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Abstract— In third generation (3G) wireless data networks,

repeated requests for popular data items can exacerbate the
already scarce wireless spectrum. In this paper we propose an
architectural and protocol framework that allows 3G service
providers to host efficient content distribution services. We
offload the spectrum intensive task of content distribution to an
ad-hoc network. Less mobile users (resident subscribers) are pro-
vided incentives to cache popular data items while mobile users
(transit subscribers) access this data from resident subscribers
through the ad-hoc network. Since the participants of this data
distribution network act as selfish agents, they may collude
to maximize their individual payoff. Our proposed protocol
discourages potential collusion scenarios. In this architecture the
goal (social function) of the 3G service provider is to have the
selfishly motivated resident subscribers service as many data
requests as possible. However, the choice of which set of items to
cache is left to the individual user. The caching activity among
the different users can be modeled as a market sharing game.

In this work, we study the Nash equilibria of market sharing
games and the performance of such equilibria in terms of a
social function. These games are a special case of congestion
games that have been studied in the economics literature. In
particular, pure strategy Nash equilibria for this set of games
exist. We give a polynomial-time algorithm to find a pure strategy
Nash equilibrium for a special case while it is NP-hard to
do so in the general case. As for the performance of Nash
equilibria, we show that the price of anarchy — the worst-
case ratio between the social function at any Nash equilibrium
and at the social optimum — can be upper bounded by a
factor of 2. When the popularity follows a Zipf distribution,
the price of anarchy is bounded by 1.45 in the special case
where caching any item has a positive reward for all players.
We prove that the selfish behavior of computationally bounded
agents converges to an approximate Nash equilibrium in a finite
number of improvements. Furthermore, we prove that, after each
agent computes its response function once using a constant factor
approximation algorithm, the outcome of the game is within a
factor of �������
	���
 of the optimal social value where � is the
number of agents. Our simulation scenarios show that the price
of anarchy is 30% better than that of the worst-case analysis
and that the system quickly (1 or 2 steps) converges to a Nash
equilibrium.
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I. INTRODUCTION

Third-generation (3G) wide-area wireless networks have
recently experienced tremendous growth, with the number
of subscribers reaching more than 70 million worldwide [1].
Many 3G service providers have started offering content-rich
services such as sports replays, news headlines, music videos,
and movie trailers [1].

The 3G subscriber market can be categorized into groups
with shared interest in location-based services, e.g. the preview
of movies in a theater or the scene of the beach nearby. Since
the 3G radio resources are limited, it is expensive to repeatedly
transmit large quantities of data over the air interface from
the base station (BS). It is more economical for the service
provider to offload such repeated requests on to the ad-hoc
network comprised of its subscribers where some of them may
have recently acquired a copy of the data. In this scenario the
goal for the service provider is to give incentives for peer
subscribers in the system to cache and forward the data to the
requesting subscribers. Since each data item is large in size
and transit subscribers are mobile, we assume that the data
transfer occurs in within a range of a few hops.

We envision a system consisting of two groups of sub-
scribers: resident and transit subscribers. Resident subscribers
are less mobile and mostly confined to a certain geographical
area. Resident subscribers have incentives to cache data items
that are specific to this geographical region since the service
provider gives monetary rewards for satisfying the queries of
transit subscribers. Transit subscribers request their favorite
data items when they visit a particular region. Since the
service provider does not have knowledge of the spatial and
temporal distribution of requests, it is difficult if not impossible
for the provider to stipulate which subscriber should cache
which set of data items. Therefore, the decision of what to
cache is left to each individual subscriber. The realization of
this content distribution system depends on two main issues.
First, since subscribers are selfish agents, they may collude
to increase their individual payoffs. Collusion can result in
other subscribers being cheated of their rewards. In this work
we address the problem of colluding subscribers by providing
a protocol framework that discourages or prevents collusions.
The second issue is that the payoff of each item for each agent
must be a function of the number of cache requests it services.
This in turn depends on the number of agents who cache a
given item since each agent has limited storage space (due to
form factor, current 3G devices only have a couple of MB flash
memory [1]). Therefore, each selfish agent may change the set
of items it caches in response to the set of items cached by
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others. This leads to a non-cooperative caching scenario which
we model as a market sharing game.

In the market sharing game, the primary questions are
whether the system converges, i.e., results in a pure strategy
Nash equilibrium and how long it will take to converge. The
goal of the service provider is to offload as many cache
requests as possible to the ad-hoc network. We refer to
this goal as the social optimum. However, given the selfish
behavior of the agents, it is unlikely that the system will result
in a social optimum. Therefore, we would like to bound the
ratio between the optimal social value and the outcome of
the selfish behavior of players. We refer to this ratio as the
price of anarchy. Furthermore, when computing the selfish
behavior of individual players it is essential to consider the
computational constraint on the individual subscribers. We
model computationally bounded agents using approximation
algorithms and evaluate how fast the selfish behavior of such
agents will converge to an approximate Nash equilibrium or
arrive at an approximate solution to the social function.

The main contributions of this paper are as follows: First,
we study the applicability of non-cooperative caching in wire-
less networks and propose a detailed protocol that provides
incentives for selfish agents to service other agents while
discouraging collusion among participating agents. We model
the caching game among the different mobile users as a market
sharing game. We show that this is a special case of congestion
games. It is known that pure strategy Nash equilibria exist for
these games [21]. We give a polynomial-time algorithm to
find a pure strategy Nash equilibrium for the special case of
uniform market sharing games where all items are of the same
size. We know that it is NP-hard to find such an equilibrium
in the general market sharing game. As for the performance
of Nash equilibria, we obtain an upper bound on the price
of anarchy for two different cases. In the general case where
the popularity of the items is arbitrary, the price of anarchy
is upper bounded by 2. When the popularity follows a Zipf
distribution we have an upper bound of 1.45 in the special case
where caching any item has a positive reward for all players.
We give an example that shows that the factor 2 is tight in the
general case even with Zipf distribution. We also consider the
case of computationally bounded agents by modeling them
using approximation algorithms. We prove that, after each
agent computes its response function once using a constant
factor approximation algorithm, the outcome of the game is
within a factor of ������������� of the optimal social value where �
is the number of agents. We also show that this bound is tight
up to a constant factor. We also evaluate our algorithms using
simulation scenarios and show that the price of anarchy in our
network setting is less than 70% of the worst-case analysis.
We also demonstrate that in most cases the system converges
to a Nash equilibrium in one or two steps of each player. A
step is defined as the greedy action of a player to change to
a different set of items given the actions of other players.

