the optimal
integral solution. Thus, the fractional solution is at least
as fair as an integral one. In fact, the optimal fractional
solution is the fairest among all feasible allocations.

Example 6 (from [28]). Consider a wireless network
with m APs, denoted by A, and a single user u, and let
ra,u = 1 for each a ∈ A. Clearly, in the fractional solution
the load of u is equally divided among all the APs and thus
for each a ∈ A, it follows that yfrac

a = 1/m. However, in
the integral solution user u is associated with a single AP,
lets say a, and the load of this AP is yint

a = 1. Thus, the
ratio between yint

a and yfrac
a is m and it cannot be upper

bounded by any constant. 2

This obstacle occurs since the fractional load is smaller
than the load induced by a single user on any AP. Since,
our practical goal is to reduce the load of highly-loaded APs,
there is no need to balance the load of APs with load be-
low a certain threshold T . To this end, we select T to be
the maximal load that a user may generate on an AP as
formulated in Equation 2.

T = max
{u,a|u∈U∧a∈A∧ra,u>0}

max{
wu

ra,u

,
wu

Ra

} (2)

Recall that T is indeed a very small value and in practical
802.11 networks T ≤ 1 sec/Mb. In light of these difficulties,
we now formulate load and bandwidth guarantees that we
provide in our solutions.

Definition 4. Let X ∗ be a fractional min-max load bal-
ances association and let y∗

a be the load of each AP a ∈
A. Then, a ρ∗ min-max load balanced approximation with
threshold T is an integral association X such that the load
ya of each AP a ∈ A satisfies ya ≤ ρ · max{y∗

a, T}.

Definition 5. Let X ∗ be a fractional max-min fair as-
sociation, and let b̄∗u be its normalized bandwidth allocation

Alg Integral Load Balancing(A,U)
X frac ← Fractional Load Balancing(A, U)
X int ← Rounding(X frac)
return X int

end

Figure 4: A formal description of the integral load

balancing algorithm

to user u ∈ U . Then, a ρ∗ max-min fairness approxima-
tion with threshold T is an integral association X such that
the normalized bandwidth b̄u of each user u ∈ U satisfies
b̄u ≥ 1

ρ
· min{b̄∗u, 1

T
}.

4.2 The Scheme Overview
We now present our integral load balancing algorithm. The

algorithm comprises two steps. Initially, it calculates the
optimal fractional association i.e., the min-max load bal-
anced fractional association. From Theorem 4, it follows
that this association is also a min-max fair fractional allo-
cation. Then, the algorithm utilizes the rounding method
of Shmoys and Tardos [27] to obtain an approximate max-
min fair integral association. A formal description of the
algorithm is provided in Figure 4.

4.2.1 The Fractional Load balancing Algorithm
Our algorithm results from the observations made in Sec-

tion 3. More specific, let X be a max-min load balanced
fractional association. According to Corollary 1, X par-
titions the APs and the users into load groups {Lk} and
corresponding fairness groups {Fk}, such that the APs in a
load group Lk are associated only with the users in a fairness
group Fk and vise versa. Moreover, all APs in a given load
group Lk have the same load yk and the corresponding users
in the fairness group Fk experience a normalized bandwidth
allocation of 1/yk.

Based on these observations, we obtain an iterative algo-
rithm that calculates the load groups and their correspond-
ing load values. We refer to this algorithm as the fractional
load balancing algorithm. To ease our presentation, lets as-
sume that the load groups are enumerated in decreasing or-
der according to their loads yk. Thus, the APs in the group
L1 are the ones with the maximal load according to the as-
sociation X . We refer to the group L1 as the bottleneck load
group and the set F1 of their associated users as the bottle-
neck fairness group. Moreover, load y1 on the APs in L1 is
termed as the bottleneck load and it is denoted by Ỹ .

The iterative algorithm detects the load groups according
to their indices until all the users are associated with APs.
At each iteration, the algorithm invokes the bottleneck-group
detection routine to calculate the bottleneck load and fair-
ness groups and updates its current fractional solution ac-
cordingly. Before proceeding to the next iteration, the algo-
rithm removes the bottleneck load and fairness group from
the system. Note that in the new iteration the load group
with the succeeding index becomes the bottleneck group. A
formal description of the algorithm is given in Figure 5.

Now, we turn to present the bottleneck-group detection
routine. In this routine, we denote by L̃ and F̃ the load and
fairness bottleneck group respectively. This routine consists
of three steps. In the first step, we calculate the optimal
bottleneck load value Ỹ , that upper bounds the load ya of
every AP a ∈ A in any min-max load balancing association.



Alg Fractional Load Balancing(A,U)
Initialize X
k← 1
while (U 6= ∅) do
{Lk, Fk Xk} ← bottleneck detection(A, U)
Update X with the association Xk.
A← A− Lk

U ← U − Fk

k← k + 1
end of while

return X
end

Figure 5: A formal description of the fractional load

balancing algorithm

To infer its value, we utilize a linear program, denoted as
LP1, that calculates a feasible association X , which also
minimizes the maximal load on all the APs over both their
wireless and wired channels.

LP1 : min Ỹ
subject to :

∀a ∈ A :
�

u∈U(wu · xa,u)/ra,u ≤ Ỹ

∀a ∈ A :
�

u∈U(wu · xa,u)/Ra ≤ Ỹ

∀u ∈ U :
�

a∈A xa,u = 1

∀u ∈ U, ∀a ∈ A : xa,u ∈ [0, 1]

Note that LP1 minimizes the maximal load on all the
APs. Consequently, the calculated association X ensures
that the load on each AP in the bottleneck load group L̃
is exactly Ỹ and it also specifies the association of the APs
in L̃ with the corresponding users in F̃ . However, X does
not optimize the load on the other APs, which may be as
high as Ỹ . We observe that, in the worst case, LP1 may
calculate a bad association such that the load on all the APs
is Ỹ although the optimal association contains several load
groups with lower loads, as illustrated in Example 7.