The rest of the paper is organized as follows. In section II,
we propose a detailed protocol for offloading content dis-
tribution from 3G wireless networks to ad-hoc networks. In
section III, we discuss our incentive mechanism and show
that it prevents or discourages collusion. In section IV, we

formulate the non-cooperative caching problem as a general
market sharing game. In section V, we analyze the price of
anarchy of our market sharing game and in section VI, we
show that pure strategy Nash equilibrium exists, but it is NP-
hard to find such an equilibrium. We also provide a polynomial
time algorithm to find a pure strategy Nash equilibrium for
the special case when all the items have the same size. In
section VII, we model computationally bounded agents by
approximation algorithms and analyze the outcome of their
selfish behavior. We observe that such agents converge to an
approximate Nash equilibrium. We also show that, after one
step of improvements the outcome of the game is within an������������� factor of the optimum. In section VIII, we investigate
the price of anarchy for a set of sample instances and the
convergence rate to exact and approximate Nash equilibria.
Related work is provided in section IX. A discussion on our
results and other relevant issues are described in section X.
We conclude in section XI.

II. SYSTEM ARCHITECTURE, TRUST

MODEL AND PROTOCOLS

In this section, we briefly discuss the system architecture
and the trust model for distributed non-cooperative caching.
We then outline the protocols required for offloading popular
data items from 3G networks to the multi-hop ad-hoc network.
Our architecture is largely the same as UCAN [14]. In our
system architecture we assume the following:� A service provider operates a 3G data network, e.g. 1xEV-

DO, CDMA2000-1X, etc. The cost of retrieving an item
from the service provider is assumed to be significantly
higher than obtaining the same item from the ad-hoc
network.� The mobile device of each subscriber has a 3G interface
as well as an IEEE 802.11 radio interface so that it can
receive data from the 3G data network and can participate
in ad-hoc forwarding.� Users are selfish and act rationally. A user’s primary
objective is to maximize its own utility. The utility is in
terms of obtaining the item of interest or monetary gains
for forwarding or serving the requested item to another
subscriber in the network.� Users trust the service provider network for correct
accounting, authentication and packet transmission. We
do not deal with malicious users in this paper. However,
users could collude arbitrarily if they can benefit by doing
so.

Each node � has a shared key  "! with the service provider.
When node � requests an item from the service provider, the
provider first checks whether the item has been cached by
other local resident subscribers (subscribers keep the providers
updated about the items they cache). If there are no cached
copies for the item, the provider will service � directly.
However, if the item is available through a subscriber cache,
the provider will instruct � to look for the item in the ad-
hoc network. Along with this response the provider also
sends descriptive information regarding the item requested, for
example the item ID and the size. Alternatively, if a node
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Fig. 1. Protocol Messages.

knows the item ID, it can request the item from the ad-
hoc network directly. Our protocol messages are illustrated
in Figure 1. The first message is optional if the node knows
the item ID.

Node � then broadcasts a CacheReq message for the specific
item to all # neighbors in the ad-hoc network. Node � includes
a Message Authentication Code (MAC) in the CacheReq
message. See [14] for details on how to construct MAC codes.
The CacheReq message includes the address of � and the
requested item ID. Upon receiving the message any resident
node that has the requested item will send a CacheReply
message to � and attach its MAC computed using its shared
key with the provider. The ad-hoc network performs source
routing and therefore the final message received by the node� will contain a string of MACs or a layered MAC [24] for
all the intermediate hops.

Node � may receive multiple CacheReply messages. It may
choose to be serviced by the resident subscriber that has the
minimum number of hops. Node � asks the service provider
to authenticate the chosen route by sending an authenReq
message. The service provider in turn registers the transac-
tion along with the route used. When the BS receives the
authenReq and sessionKeyRq message, the BS constructs a
RouteAuthen message. The message contains a list of (Session
ID (SID), source u, destination v, previous hop, next hop,
item size) encrypted using the shared key of each node along
the path. An intermediate node $ forwards traffic for session
SID only if it can decode the message(SID, u, v, previous
hop, next hop, item size) using  "% shared with the service
provider. Once the route authentication has been completed,
node � sends an itemGet message to the source node & . When
node & receives the itemGet message, it requests a session
key  (' from the BS by sending a sessionKeyReq message.
This message contains the session ID and the source ID &
and destination ID � . The BS responds with a session key
encrypted using  () .

Upon receiving the session key the data item is encrypted
using this key. Node & appends a MAC to each packet of
the data item using key  ) and it then sends the packet on
the ad-hoc network. Each intermediate node $ computes a
MAC over the received packet using key  "% it shares with the

service provider. It replaces the MAC in the received packet
with this new MAC (for details of MAC layering, see [24])
and sends the packet to the next hop. During data transfer
in the ad-hoc network each intermediate node monitors the
packets that are being forwarded by the next node in order
to prevent misuse of the authenticated ad-hoc path. When the
entire file transfer has been completed node � requests the
session key from the Base Station (BS) to decode the data
received. When an intermediate relay node forwards data by
more than a threshold of the itemSize, it will inform the BS.
Forwarding nodes also randomly sample packets with a low
probability and report the packet along with its contents to the
BS.

Our protocol is lightweight. For one item transfer we have at
most 6 short messages between the service provider and the
nodes involved plus a small percentage of random sampled
packets reported to the BS.

III. CREDIT ACCOUNTING AND AUDITING

In this section, we present schemes for charging and re-
warding. We also discuss mechanisms that aid in tracking the
credits for resident subscribers and mechanisms that prevent
or discourage cheating and collusion among the participants to
gain false credits. Since security is not the main focus, we only
provide an informal discussion. For a more rigorous treatment,
please refer to [10].

There are two types of monetary rewards (1) *,+ for success-
fully servicing the query for item - and (2) .�+ for forwarding
the query. */+102.3+ and for a given item the total forwarding
reward is fixed and shared equally among the forwarding
nodes. Both types of rewards are a function of the file size of
the item. The receiving node is charged 4657��-8� if it obtains the
item from subscribers in the ad-hoc network. While if the data
item is obtained from the service provider the receiving node is
charged 469:��-8� . 419���-8� is much larger than 4�57��-8� . Participating
nodes are charged or rewarded only if BS determines that the
item transfer is successfully completed. The service provider
can tune */+ and .;+ so that a critical number of resident
subscribers are willing to participate in caching the popular
items.

Our data transfer protocol proposed in the previous section
provides no incentive for the following types of behavior.
Stealing reward from forwarding nodes: The repeated col-
lusion of the sender and receiver to leak the session key
over a covert channel thus cheating the forwarding nodes of
their rewards is prevented by the record keeping done by
the base station. This record keeping is accomplished by the
random sampling of packets in the intermediate nodes and the
information obtained is used to black mark source-destination
pairs for attempting to cheat the forwarding nodes.
Refusal to pay by the receiver: The receiver � cannot refuse to
pay if it requires the session key from the base station in order
to decrypt the content. If it resorts to a covert channel between
the sender and receiver to obtain the session key, then BS can
determine with high probability that the session is complete
through the sampled packets from forwarding nodes.
Impersonate the sender: There is no incentive to impersonate
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the sender since a sender only gets paid if the receiver ac-
knowledges the service provider about a successful completion
of the data transfer. The provider will only pay the original
sender that was registered in its database.
Packet dropping: There is no incentive for intermediate nodes
to drop packets since they are credited only if the item is
transfered completely and the credit is based on the size of
the item, not the amount of data relayed.
Free riding: (1) Since intermediate nodes only forward traffic
for a session if it receives authentication from the BS, the
source cannot collude with the receiver such that the interme-
diate nodes do not get paid. (2) The source node or any inter-
mediate node cannot collude with another intermediate node
to piggyback data. The ”man-in-the-middle” victim knows the
size of the item, and it can report this to the provider. Although
an individual node is not to be trusted, if many nodes report the
same problem with the source node, the provider can punish
the source. An intermediate node has no incentive to implicate
the source falsely since reporting to the provider incurs a
cost. However if all the intermediate relay nodes are colluding
nodes, then they merely form a cooperative ad-hoc group. In
our protocol we require that intermediate nodes sample packets
and report them to the BS. If the BS cannot decrypt the packet
correctly due to piggybacked extra data, the BS knows that
someone has changed the packet. (3) If a destination node
colludes with an intermediate node to get a free ride for their
own data and drops legitimate traffic, the destination will have
a high session failure rate. The BS can blacklist all such nodes
with a high session failure rate. In addition, due to the fact that
packets are sampled to the BS, the BS knows that the packet
has been changed. (4) If two relay nodes collude and get a free
ride on their data and drop legitimate traffic, monitoring by
the previous hop node who sent legitimate traffic will reveal
that packets other than the one it sent got transmitted. The
monitoring node can then report this to the provider. Based on
such reports from many sessions, the provider can determine
a cheating node with high probability. In all the above cases,
if the BS knows that data has been tampered by intermediate
nodes from MAC decoding failure, the BS can take immediate
actions, e.g. asking the destination to locate another node with
the item or find an alternative route.
Suboptimal routes: There is less incentive for a node to add
other nodes in the route since a fixed reward is divided among
all forwarding nodes. In addition, since the receiver is likely to
select the shortest route there is no advantage to announcing
a longer route.

IV. PROBLEM FORMULATION

In this section, we formalize our caching problem abstractly
in terms of a competitive market sharing game.

In a market sharing game, there is a set < of � agents or
players and a set = of > markets. Each market -,?@= has
a query rate AB+ , i.e. the rate at which market - is requested
per unit time. Each market - also has a cost 4 + corresponding
to the cost for servicing this market. Each agent C has a total
budget DFE . We are also given a bipartite graph GIHJ�K=ML6<6NPOQ�
in which an edge between agent C and market - in G ( ��C�NR-8�1?

OS�KGT� ) means that - is of interest to agent C (we write C is
interested in market - ). Each agent should decide which subset
of markets to service. Agent C can service a subset UVE of
markets, if the sum of the costs 4 + of the markets in U�E is
less than or equal to DWE , i.e., X +�Y 9[Z 4 +]\ D^E . Agent C gets a
reward */+�H`_bac a for providing service to market - where ��+ is
the number of agents that service market - . Observe that the
total reward received by all players equal the total query rate
of the markets being serviced (by at least one player).

We now define the necessary game theoretic notations to
formally describe the problem. A strategic game is defined as
the tuple �d<6N�e
f E3g N�e
h E �d� g � where < is the set of players or
agents. f E is the set of actions or strategies for player C andh Ejilk^E f Enm * is the payoff or utility function for agentC given the set of strategies of all the players. In our model,
feasible actions are the set of markets that can be serviced
under the given budget constraint. We denote player C ’s action
by U E . Thus, U E is a feasible action if X +oY 9 Z 41+ \ D E . Given
the set, p , of actions for all agents, we can find the number of
agents � + that serve market - , and hence find the reward of each
market. The payoff or utility function of player C is the sum
of rewards it gets from the markets it serves, i.e., h�Eq��p1�rHX +oY 9[Z _ ac a where U�E is the set of markets C serves. We call
the above game a market sharing game and the special case
of uniform ( 46+sHt4 ) cost for all markets a uniform market
sharing game. In this game, each agent wants to maximize
its own payoff. The social function is the total amount of
queries satisfied in the market, i.e., u]��p1�vH X +oYqw ZyxBz 9 Z AB+ forp{H|�KU�};NPU�~�N��B����NPU c � . Notice that this is also the sum of the
utility functions of all players, i.e., u]��p6�QH�X E Y�� h�E7��p1�QHX +oYqw ZyxBz�9[Z A + . We refer to a strategy profile that maximizes
the social function as social optimum or optimum and the value
of this profile as optimal social value or the optimum. We
denote the social optimum by OPT.

It is obvious that, in a market sharing game, given the set
of actions of other players, the best action of an agent can be
obtained by solving a knapsack problem where the value of
market (item) - is equal to _bac a or _bac ao� } depending on whether
market - is currently serviced by this player or not. The size
of - in the knapsack instance is 4 + , and the knapsack capacity
is equal to DFE .