Example 7. Consider the wireless system described in
Example 2 and the association presented in Figure 2-(b).

This association induces a load of Ỹ = 1 on all the APs.
However, from Example 3 we know that a min-max fair
allocation generates a load of 3

4
on AP b and c and accord-

ingly the allocated bandwidth to each of the associated user
2, 3, 4, 5 is 4

3
. 2

Such association is very deceptive, since it gives the im-
pression that all the APs are included in the bottleneck load
group. Therefore, we have developed a method to separate
the APs in the bottleneck load group L̃ from the rest of the
APs. In the second step, we use an auxiliary linear program,
LP2, which enables us to identify whether some APs are not
in L̃ or whether L̃ comprises all the APs. LP2 is based on
Property 1, proved in Appendix B

Property 1. The bottleneck load group L̃ contains all
the APs if there is no feasible association such that
(1) Every AP has a load at most Ỹ and

(2) Some APs have load strictly less than Ỹ .

LP2 looks for an association X that minimizes the overall
load on all the APs subject to the constraint that the load
on each AP is no higher than Ỹ .

LP2 : min
�

a∈A ya

subject to :

∀a ∈ A : ya ≤ Ỹ

∀a ∈ A :
�

u∈U (wu · xa,u)/ra,u ≤ ya

∀a ∈ A :
�

u∈U (wu · xa,u)/Ra ≤ ya

∀u ∈ U :
�

a∈A xa,u = 1

∀u ∈ U, ∀a ∈ A : xa,u ∈ [0, 1]

Clearly, if the bottleneck load groups do not comprise all
the APs then LP2 should find an association where some
APs have load strictly less than Ỹ and these APs are not
included in L̃. However, LP2 does not specify the APs that
are included in L̃, as APs with loads equal to Ỹ are not nec-
essarily included in L̃, as we illustrate in Example 8 bellow.
Consequently, in the third step, we introduce a method to
separate L̃ from the other APs based on the results given in
Definition 3; The load of each AP a 6∈ L̃, ya = Ỹ , can be
reduced by shifting the association of some of its associated
users to less loaded APs.

Consider the association X determined by LP2. Initially,
we build a directed graph G = (V, E) that each node a ∈ V
represents an AP in A, and there is an edge (a, b) ∈ E if
AP a can shift some load to AP b. In other words, there
exists a user u ∈ U such that xa,u > 0 and rb,u > 0. Note
that the graph G = (V, E) represents paths in which loads
may be shifted. The method colors each node either white
or black, where white represents APs not in L̃ and black in-
dicates APs that may be included in the bottleneck group.
Thus, the initial color of each node with load Ỹ is black,
while the other nodes are colored white. Now, as long as
there is an edge (a, b) ∈ E such that node a is black and
node b is white, we color node a white. At the end of this
iterative process, the bottleneck load group L̃ comprises all
the APs that are colored black and their associated users
F̃ are determined by the association X calculated by LP1

(or LP2). Finally, the bottleneck-group detection routine

returns the sets L̃, F̃ and their corresponding user-AP as-
sociation X̃ . A formal description of this routine is given
in Figure 6 and an example of its execution is provided in
Example 8.

Example 8. Consider the wireless system described in
Example 2. In this case, a possible association X calculated
by LP2 is the one depicted in Figure 7-(a). Figure 7-(b)
represents the calculated graph G = (V, E) and the nodes’
initial colors. Recall that ya = yc = 1 and yb = 1

2
. More-

over, some load of user 2 or 3 can be shift from AP b to APs
c or a, which is indicated by the edges (b, c) and (b, a), and
some load of user 4 or 5 can be shift from AP c to AP b,
which is indicated by the edge (c,b). In the following, our
routine colors AP c with white and ends the coloring itera-
tions. Consequently, the computed groups are L̃ = {a} and

F̃ = {1}, which are indeed the bottleneck groups. 2

Theorem 5. The load balancing algorithm calculates a
min-max load balanced association in the case that users are
allowed to have fractional associations with APs.



Routine bottleneck detection(A,U)

Use LP1 to calculate Ỹ .
Use LP2 to calculate an association X .
Construct a graph G = (V,E).
Color each AP a black if ya = Ỹ .

Color each AP a white if ya < Ỹ .
while exist (a, b) ∈ E and a is black and b is white do

Color AP a white.
end while

L̃← {a|a is colored black}
F̃ ← {u|∃xa,u > 0 ∧ a ∈ L̃}
X̃ ← the association of F̃ and L̃.

Return {L̃, F̃ , X̃ }
end

Figure 6: A formal description of the bottleneck-

group detection routine.
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Figure 7: Examples of an execution of the

bottleneck-groups detection routine.

Theorem 5 is proven in Appendix B.