Example: The subscriber caching game described in the
introduction is one example of a market sharing game. Agents
or players correspond to subscribers and markets correspond
to data items. Query rate of market - is the query rate of
item - . The cost 4 + corresponds to the size of item - and the
total budget DFE of agent C corresponds to the available storage
space on the subscriber’s device.

As mentioned above, in this market sharing game, a feasible
action U E is a feasible solution to the knapsack problem of
player C . An action profile (or strategy profile) is a vector of
actions of all players: p�H|�KU�}3NPU�~�N����B��NPU c � . A action profilep is a pure strategy Nash equilibrium, if for any player C ,
given the strategies of all other players, C has no incentive
to change its strategy U�E to any other subset to improve its
payoff. A strategy Uv�E is an improvement move for player C in
strategy profile p�H��KU } NPU ~ N��B����NPU c � if the payoff of player
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C strictly increases in p by changing his strategy from U�E toU �E , i.e., h�Eq��p1�6�@h�Eq�KU } N��B����NPU�E�� } NPU �E N�U�E � } N����B��NPU c � .
A mixed strategy Nash equilibrium is a randomization over

different pure strategies such that fixing other players’ strategy,
each player maximizes its expected payoff using the current
strategy. Nash equilibria characterize the set of candidate
action profiles that selfish players will eventually converge
upon if at all.

As mentioned earlier, we focus on market sharing games
that have a central authority with a social objective function
to be accomplished by means of competitive market sharing.
Therefore given a social function, we want to bound the
price of anarchy, i.e., the worst-case ratio between the social
function value at the optimum and at any Nash equilibrium.

The general market sharing game described here is a special
case of congestion games [21]. These games have been studied
in the economics literature and the existence of a pure Nash
equilibrium has been established. The markets of the market
sharing game correspond to the factors (or elements) in the
definition of congestion games [21]. We will use this fact to
prove that the best response dynamics in this game converge
to pure Nash equilibria. Furthermore, we prove upper bounds
on the efficiency of Nash equilibria in this game and provide
some results on the speed of convergence to approximately
efficient solutions.

V. PRICE OF ANARCHY

A. General Distribution

Studying the outcome of games in terms of their price of
anarchy is a natural way to evaluate the outcome of a game.
It is not hard to verify that the pure Nash equilibrium of the
market sharing game is not necessarily unique. As a result,
the price of anarchy of this game is concerned with the worst
case equilibria. In this section, we provide some bounds on
the performance of the worst Nash equilibria of the market
sharing game by bounding the price of anarchy. We do this by
showing that the market sharing game is a valid-utility game.

Valid-utility games, introduced by Vetta [26], is a set of
non-cooperative games for which Vetta proved upper bounds
for their price of anarchy. We show that the market sharing
game is in this class of games which implies that its price
of anarchy is at most 2. In fact, this bound for the price
of anarchy can be obtained without referring to valid-utility
games. The main advantage of proving this bound using valid-
utility games is that it can be generalized to more general
variants of market sharing games. In order to state this result,
we need the following definitions.

Definition 5.1: A function of the form . i�����m �
is called a set function. A set function . i(� � m � is
submodular if .��K�q��H�� and for any two sets fQNRD���� ,.��ofs����.��oDr�6�@.��Kf" �Dr�q��.��of¡L�D¢� . This function is a non-
decreasing function, if for any £`�@¤¥��� , .���£n� \ .��o¤¢� .
Given an action profile p¦H��KU�};N��B����N�U c � , the set �S§¨He��K#�N©-8� i«ª \ # \ �]N©-l?�U�¬ g is called the pair set for p . Given
a function . i�k ¬ U ¬ m�� , the corresponding set function, . ' ,
of . is a set function of the form � � m­� where �tHIe��d#VN©-8� iª \ # \ �]N ª \ - \ > g and . ' ��� § �vH2.���p1� . In other words,. ' �o n�vH2.��©�Kf } NRf ~ N��B����NPf c �R� if f6EsH®e
- i ��C�NR-8�6?¡ g .

Definition 5.2: Let ¯��b<6N�e[U�E g N�e
h�E�� k ¬ U ¬ � g be a noncoop-
erative game with social function u i7k ¬ U ¬ m°� . ¯ is called
a valid-utility game if it satisfies these properties:� u ' , the corresponding set function of u , is submodular

and non-decreasing.� The payoff of a player is at least equal to the difference
in the social function when the player participates versus
when it does not participate.� The sum of the utility or payoff functions for any set
of strategies should be less than or equal to the social
function.

Theorem 5.3: [26] Let ¯ be a valid-utility game, then for
any mixed strategy Nash equilibrium, the social function at
this equilibrium is at least half the optimal social function,
i.e., in a Nash equilibrium f , u]� OPT � \ � OS± u]�ofs�y² .

Theorem 5.4: The market sharing game is a valid-utility
game.

Proof: We need to show that our social function given byu]��p1�QH³X +�Yqw ZyxBz�9[Z A�+ satisfies the three properties itemized
above:� First, it is clear that u ' is non-decreasing. To show its sub-

modularity, we use an equivalent definition of submodular
functions: A set function . is submodular if for any two
subsets f and D such that f¥´µD and for any element-"¶?{D , .��of·L¸e
- g �l¹{.��of/�r�º.��KD®L�eB- g �v¹{.��KD¢� (see
for example Lemma 2.2 of [15]). Thus, in order to prove
that u ' is submodular, it is enough to prove that for two
(possibly infeasible) action profiles p­H»�dU:}[N��B����N�U c �
and p � HJ�dU �} NB������NPU �c � such that U�E,�·U �E for all C¼?½< ,
by adding a new market - to the action set of any player,C , the increase in u ' for p is no less than the increase forp � . If market - is not in L�E Y�� U �E , its addition to one of theU �E increases u ' by A + . In this case, market -/¾?nL�E Y�� U�E ,
because L E Y��lU E �{L E Y��vU �E . Thus, adding market - to p
also increases u ' by A�+ . If - is in L E Y��lU �E , adding - will
not increase u ' . Thus in any case, the increase for p is
no less than the increase for p � .� The difference in the social function when C plays U E or
empty (does not play at all) is equal to X +�Y 9 ZP¿ c a�À } AB+and this is indeed less than or equal to X +�Y 9[Z _bac a .� By the definition of our social function, we haveX E Y�� h�E7��p1�/HIu]��p6� and therefore the third property is
satisfied as well.