4.2.2 The Rounding Method
For the sake of completeness, we provide a short descrip-

tion of the rounding method of Shmoys and Tardos [27].
This description is tailored for unweighted greedy users but
with minor modifications it can address other user char-
acteristics, as we explain in the following sections. Con-
sider a fractional association X and for each AP a ∈ A
let Sa = d

�
u∈U xa,ue. Initially, the rounding method con-

structs a bipartite graph G′(X ) = (U, V, E). Each node u
in the set U of the bipartite graph represents a user u in U .
The set V contains Sa nodes for each AP a ∈ A denoted
by {va,1, va,2, · · · , va,Sa}. The graph edges are determined
by the following process. For each AP a ∈ A, the users Ua

are sorted according to a given sorting criterion. In the case
of unweighted greedy users, the users in Ua are sorted in
non-decreasing wireless bit rate ra,u and they are renamed
according to this order, {u1, u2, · · · , u|Ua|}. Moreover, let

C(a, uj) =
� j

i=1 xa,ui
. For each AP a, we divide the users

in Ua into Sa groups, denoted by Qa,s where 1 ≤ s ≤ Sa,
according to their C(a, uj) values. Each group Qa,s con-
tains all the users uj such that s − 1 < C(a, uj) ≤ s or
s−1 ≤ C(a, uj−1) < s. A user that is included in two groups
is referred as border node. The edges E of the graph rep-
resent user-AP association. Thus, for each AP a and every
integer s ∈ Sa node va,s is connected to each user uj in Qa,s.
Such bipartite graph is given in Example 9. After construct-
ing the graph G′, the rounding method looks for a maximal
matching [29] from each user to one of the nodes va,s ∈ V .
Since the association X specifies a fractional matching such

1
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Figure 8: Examples of the graph G′ and a matching.

maximal matching exists (more details are provided in [27])
and it determines the integral association of the users.

Example 9. Consider the wireless system described in
Example 2 and the fractional max-min fair association de-
picted in Figure 2-(d). In this association xb,4 = xc,4 =
1
2

and its NBV is ~B = {1, 4
3
, 4

3
, 4

3
, 4

3
}. Figure 8 presents

the graph G′ calculated by the rounding method and a
corresponding matching. Consequently, the obtained load

vector ~Y = {1, 1, 1
2
} and the corresponding NBV is ~B =

{1, 1, 1, 1, 2}. The latter is not the optimal max-min fair as-
sociation. However, the bandwidth of each user u is at least
half of its bandwidth in the fraction association. 2

4.3 Analysis of the Unweighted Case
We now prove the approximation ratio of our algorithm

for the case of unweighted greedy users. We start with
a useful property of the rounding method. We assign to
each edge e of G′ a weight, x′(e), termed the association
weight, that represents the fractional association of the cor-
responding user and AP. More specifically, consider an edge
e = (va,s, u) ∈ E indicating that user u is associated with
AP a. If user u is a non-border node then it is included
only in the set Qa,s and we assign x′(va,s, u) = xa,u. Other-
wise, user u is included in the sets Qa,s−1 and Qa,s and we
partition the association xa,u with the two edges (va,s−1, u)
and (va,s, u), such that x′(va,s, u) = C(a, u) − s + 1 and
x′(va,s−1, u) = xa,u − x′(va,s, u). This assignment ensures
the following property.

Property 2. Consider an AP a ∈ A and a set Qa,s,
where s is an integer between 1 and Sa. Then, for any s <
Sa, it follows that

�
u∈Qa,s

x′(va,s, u) = 1 and
�

u∈Qa,Sa

x′(va,Sa , u) ≤ 1.

Consider a node va,s ∈ V . We define its fractional wireless
load as yfrac,w(va,s) =

�
u∈Qa,s

x′(va,s, u)/ra,u. Moreover,

suppose that node va,s is associated to user u ∈ Qa,s in the
calculated matching. We define its integral wireless load as
yint,w(va,s) = 1/ra,u. Similarly, we define the fractional and

integral infrastructure load of node va,s as yfrac,i(va,s) =�
u∈Qa,s

x′(va,s, u)/Ra and yint,i(va,s) = 1/Ra,u. Conse-

quently,

Lemma 1. Consider a node va,s ∈ V such that s > 1.
Then, yint,w(va,s) ≤ yfrac,w(va,s−1) and
yint,i(va,s) ≤ yfrac,i(va,s−1).

Proof: This lemma results directly from the selected sorting
criterion and we first prove it for wireless channel. For each
user u ∈ Qa,s, s > 1 satisfied that ra,u ≥ ra,u′ for every user



u′ ∈ Qa,s−1. This is also true for the user u∗ ∈ Qa,s that is
matched with node va,s. Thus,

yfrac,w(va,s−1) =

�
u′∈Qa,s−1

x′(va,s, u
′)

ra,u′

≥

≥

�
u′∈Qa,s−1

x′(va,s, u
′)

ra,u∗

=
1

ra,u∗

= yint,w(va,s)

We now consider the backhaul link. Recall that all the users
pose the same load, 1/Ra, on the backhaul link. Therefore,
independent of the user order, for each node va,s ∈ V such
that s < Sa, it follows that yfrac,i(va,s) = 1/Ra and for
any node va,Sa ∈ V , it follows that yfrac,i(va,Sa) ≤ 1/Ra.
Consequently, yint,i(va,s) ≤ yfrac,i(va,s−1). 2

Theorem 6. The association X calculated by integral load
balancing algorithm ensures 2∗ max-min fairness approxima-
tion with threshold T , defined by Equation 2.

Proof: First, we prove for each AP a ∈ A that yint
a ≤

yfrac
a +T . We prove this property for the wireless link. The

proof for the backhaul link is similar. From Lemma 1 and
the definition of T follows,

yint,w
a =

�
s∈[1..Sa]

yint,w(va,s) ≤

≤ T +

�
s∈[1..(Sa−1)]

yfrac,w(va,s) ≤ T + yfrac,w
a

Consequently, yint
a ≤ T + yfrac

a . In the sequel we consider
two cases:
Case I: suppose that yfrac

a ≥ T . Thus yint
a ≤ 2 ·yfrac

a . From
Theorems 3 and 5, it results that bandwidth allocation of
each user u associated with AP a in the integral solution is

bint
u = 1

yint
a

≥ 1

2·y
frac
a

=
bfrac
u

2
.

Case II: Suppose that yfrac
a < T . Thus yint

a ≤ 2 · T . Ac-
cordingly, each user u that is associated with AP a in the
integral solution experiences a bandwidth bint

u = 1
yint

a
> 1

2·T
,

and this complete our proof. 2

4.4 Weighted Greedy Users
We turn to describe our integral load balancing algorithm

for weighted users. This algorithm is similar to the one de-
scribed in Section 4.2 with different sorting criterion. We ob-
served that in weighted instances, the calculated fractional
solution X frac does not satisfy Lemma 1. This prevents
from us to providing 2∗ max-main fairness approximation.
However, by using a different sorting criterion, our algo-
rithm ensures 3∗ approximation. For our needs, we define
the joined load of user u on AP a as,

Ja,u =
xa,u · wu

ra,u

+
xa,u · wu

Ra,u

The joined load may be either fractional or integral. For a
given AP a, the algorithm sorts the users Ua in decreasing
order of their joined loads, Ja,u. This order determines the
manner in which the users Ua are divided into groups {Qa,s}.
The rest of the rounding method remains the same.

We turn to calculate the approximation ratio of the algo-
rithm with same threshold T defined in Equation 2. Con-
sider a node va,s ∈ V we define its fractional joined load

Jfrac(va,s) =
�

u∈Qa,s
x′(va,s, u) · Ja,u. Now, suppose that

node va,s is associated to user u ∈ Qa,s in the integral so-
lution. Thus, its integral joined load is J int(va,s) = Ja,u.
Note that the fractional and integral joined loads of AP
a ∈ A satisfy,

Jfrac
a = yfrac,w

a + yfrac,i
a =

�
u∈Ua

Jfrac
a,u =

Sa
�
s=1

Jfrac(va,s)

Similarly,

J int
a = yint,w

a + yint,i
a =

�
u∈Ua

J int
a,u =

Sa
�
s=1

J int(va,s)

Lemma 2. Consider a node va,s ∈ V such that s > 1.
Then, J int(va,s) ≤ Jfrac(va,s−1).

Proof: This proof is similar to the proof of Lemma 1 and
it is direct result from the definition of joined load. 2

Lemma 3. Consider an AP a ∈ A then Jfrac
a ≤ 2 · yfrac

a

Proof: By definition, Jfrac
a = yfrac,w

a + yfrac,i
a ≤

≤ 2 · max{yfrac,w
a , yfrac,i

a } = 2 · yfrac
a 2

Theorem 7. The association X calculated by integral load
balancing algorithm ensures 3∗ max-min fairness approxima-
tion with threshold T , defined by Equation 2.

Proof: First, we prove that for each AP a ∈ A follows that
yint

a ≤ 2 · yfrac
a +T . From Lemma 2 and the definition of T ,

it follows,

yint
a = max

�
Sa
�
s=1

yint,w(va,s),

Sa
�
s=1

yint,i(va,s) � ≤

≤
Sa
�
s=1

J int(va,s) ≤ T +

Sa−1
�
s=1

Jfrac(va,s) ≤ T + Jfrac
a

From Lemma 3 results that yint
a ≤ T +2·yfrac

a . In the sequel
we consider two cases:
Case I: Suppose that yfrac

a ≥ T . Thus, yint
a ≤ 3·yfrac

a . From
Theorems 4 and 5, it results that the normalized bandwidth
b̄int
u allocated to user u associated with AP a in the integral

solution is b̄int
u = 1

yint
a

≥ 1

3·y
frac
a

= b̄frac
u /3.

Case II: Suppose that yfrac
a < T . Thus yint

a ≤ 3 · T .
Accordingly, each user u that is associated with AP a in
the integral solution experiences a normalized bandwidth
b̄int
u = 1

yint
a

≥ 1
3·T

, and this complete our proof. 2

4.5 Time Fairness
Finally, we show that our scheme finds the optimal inte-

gral solution for max-min time fairness. Time fairness at-
tempts to provide a fair service time to the users regardless
of the effective bit rates, ra,u and Ra, that they experience.
Such fairness is considered, for instance, when the system
bottlenecks are the backhaul links and all these links have
the same bit rate, R. In such instance, a max-min time
fairness solution also guarantees max-min bandwidth fair-
ness. To achieve this goal, we use the scheme presented in
Section 4.2 with the following modifications. First, for each
user u ∈ U and AP a ∈ A, we set their effective bit rates ra,u

and Ra to 1 and we utilize the unweighted greedy variant



for obtaining a fractional solution. Then, after calculating
the bipartite graph G′(X ) = (U, V, E), we assigned a cost
c(va,s, u) = s to each edge (va,s, u) ∈ E. Finally, the inte-
gral association is determined by the minimal cost maximal
matching [29] of the graph G′.

Theorem 8. The time fairness algorithm calculates the
optimal max-min time fairness association.

Proof: From Theorem 5, it follows that our scheme finds
the optimal fractional solution. Thus, to complete the proof
it is sufficient to prove that the algorithm finds the optimal
integral association for every fairness group Fk ⊆ U and its
corresponding load group Lk ⊆ A with load yk of the frac-
tional solution. Clearly, in this case the load of each AP
a ∈ Lk is yk = ya =

�
u∈Ua

xa,u. Thus, from the definition

of Sa in Section 4.2.2, it results that Sa − 1 < ya ≤ Sa for
every AP a ∈ Lk. Since all APs in Lk have the same Sa we
denote it by Sk and the number of users that are associated
with any AP a ∈ Lk is at most Sk. We consider two cases.
Case I: yk = Sk. Thus, each AP in Lk is associated with
exactly Sk users and this guarantees the required time fair-
ness.
Case II: yk < Sk. Consequently, some APs are associated
with fewer than Sk users. Note that we are addressing now
a load conserving system, i.e., in any possible association
of the user in Fk associated with the APs in Lk, the total
load on all the APs is yk · |Lk| = |Fk|. Since, our algorithm
seeks for minimal cost matching no AP is associated with
fewer than Sk − 1 users. From this, it results that exactly
(Sk − yk) · |Lk| APs are associated with Sk − 1 users and
others are associated with Sk users. This is a max-min time
fair association and this completes our proof. 2

5. ASSOCIATION CONTROL OF BOUNDED
DEMAND USERS

We now consider users with bounded bandwidth demands.
For our calculations, we first modify the load definition.
Then, we use the new definition to construct a new algo-
rithm, termed the adjusted load balancing algorithm, that
guarantees a 3∗ max-min fairness approximation. In the fol-
lowing we denote by du the bounded demand of user u ∈ U
and we define its normalized demand to be d̄u = du/wu.