To deal with the situation in which agents only compute an
approximate solution to the knapsack problem, we consider
approximate Nash equilibria. A Á -approximate Nash equilib-
rium is an action profile in which no player can unilateraly
change his action and get a payoff that is more than Á times
his current payoff. As an extension of Theorem 5.3, Vetta
proved that the optimal social value is at most Á,� ª times the
social value of a Á -approximate Nash equilibrium [26]. Using
this result and Theorem 5.4, we have the following corollary:

Corollary 5.5: The optimal social value is at most Án� ª
times the social value of a Á -approximate Nash equilibrium.
This corollary can also be proved directly without referring to
valid-utility games, see below. The proof based on valid-utility
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games can be generalized to more general variants of market
sharing game and is discussed in Section X.

Proof: Let ¤ E be the payoff of player C in the approximate
Nash equilibrium. Let £rE be the sum of the A + ’s over the set
of markets that player C serves in OPT but are not served
by any agent in the equilibrium being considered. By the
definition of approximate Nash equilibrium, we have Á�¤�E"�£QE . Otherwise, player C would switch action. Furthermore,X E Y�� ¤ÂE���u]� OPT �V¹ X E Y�� £¢E , as X E Y�� £¢E is at least the
total amount of query of the markets serviced by OPT but
not by the approximate Nash equilibrium. Thus, u�� OPT � \��Á"� ª � X E Y�� ¤ E , as desired.

B. Zipf Distribution

In the previous section, we proved that the price of anarchy
in the general market sharing game is at most 2. This provides
an upper bound on the ratio and is a worst-case analysis.
However we can prove better bounds for special cases. One
important special case is when query rates A + follow the power
law (Zipf) distribution, namely, A + H }+ÄÃ for a parameter�½�JÅ \ ª . These distributions are important as it has been
observed that in many practical situations, demand curves
follow these distributions [4].

In an instance of the uniform market sharing game, let Æ be
the number of markets that are served in an optimal solution.
In this section, we prove that in a uniform market sharing
game, if all players are interested in all markets, the price of
anarchy is less than ª � Ç7Èv�½ÉÊ� ª � in the worst case, where ÉÊ� ª �
depends on Æ , i.e. ÉÊ� ª � tends to 0 as Æ mÌË . Furthermore,
for cases in which the given bipartite graph is not complete
or markets have different costs, we prove that the factor 2 is
tight.

Theorem 5.6: In the uniform market sharing game, if the
given bipartite graph is complete and query rates are from a
Zipf distribution, then� The price of anarchy is less than or equal to }Í } �VÎqÏKÐyÑ Ã �ÉÊ� ª � for any Åº� ª . In particular, it is less than Ò ÐÓ �ÉÊ� ª �1� ª � Ç7È��"ÉÊ� ª � for any Å¸� ª and it tends to ª �"ÉÊ� ª �

when Å mÔª .� For Å H ª , the price of anarchy isÕ ª �IÖ ×�Ö × ÍÙØ ÏÖ × ÍÙØ Ï � ª �ÚÉÊ� ª �©�8Û .

Proof: Suppose the given bipartite graph is complete. Consider
a Nash equilibrium and let Ü be the least index such that the
players do not select Ü but select all markets 1 to Ü(¹ ª . No
market beyond Ü can be selected by any player, since otherwise
such a player would have an incentive to switch to market Ü ,
thus _bac a �{AÞÝ or }c a + Ã � }Ý Ã for ª \ - \ Ür¹ ª . Summing over

all markets ª \ - \ Ü¼¹ ª , we get X Ý � }+ À } }+ Ã ��� X Ý � }+ À } ��+d� }Ý Ã .

Letting ß Î �d#Â�lHµX ¬+ À } }+ Ã , we get Ü Î ß Î ��Ü�¹ ª �1�@X Ý � }+ À } ��+]�Æ since OPT can at most serve X Ý � }+ À } ��+ markets as our market
sharing game is uniform. In the optimal solution, markets ª ,� , �B��� , and Æ are served. Thus, we need to bound the price of
anarchy which is equal to à Ã ÍÙØ Ïà Ã Í Ý � } Ï .We consider the two cases ÅJH ª and Åº� ª separately.
We start with ÅMH ª . We need to compute à Ð ÍÙØ Ïà Ð Í Ý � } Ï . Using the

inequalities ��á��oA;� \ ß } �oA;� \ �Ùá��KA;�:� ª , we get Üj� ØÖ × ÍÙØ Ï � } .Therefore,ßQ};��Æ;�ß } �âÜ¼¹ ª � \ �Ùá���Æ;��� ª��á�� Ø � Ö × Í�Ø Ïb� }Ö × ÍÙØ Ï � } �\ �Ùá���Æ;��� ª��á���Æ/¹M�Ùá:��Æ;��¹ ª ��¹M�Ùá�����á���Æ;��� ª �
H ª � �Ùá^��á��oÆ3���á^Æ ��É�ã ��á^��á���Æ;��Ùá^Æåä N

where the last step can be proved using L’Hôpital’s rule whenÆ m°Ë .
We now consider the case ÅÚ� ª . Let æ Î �K#«�vH }} �VÎ �K# } �VÎ ¹ª � , then it is easy to see æ Î �K#«� \ ß Î �K#Â� \ æ Î �K#Â�Â� ª . Using

this fact, we can bound the ratio �Ùç�è Ø�éTê à Ã Í�Ø Ïà Ã Í Ý � } Ï . Observing
the facts that Ü m°Ë and æ Î ��Ü�¹ ª � m°Ë and Å is a positive
constant less than 1, we can compute the bound as follows:��çÙèØ�éTê ß Î ��Æ;�ßTÎ��âÜS¹ ª �\ ��çÙèØ�éTê æ Î ��Æ;��� ªæ�Î���Ü¼¹ ª �H ��çÙèØ�éTê Æ } ��Î ¹ ª��Ü¼¹ ª � } ��Î ¹ ª\ ��çÙèØ�éTê ��Ü Î ßTÎ���ÜS¹ ª �R� } �VÎ�âÜS¹ ª � } �VÎ ¹ ª\ ��ç�èÝ éTê �âÜ Î �oæ Î ��Ü¼¹ ª ��� ª �R� } �VÎ�âÜS¹ ª � } �VÎ ¹ ª\ ��ç�èÝ éTê Ü Î Í } �VÎqÏ }Í } �VÎqÏ ÐyÑ Ã �âÜ } �VÎ ¹ ª � Í } ��Î�Ï��ÜS¹ ª � } ��Î ¹ ªH ��ç�èÝ éTê Ü Í } �VÎqÏoÎ }Í } �VÎqÏ ÐyÑ Ã�R��ÜS¹ ª � } ��Î ¹ ª � ÎH ��ç�èÝ éTê ª� ª ¹MÅ�� } �VÎ ã Ü } �VÎ��ÜS¹ ª � } ��Î ¹ ª ä ÎH ª� ª ¹MÅ�� } �VÎ
Now, one can observe that this bound is less than Ò ÐÓ for anyÅ¸� ª and is equal to 1 as Å tends to 1.