5.1 The Adjusted Load Definition
Let us start with an example that illustrates the need for

a new load definition.

Example 10. Consider the wireless system described in
Example 2. We assume that users 1, 2, 3, 4 are greedy (have
very high demands), while the demand of user 5 is d5 = 2.
Here, the max-min fair fractional-association is provided in
Figure 2-(d) and the allocated bandwidth to user 5 is 4

3
. In

this case the system does not satisfy the user bandwidth re-
quirement. Therefore, user 5 behaves as a greedy user and
the load that it poses on AP c is xc,5/rc,5 = 1

2
. Now, sup-

pose that d5 = 1
2
. Clearly, the system satisfies the demand

of user 5. However, user 5 consumes only a bandwidth of 1
2
.

As a result, the bandwidth that is allocated to user 4 by AP
c is 1.5 and so its overall bandwidth allocation is 2 1

6
. The

new NBV is ~B = { 1
2
, 1, 4

3
, 4

3
, 2 1

6
}, which is obviously not a

min-max fair allocation. 2

We turn to provide informal description of the new load
definition. As an example, consider a bounded demand user

u that is associated with a single AP a and let wu = 1.
From the previous load definition in Section 3.2, it follows
that the load induced by user u on AP a is the time that
AP a takes to provide user u one unit of traffic, and the
load ya on AP a is the aggregated load of all its associated
users. Thus, in a fair system, the bandwidth allocated to
user u is 1/ya. However, if du < 1/ya user u receives higher
bandwidth than its demand. Conceptually, in a period of ya

time units, user u consumes at most a traffic volume of du·ya,
and the load of user u on AP a is just the time that takes
AP a to provide this volume to user u. So, for the wireless
channel, the load that user u induces on AP a, denoted by
yw

a,u, is yw
a,u = du · ya/ra,u if du > 1/ya and it is yw

a,u =
1/ra,u otherwise. We now provide a formal definition of the
adjusted load for weighted system and fractional association
X . By using similar arguments we conclude that,

yw
a,u =

� xa,u·wu

ru,a
: d̄u ≥ 1

ya

xa,u·wu·d̄u·ya

ru,a
: d̄u < 1

ya

(3)

Similarly, the load posed by user u on the backhaul link of
AP a, denoted as yi

a,u, is defined as follows:

yi
a,u =

�
xa,u·wu

Ra
: d̄u ≥ 1

ya
xa,u·wu·d̄u·ya

Ra
: d̄u < 1

ya

(4)

Consequently, the load of an AP a ∈ A is,

ya = max

� �
u∈U

yw
a,u,

�
u∈U

yi
a,u � (5)

From the adjusted load definition, it results that as long as
a user demand is satisfied the load that it poses on its asso-
ciated AP decreases as the total load of this AP decreases.
In Example 11, we illustrate that this definition can be used
to obtain max-min fair bandwidth allocation.

Example 11. Consider the same settings as described in
Example 10, Where d5 = 1

2
. Now, assume that the load

on APs b and c is yb = yc = 4
7

and let the association

of user 4 be xb,4 = 1
7

and xc,4 = 6
7
. We show that these

assignments satisfy Equations 3-5. Let us start with AP
b: yb = 1

4
+ 1

4
+ 1

7
· 1

2
= 8

14
= 4

7
. The load of AP c

is: yc = 6
7
· 1

2
+ 1

2
· 4

7
· 1

2
= 4

7
. From this, we know that

the bandwidth allocation to users 2, 3 and 4 is 1.75 and the

corresponding NBV is ~B = { 1
2
, 1, 7

4
, 7

4
, 7

4
}. Since the load on

APs b and c is balanced, this is a min-max load balanced
association. 2

Note that, with the adjusted load definition, Theorems 2
and 4 still hold4. This means that any fractional min-max
load balanced association X for bounded demand users di-
vides the APs into load groups {Lk}, such that the load on
the APs in each group Lk is yk and each group Lk is uniquely
associated with a set of users Fk, termed a fairness group.
This association also obtains a max-min fair bandwidth al-
location. However, unlike the greedy user model, a fairness
group Fk may include users with allocated normalized band-
width less than 1/yk. These users, of course, are bounded-
demand users with normalized demands d̄u < 1/yk. Con-
sequently, we define the users in a given fairness group Fk

as the users served by the APs of a given load group Lk,
regardless of their allocated bandwidth.
4The proofs of these theorems for the bounded demand user
model are similar to the case of greedy user and their details
are omitted from this document.



5.2 The Adjusted Load Balancing Algorithm
We now present our method to calculate a max min fair as-

sociation X in the presence of bounded-demand users. Since
Theorems 2 and 4 are satisfied in this case, we would like to
extend our scheme to support also bounded demand users.
The main challenge that we are facing is calculating the
load of the load groups {Lk} induced by the optimal frac-
tional solution, in particular, how to detect the bottleneck
load value Ỹ in the bottleneck-group detection routine in
Section 4. This task cannot be easily resolved, since the ad-
justed load definitions yield a complicated set of non-linear
equations with feedback. To simplify the proof, we would
like all the users to behave as if they are greedy ones. This
goal can be achieved by assigning virtual channel conditions
to bounded demand users appropriately, such that for each
user u with du/wu < 1/Ỹ its demand will be satisfied only

when the load of its associated APs is exactly Ỹ . For that
purpose, we estimate the bottleneck load value and we de-
note this estimation by Y . We use Y to define adjusted bit
rates r′a,u and R′

a,u of both the wireless and the wired links
for each pair of AP a and user u. Consequently, for user u
with maximal bandwidth requirement5, du, its adjusted bit
rates are:

r′a,u = � ru,a : d̄u ≥ 1
Yru,a

d̄u·Y
: d̄u < 1

Y

(6)

R′
a,u = � Ra : d̄u ≥ 1

Y
Ra

d̄u·Y
: d̄u < 1

Y

(7)

Now, we employ LP1 to verify our estimation whether
Y = Ỹ , using the adjusted bit rates r′

a,u and R′
a,u. Thus,

by performing a binary search, we accurately calculate the
value of Ỹ . After Ỹ is detected, the second and third steps
of the bottleneck-group detection routine can be used to in-
fer the bottleneck groups L̃ and F̃ and iteratively calculate
the entire optimal fractional solution. Finally, we invoke
the rounding algorithm of the weighted greedy Users in Sec-
tion 4.4 to obtain an integral solution. In our calculation we
utilize the adjusted bit rates of the users, as calculated by
the fractional solution, to construct the sets Qa,s.

5.3 The Algorithm Analysis
Consider a calculated fractional solution X . We initially

calculate the actual bandwidth allocated to each user in this
solution.

Theorem 9. Let X be the calculated fractional associa-
tion, when using the adjusted bit rates, and let {Lk} and
{Fk} be the corresponding load and fairness groups. Con-
sider a user u ∈ Fk with bounded demand du. Then, the
bandwidth allocated for user u is bu = wu

yk
if du

wu
≥ 1

yk
. Oth-

erwise, its allocated bandwidth is bu = du

Proof: Recall that all the APs in Fk has the same load yk.
Thus, if du

wu
≥ 1

yk
, it follows that r′

a,u = ra,u and R′
a,u = Ra

for each a ∈ Fk. Since we treat the users as greedy we can
utilize Theorem 3 and conclude that bu = wu/yk.
Otherwise, if du

wu
< 1

yk
, it follows that for each a ∈ Fk, r′a,u =

ru,a

du·yk
and R′

a,u = Ra

du·yk
. For simplicity, we calculate bu over

wireless domain, the calculation for the wired domain is very

5For greedy users let us denote du = ∞.

Alg Online Load Balancing(A,U , u)
if (elapsed time from last offline optimization > τ) then

Integral Load Balancing(A, U ∪ u)
yoffline ← maxa∈A ya

else

a← AlgorithmByAAFPW(A, u)
yonline ← maxa∈A ya

if (yonline − yoffline > ∆) then

Integral Load Balancing(A, U ∪ u)
else

assign u to AP a
end

Figure 9: A formal description of the online load

balancing algorithm

similar. Let ta,u be the time that user u is served by AP a
during a single time unit. Thus, ta,u =

xa,u·wu

yk·r′

a,u
. As a result,

bu =

�
a∈Au

ta,u · ra,u =

�
a∈Au

xa,u · wu

yk · r′a,u

· ra,u =

=

�
a∈Au

xa,u · wu

yk ·
ru,aẇu

du·yk

· ra,u =

�
a∈Au

xa,u · du = du

This completes our proof. 2

By similar arguments of the proof of Theorem 5 we conclude,

Theorem 10. The adjusted load balancing algorithm cal-
culates a min-max load balanced association for the fractional-
association model with bounded demand users. This associ-
ation also ensures max-min fair bandwidth allocation.

In our analysis, we provide guarantees on the quality of
the integral solution as long as the bounded demand users
behave as greedy users. Therefore, we define our threshold
T ′ to be,

T ′ = max
{u,a|u∈U∧a∈A∧ra,u>0}

max{
wu

ra,u

,
wu

Ra

,
1

d̄u

} (8)

For this threshold we can use similar proof as the one of
Theorem 7 to prove Theorem 11.

Theorem 11. The association X calculated by adjusted
load balancing algorithm ensures 3∗ max-min fairness ap-
proximation with threshold T ′, defined by Equation 8.

6. ONLINE INTEGRAL-ASSOCIATION
In this section, we present an algorithm that deals with

dynamic user arrivals and departures. Clearly, a repeated
execution of the offline algorithm each time a user arrives or
departs may cause frequent association changes that disrupt
existing sessions. To avoid this, we propose a strategy that
enables us to strike a balance between the frequency of the
association changes and the optimality of the network op-
eration in terms of load balancing. For this propose we use
two configuration parameters; time threshold, τ , and load
threshold ∆. We rerun our offline algorithm if either of the
following two conditions hold.
(1) The time elapsed since our last offline optimization is
more than the time threshold τ .
(2) The current bottleneck load, i.e., , the maximal load
among all APs, is ∆ more than the bottleneck load obtained
by the last execution of the offline algorithm.



After rerunning the algorithm, each user who needs to change
association can be done between its session arrivals to avoid
disruption of its ongoing sessions. Our algorithm is illus-
trated in Figure 9.