Theorem 5.7: The factor 2 for the price of anarchy of uni-
form market sharing game is tight even for Zipf distributions
if the given bipartite graph is not complete. Moreover, this
bound is tight for a general market sharing game even if the
given bipartite graph is complete.

Proof: We give an example with A + H } + . There are � ~ �{�
markets and � ~ players. Players are partitioned in � groups of
size � . Players in group # are interested in markets #�NP#7�"�ª N�#7�6� � NB�����VN�#7�6�¼� . All budgets and costs are equal, i.e., for
all ª \ - \ � ~ ��� and ª \ C \ � ~ , D^E/H24 + Hìë . Now, it is
not hard to see that there exists a Nash equilibrium in which
all players of group # provide market # . Thus, there exists a
Nash equilibrium with the social value = c H ª � }~ �jíBí�í©� }c .
However if we assign a new market to each player, all markets
are provided except � of them. The value of this assignment
is = c;î � c ¹ X c+ À } }+ c � c Hì= c�î � c ¹�ï�ð
ñ Ð � }c . Thus the ratio isï ð î ñ�ðï ð ¹µï ðBñ Ð � }c ï ð which is equal to Ö × Í c î � c ÏÖ × Í c Ï H � as � m°Ë .



7

The proof that this bound is tight for general market sharing
games is based on an example similar to the above one. The
given bipartite graph is a complete bipartite graph. The only
difference is that the budgets of players in group # are �¼¹�# .
The cost of markets #VN�#7�,� ª N�#7�T� � N��B����NP#Ê�,�ò��¹ ª is also�S¹n# for ª \ # \ � . The cost of the market #7���n� is large.
The query rate of market - is AB+�H } + . Similar to the previous
example, if all players of group # provide market # , no player
has incentive to change his strategy. It follows that the price
of anarchy for this pure Nash equilibrium is arbitrarily close
to 2.

VI. FINDING A NASH EQUILIBRIUM

Nash proved that any strategic game has a mixed Nash
equilibrium [17]. However, there are strategic games that
have no pure strategy Nash equilibrium. Furthermore, the
complexity of finding a (mixed) Nash Equilibrium for strategic
games is still an open problem.

In the market sharing game, if we have only one player,
finding a Nash equilibrium corresponds to solving optimally
a knapsack problem. Thus, the problem of finding a Nash
equilibrium in this market sharing game is NP-hard.

However, a Nash equilibrium always exists. An existence
proof comes from a general framework defined by Rosenthal
[21] for congestion games, as our market sharing game is a
special case of such games. For completeness, we sketch the
proof here.

Theorem 6.1: [21] A pure strategy Nash equilibrium always
exists for the market sharing game.

Proof: The proof is based on defining a potential function and
proving that it decreases as agents improve their payoffs by
changing their strategies. The potential function for a strategy
profile p is ó¼��p1�lH Xìô+ À } X c aõ À } _baõ where ��+ is the number of
player playing market - in p . Consider player - who changes
her strategy from a set U to U � . Let f¨HtUÚ¹{U � and D`HU � ¹µU . Let ó be the value of the potential function when- plays U and ó � be the value when - plays U � . It is easy
to see that ó � ¹ÚótH X +oY�ö _bac a�� } ¹ X +oY�÷ _bac a . This value is
exactly the increase in the payoff of - . Assuming the fact that- improves her payoff, we know ó � 0�ó . This shows that the
pure strategy profile that maximizes this potential function is
a Nash equilibrium, since if some player was able to increase
her own payoff, she would improve the potential function by
the same amount.

In the rest of this section, we give a polynomial-time
algorithm for finding a pure strategy Nash Equilibrium for the
uniform market sharing game (and this will at the same time
prove the existence of such a Nash equilibrium). One main
feature of the uniform variant is that it is easy for player C
to determine its optimal strategy, given the set of strategies
for other players. Indeed, player C only needs to solve an
easy maximization problem corresponding to selecting the# E most rewarding markets, where # E H�ø ö Zù½ú . We could
therefore let players repeatedly and optimally improve their
strategy, but the main issue is to show that such a process
converges to a Nash equilibrium in polynomial time. In fact,
we will not analyze this algorithm. Instead we analyze an

iterative algorithm in which each agent is restricted to a set
of changes at each step. This proves that if players change
according to these restrictions, they will converge to a Nash
equilibrium in polynomially many steps. It would imply that
a Nash equilibrium can be found in polynomial time. An
iterative algorithm to find a Nash equilibrium navigates the
state graph defined below.

Definition 6.2: The state graph û¦H��oüsN©ý:� is a directed
graph. Each vertex in ü corresponds to a strategy profile. There
is an arc from vertex p to vertex p � with label C if the only
difference between p and p � is the action of agent C and the
payoff of player C in p is strictly less than her payoff in p � ,
i.e., player C plays an improvement move from p to p^� .

Any vertex in the state graph without any outgoing arc
(a sink) corresponds to a Nash equilibrium. Thus in order
to prove that a Nash equilibrium exists, we can show the
existence of a sink in the state graph. In the following theorem,
we give a polynomial-time algorithm to find such a vertex in
the state graph.

Theorem 6.3: For the uniform market sharing game, a pure
strategy Nash equilibrium always exists and can be found in
polynomial time. Furthermore, it can be obtained by traversing
a path of length at most > ~ � in the state graph.

Proof: Our algorithm for traversing the state graph and finding
a sink proceeds in rounds. The first round starts at the vertex� corresponding to the set of empty actions. In each round,
the first arc traversed corresponds to a player, say C , switching
from U�E to U �E where U �E H¥U�E6LjeB- g . In other words, playerC only adds precisely one market to its strategy. We refer to
this first arc as an add arc. After this first arc, subsequent arcs
in a round are change arcs. These correspond to a player, sayC , replacing U E by U E LòeB- g1þ e[# g , where -�¶?òU E and #¡?�U E ;
player C exchanges market # for market - . Furthermore, givenC and # , - is selected among all possible markets - of interest
to C and not currently in U E in order to maximize C ’s payoff.
A round finishes when there are no change arcs out of the
current vertex. Subsequent rounds start at the vertex where
the previous round finishes, unless this vertex has no add arc
outgoing from it in which case this is the last round.

First, observe that when the last round finishes, the current
vertex has no add or change arcs and therefore must be a
pure Nash equilibrium. This implicitly uses the fact that we
are dealing with a uniform market sharing game and therefore
any maximal strategy for player C can be obtained from any
other maximal strategy by exchanging in and out two markets
at a time. Furthermore, at the end of each round, the current
state has no change arcs outgoing from it, which implies that it
corresponds to a pure Nash equilibrium if we suitably modify
the budgets of each player (so that they cannot add markets).

As one player adds a market at the beginning of each round,
the number of rounds cannot be greater than >"� . We now
show that each round ends, and in fact ends after traversing
at most >t¹ ª change arcs (and one add arc).

Let us focus on one round and let ��+ be the number of
players servicing market - at the beginning of a round. For
simplicity, we assume that the markets are sorted in such a
way that _ Ðc Ð � } � _ îc î � } �¥í�íBí�� _bÿc ÿ]� } . Consider any vertex
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in the round after the first add arc. Let U�E be the markets
currently served by C and let ��E be the markets of interest
to C (i.e. - with �ÙCqN©-8�,?�O ) not in U�E . For player C , let ���ÙC7�
denote è�ç�á�eB-�?���E g . We show by induction that the following
properties hold throughout the round:

1) For any player C , ���ÙC7� does not decrease during the
round.

2) Every market - is covered by ��+ players, except one,
denoted by Ü which is covered by ��Ý^� ª .

3) For any player C , any market -S?®U E and any market#"?�� E we have _bac a � _��c � � } .
Properties 1 and 2 are obviously true after the first add arc
corresponding to player, say � , adding market Ü . Property 3 is
also true after the first add arc. Indeed, the condition reduces
to the fact that the last round ended in a pure Nash equilibrium
except for the case where C�H�� and -WH2Ü where it follows
from the choice of Ü : _��c � 0 _��c ��� } � _��c � ñ Ð .We see now what happens when we traverse a change arc
corresponding to player � exchanging two markets. Condition
3 implies that � leaves market Ü since all other markets do
not increase � ’s payoff. Thus property 2 is maintained after
the change (with a different value for Ü ). Secondly, � will
now serve market �q���K� by definition of ���	�d� . This implies that_ �c ��� } � _�
���
��c 
���
���� } , i.e. �q���K�/��Ü . This means that property 1 is
also maintained. To verify that Property 3 is still maintained,
we only need to consider the cases in which CrH�� and either#MH�Ü or -sH����	�d� . If -sH������K� , property 3 follows from the
definition of �q���K� : _�
���
��c 
���
�� 0 _�
���
��c 
���
��o� } � _��c �Þ� } . If #¼HjÜ , it follows

from _bac a � _ 
���
��c 
���
��o� } 0 _��c � � } .All three properties are maintained during the round. Fur-
thermore, since player � replaces market Ü by market �����K� and�q���K�1�MÜ , we have that Ü decreases as we traverse change arcs.
This implies that we have at most >j¹ ª change arcs in a round.
This proves our bound of ��> ~ on the length of the traversal
we construct before reaching a pure Nash equilibrium.

In order to run the algorithm, we actually do not need to
construct the entire state graph. We only need to be able to
find the next arc to traverse, and this can be done in ����>{�S���
time, resulting in a total running time of ���©�o>¥�����y> ~ ��� .

VII. GREEDY BEHAVIOR ANALYSIS

Although we have proved that the price of anarchy for a
Nash equilibrium is upper bounded by 2, there are still two
main issues that are left unaddressed. First, converging to
an exact Nash equilibrium in a way described in Theorem
6.1 requires agents to solve optimally an NP-hard knapsack
problem in order to find their best response. Considering
the computational constraints of rational agents, we consider
agents that choose their action based on an approximation
algorithm for knapsack. The second issue is the speed with
which the agents can converge to a Nash equilibrium or an
approximate Nash equilibrium. We consider both issues in this
section.

In the proof of theorem 6.1, we see that if agents im-
prove their payoff, they will converge to a Nash equilibrium
after finitely many steps (since the potential function can

take only finitely many values and strictly increases with
every improvement). This result can be generalized to the
setting in which each agent chooses its action using a Á -
approximation algorithm for knapsack (keeping the actions of
all the other players unchanged). A Á -approximation algorithm
is a polynomial-time algorithm guaranteed to return a feasible
solution of value (i.e. payoff) at least ª ¶3Á times the optimum.

Theorem 7.1: If all players rely on a Á -approximation al-
gorithm to improve their actions, they will converge to a Á -
approximate Nash equilibrium in finitely many steps.

From Corollary 5.5, we know that such a Á -approximate Nash
equilibrium gives a social function value within a factor }� � }of the optimal social value.

The proof of the above theorem is similar to that of Theorem
6.1. Using the same potential function, one observes that, after
finitely many steps, no agent will be able to improve its action,
and therefore, we will have reached a Á -approximate Nash
equilibrium.

The above theorem, as well as Theorem 6.1, do not bound
the number of steps needed for players to converge to an
equilibrium. In the remainder of this section, we analyze a
greedy behavior of the players, greedy upon arrival, in which
players enter the game one by one and select their first action
by using a Á -approximation algorithm for knapsack for some
constant Á . We show that after the players have selected their
first action, i.e. after each player makes just one decision, the
resulting strategy profile has a social function value within a
logarithmic factor of the optimal social value.