Between two offline optimization occurrences, we need to
associate users to APs as they arrive. We adapt the online
algorithm of Aspnes et al. , in [21], to achieve a O(logn)
approximation factor as compared to the offline optimal,
where n is number of users in the system. We refer their
algorithm as AlgorithmByAAFPW. All we need to change
is to substitute the load in their algorithm by the integral
load of the APs, yint

a . In online user association, we need to
address two conflicting factors. Intuitively, a user should be
assigned to the less loaded APs that are within its transmis-
sion range. However, the data rate from the user to these
APs can be very low which adds very high additional load
to them. Therefore, a user should be assigned to an AP
where it causes small additional load. To capture these two
trade-offs, Aspnes et al. [21] define a potential function that
is exponential in the load of an AP. When a new user ar-
rives, all possible user-AP association are evaluated. After
the evaluation, the assignment that minimizes the increase
of the potential function is selected. They show that, us-
ing certain potential functions, the highest load among all
APs of the online algorithm is within O(logn) factor of the
highest load among all APs of the offline algorithm.

7. SIMULATION RESULTS
In our simulation compared the performance (in the con-

text of max-min fairness) of our scheme with two popular
heuristics, namely the Strongest-Signal-First(SSF) method
and the Least-Loaded-First(LLF) method. The SSF method
is the default user-AP association method in the 802.11
standard. The LLF method is a widely-used load-balancing
heuristic, in which a user chooses the least-loaded AP that
he can reach. For a fair comparison, we assume the same
scheduling mechanism at the APs for all three methods, such
that the only difference is the assignment decisions between
users and APs. The simulation setting is as follows. We use
a simple wireless channel model in which the user bit rate
depends only on the distance to the AP. Adopting the values
commonly advertised by 802.11b vendors, we assume that
the bit rate of users within 50 meters from AP is 11 Mbps,
5.5 Mbps within 80 meters, 2 Mbps within 120 meters, and 1
Mbps within 150 meters, respectively. The maximum trans-
mission range of an AP is 150 meters. The backhaul capacity
is set to 10 Mbps to emulate the Ethernet infrastructure. A
total of 20 APs are located on a 5 by 4 grid, where the dis-
tance between two adjacent APs is set to 100 meters and we
assume that an appropriate frequency planning was made.
The number of users is either 100 to simulate a moderately
loaded network or 250 to simulate a heavily loaded network.
We assume all users are greedy.

Due to space limitation we present our results only for the
case hot-spots that more common in practical WLANs. We
locate all users in a circle-shape hot spot at the center of the
network. The radius of the hot spot is set to 150 meters.
Even if the size of the hot spot is the same as that of one
802.11 cell, the users still can reach several cells because of
the overlap between cells. Figures 10 and 11 show the results
with 100 and 250 users, respectively. The Y axis represents
the per-user bandwidth and the X axis represents the user
index. Note that the users are sorted by their bandwidth
in increasing order. The user locations are different at each
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Figure 10: Per-user bandwidth of 100 users.
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Figure 11: Per-user bandwidth of 250 users.

run, and therefore the bandwidth of the user with the same
x index actually indicates the average bandwidth of x-th
lowest bandwidth user. Somewhat surprisingly, our method
outperforms the two heuristics not only in terms of fairness
but also in terms of total system throughput. For instance,
in Figure 10, the median per-user bandwidth value of our
method is over 20% higher than that of the SSF method.
The bandwidth values are obtained by averaging the results
of 100 simulation runs. We also noticed that the SSF ap-
proach outperforms the LLF method in terms of both max-
min fairness and overall network throughput. This supports
our claim above that a naive load-balancing algorithm may
yield very poor results. By comparing Figure 10 and 11, we
also conclude the gap between our method and the fractional
optimal solution narrows as the number of users increases.
It can be explained by the fact that the impact of each user
in the integral association scheme decreases as the number
of users increases. Thus, with an infinite number of users,
the results of integral association and fractional association
will converge.

We also simulated the online algorithm. To simulate the
dynamic user departure/arrival (or the user mobility), at
each time slot a certain portion of users are taken out of
the system and the same number of new users are injected
into the system. The result of the case that we replace 20%
of users at every time slot is shown in Figure 12. Unlike
other plots the Y axis represents the lowest user bandwidth
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Figure 12: Simulation result of the online case with

250 users.

and the X axis represents the time. The offline algorithm
is periodically invoked at every 15 time slots or when the
bottleneck difference exceeds 25%. Note that the result is
episodic, since it depicts the evolution of the system for one
simulation run. Nevertheless, the presented result is very
typical. In the presented case, the offline algorithm was
invoked 5 times including 20th time slot.

8. CONCLUSION
As wireless LANs are deployed to cover larger areas and

are increasingly more and more relied on to carry impor-
tant tasks, it is essential that they be managed in order to
achieve desired system performance objectives. In this pa-
per, we study one of the problems—providing fair service to
users and balancing the load among APs. These goals are
obtained by intelligently determining the user-AP associa-
tion, termed association control. We first rigorously formu-
late this association control problem in the context of wire-
less LANs and we present approximation algorithms that
provide guarantees on the quality of the solution. Our sim-
ulations confirm that the proposed methods, indeed, achieve
close to optimal load balancing and max-min fair bandwidth
allocation, and significantly outperform popular heuristics.
Moreover, we show that in some cases, by balancing the load
on the APs the overall network throughput is increased. In
the future, we intend to develop a practical management
system based on the theoretical foundation presented in this
study.
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APPENDIX
A. PROOF SKETCH OF THEOREM 4

In the following we only prove that the min-max load
balanced association determines a max-min fair bandwidth
allocation. By similar arguments the other direction can be
proven as well. Let X be a min-max load balanced associ-

ation and let ~B be its normalized bandwidth vector. Lets
assume, that X does not produce a max-min fair bandwidth
allocation. Thus, there is an association X ′ that its normal-

ized bandwidth vector ~B′ has higher lexicographical value

than ~B. Let {Fk}, {F ′
k}, {Lk} and {L′

k} be the fairness
and the load groups of the associations X and X ′, respec-
tively. We define an additional association, X̃ = (X +X ′)/2,
i.e., for each AP a and user u, it follows x̃a,u = (xa,u +

x′
a,u)/2, and let {F̃k} and {L̃k} be its fairness and load

groups, respectively. Let j be the lowest index such that
Fj 6= F ′

j or Lj 6= L′
j . Recall, that for every index i < j

follows that F̃i = F ′
i and ˜̄bi = b̄′i. Since, X is min-max

load balanced association, it follows that yj ≤ y′
j . Similarly,

X ′ is max-min fair bandwidth association, thus, b̄j ≤ b̄′j . As

yj = 1
b̄j

and y′
j = 1

b̄′
j

we have yj = y′
j and b̄j = b̄′j . In the fol-

lowing we assume, without lost of generality, that Fj 6= F ′
j ,

the case where Lj 6= L′
j can be proven in similar way. We

consider three cases:
case I: Fj ⊂ F ′

j : However, this contradicts the assumption
X ′ is a max-min fair bandwidth association.
case II: F ′

j ⊂ Fj : Now suppose that Lj ⊂ L′
j , but in this case

the set of APs Lj is sufficient to provide the bandwidth b̄′j to
all the users in the set F ′

j . While, APs in the sets L′
j−Lj can

be used to increase the bandwidth allocation of other users
with the same or higher bandwidth, which contradicts the
assumption that X ′ is max-min fair bandwidth association.
Consequently, it follows that Lj 6⊂ L′

j , which implies that

Lj − L′
j 6= ∅. Thus, the association X̃ , obviously, reduces

the load from every AP a ∈ Lj −L′
j , without increasing the

load of any AP with load yj or more. This contradicts the
assumption that X is a min-max load balanced association.
case III: F ′

j −Fj 6= ∅: In this case, the association X̃ guaran-

tees to each user u ∈ F ′
j − Fj a bandwidth ˜̄bu > b̄j without

decreasing the bandwidth of any other user that has nor-
malized bandwidth of b̄j or less in X ′. This contradicts the
assumption that X ′ is a max-min fair bandwidth associa-
tion.
Consequently, we conclude that for every j, Lj = L′

j and
Fj = F ′

j and this complete our proof. 2

B. THE CORRECTNESS OF THEOREM 5
We start with some properties of the bottleneck-group

detection routine. We then prove the correctness of the load
balancing algorithm.

Lemma 4. LP1 infers the value of the bottleneck load Ỹ
of any min-max load balanced association. Moreover, it cal-
culates an association such that Ỹ upper bounds the load of
each AP.

Proof: LP1 seeks for an association X that minimizes Ỹ .
The first and second conditions verify that Ỹ upper bounds
the load of each AP both over the wireless and wired domain.
While, the third and fourth condition ensure the X is a
feasible association. 2

Lemma 5. Let X be the association calculated by LP2 for
a giving bottleneck load value Ỹ as determined by LP1. The
bottleneck load group comprises all the APs if and only if the
load on each AP is Ỹ .

Proof: From Lemma 4, it follows that the bottleneck load
value is Ỹ . Recall that LP2 finds a feasible association
X that minimizes the overall load with the constraint that
the load of each AP is at most Ỹ (the latter is termed as
the upper bound constraint). Consequently, if all the APs

are included in L̃, then, by definition, the overall load of
any such association calculated by LP2 is |A| · Ỹ . Thus,
there is no feasible association that satisfies the upper bound
constraint and some APs have load strictly less then Ỹ . On
the other hand, if not all the APs are included in L̃, then
there is an association whose overall load is strictly less than
|A| · Ỹ . In such cases, LP2 finds a feasible association such

that the load of some APs is strictly less than Ỹ . 2

Lemma 6. Let G = (V, E) be the graph that results from
the association X calculated by LP2 and consider the initial
node colors. A given AP is included in L̃ if and only if its
corresponding node in G, denoted by b, is colored black and
there is no directed path in G from b to any white colored
node.

Proof: consider a black node b that is included in a directed
path of black nodes P = {b = v1, v2, · · · , vk = a} ended with
a white node a. This means that the corresponding AP of
node vk−1 can shift some load to AP represented by node a.
Therefore, it can reduce its load without increasing the load
of any AP with load Ỹ . In an iterative manner, this process
can be done for any node vi ∈ P . Thus, the AP represented
by node b will not be included in L̃.
We now prove the other direction. From Corollary 1, it
follows that all the APs in F̃ have load Ỹ , hence their cor-
responding nodes are colored black. In addition, the load
of any AP b ∈ F̃ cannot be reduced by shifting some load
to a non-bottleneck AP. Thus, there is no directed link in
G between a node representing a bottleneck AP to a node
representing a non-bottleneck AP. Consequently, nodes that
represent APs in F̃ are not included in any directed path
ending with a white node. 2

Lemma 7. The bottleneck-group detection routine deter-
mines the load and the fairness bottleneck groups, L̃ and F̃ ,
and their corresponding user-AP association in the fractional-
association model.

Proof: From Lemma 4, it follows that LP1 determines the
bottleneck load value Ỹ and also calculates a feasible as-
sociation that satisfies the upper bound constraint. From
Lemmas 5 and 6, it follows that the routine separates the
APs in L̃ from the other APs. Finally, from Corollary 1 the
APs in X are associated only with the users in F̃ . 2

Proof of Theorem 5: From Lemma 7 and Corollary 1
results that at each iteration the load balancing algorithm
detects the current load and fairness bottleneck groups, de-
noted as Lk and Fk, and their user-AP association. Thus,
at each iteration, the algorithm reduces the size of the AP
and user sets until a complete min-max load association is
detected. 2