Theorem 7.2: If each player chooses its first action using
a Á -approximation algorithm then the social function of the
resulting strategy profile is at least }Í � � } Ï ï ð of the optimal
social value, where = c H ª � }~ �ºí�íBí«� }c \ �Ùá������^� ª .
Moreover, this logarithmic bound is tight, up to a constant
factor.

Proof: For the purpose of the analysis, we consider the
following restricted multiple knapsack problem (RMKP) cor-
responding to an instance of our market sharing game. In an
instance of the RMKP problem, there are > groups of � items
each for a total of >¡� items. The � items in group - all
have size 4 + , for ª \ - \ > . The values of items in group- are �KA�+RN _ a~ N _ a� NB���B��N _ ac � . There are � bins with capacities�oD,}[NPDs~�N��B����NPD c � . Bin C can get an item in group - iff agent C
is interested in market - ( �ÙCqN©-8�1?�OS�KGT� ). We are only allowed
to place at most one item of each group in a bin, and the goal
is to place (some of the) items in bins so that the size assigned
to every bin is at most its capacity and the total value of items
assigned is maximized. Given the objective function, we can
focus our attention on algorithms for which an item of group -
is not assigned to any bin if a higher valued item of the same
group is not assigned to any bin. We prove our claims using
the following lemma:

Lemma 7.3: Consider the following greedy algorithm for
RMKP problem: arbitrarily order bins, pack bins one at a time
using a Á -approximation algorithm for the single knapsack
problem instance for the current bin (considering only the
highest valued item remaining for each group) and discard
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the packed items. Then the resulting assignment is a Á½� ª -
approximation for RMKP.

Proof: Let OPT � be an optimal solution of RMKP. Let f E
be the set of items in bin C in OPT � which do not appear in
the greedy solution in any bin, and £�E their total value. Let� E be the set of items in bin C in the greedy solution, and¤ÊE their total value. Observe that if fFE and

� E each contain a
different item of group - then the value of the item, say Ü , in fWE
is smaller than the value of the item, say A in

� E (since Ü does
not appear in the greedy solution in any bin). Since we use
a Á -approximation algorithm for filling each bin, Á�¤ E �µ£ E .
Thus Á X }�� E � c ¤ E � X }�� E � c £ E �Úu�� OPT � ��¹ X }�� E � c ¤ E
Thus, �oÁ"� ª � X }�� E � c ¤ E ��u]� OPT � � as desired.

We are ready to continue the proof of Theorem 7.2. If � + is
the current number of agents servicing market - , the current
value of this market is _ ac ao� } for a new agent. Equivalently, we
can consider a new market of value _ ac a � } . In this way, we add
different copies of the same market with different query rates
and the same size. The only restriction is that no player can
provide two markets of the same group. Now one can observe
that after one step of greedy behavior by each player, the
resulting strategy profile is equivalent to the assignment of the
greedy algorithm from Lemma 7.3 for RMKP. Let the resulting
assignment be ¯ . Now we prove that the sum of ¤ E ’s over all
players is at most = c times the sum of payoffs of players
in ¯ (where ¤ÂE is defined in Lemma 7.3). In X E Y�� ¤ÂE , the
sum of terms corresponding to markets of group - is at mostA + � _ a~ �����B�©� _ ac HµA +�� = c , while market - contributes to the
sum of payoffs in ¯ as A + . Thus X E Y�� ¤ÊE \ = c X E Y�� h�E��d¯:� .

In an instance of RMKP there are extra markets. Therefore,
the optimal solution of RMKP, u�� OPT � � , is greater than or
equal to the optimal social value, u]� OPT � . Thus,� ª �TÁ��8= c��E Y�� h E �K¯��6��� ª �TÁ�� �E Y�� ¤ E ��u]� OPT � �6��u]� OPT �
as desired.

Furthermore, we show that this bound is tight up to a
constant factor. Consider an instance of the market sharing
game with � markets and � players: Let A
+WH c + ¹! for allª \ - \ � where  is sufficiently small. Assume that player C
is interested in market ª and markets CqNdC,� ª N����B��N©� and all
costs and budgets are the same and are equal to 1. If we start
from all empty strategies and players choose their best strategy
in the order ª N � N��B���VN©� , all players provide market number 1
and the social value of this assignment is �¸¹" . However,
in the optimal assignment, agent C services market C . As a
result, the value of the optimal solution is ��= c ¹��# . Thus,
the ratio between the optimum and the value of the resulting
assignment after one step for each player is arbitrarily close
to = c H%$��o�Ù�q�v��� .

The following theorem shows that in market sharing games,
if players improve their own payoffs, the social value does not
decrease by a factor more than = c .

Theorem 7.4: Let ß be a state of social value � . If ßQ�
is a state resulting from the state ß after a sequence of
improvement moves by players, then the social value of ß �
is at least &ï ð . In particular, if we start from the state with

the optimal social value, the social value of any state resulting
from some improvement moves by players is at least OPTï�ð .

Proof: We use the potential function used in the proof of
Theorem 6.1. Let ��+ and � �+ be the number of players that have
market - in their strategy set in states ß and ß � respectively.
Let the potential function for states ß and ß � be ó¼�dßT�(HX ô+ À } X c aõ À } _bac a and ó¼�KßT���ÚH X ô+ À } X c('aõ À } _bac 'a , respectively.
Since ß,� is the result of a sequence of improvement moves
by players starting from the state ß , similar to the proof of
Theorem 6.1, one can show that ó¼�dß � �10@ó¼�KßT� . Let the social
value of states ß and ß � be u��dßT� and u]�Kß � � , respectively. It
is easy to verify that ó¼�dßT�s�ìu]�KßT� and ó¼�Kß � � \ = c u]�Kß � � .
As a result, we have u]�Kß � �s�*) Í à ' Ïï ð 0+) Í à Ïï ð �*, Í à Ïï ð H &ï ð .

VIII. EVALUATION

In this section we investigate the efficiency of our decentral-
ized caching scheme in a simulated network scenario. We are
interested in obtaining the price of anarchy and determining
how quickly the game converges to an exact or approximate
pure strategy Nash equilibrium. We investigate the advantages
of the greedy behavior in terms of the payoff function as well
as evaluate how far it is from the optimum.

We generated 10 random networks, each with 100 nodes
(resident subscribers). These nodes are randomly placed in
a -��q�/.0-���� rectangular region. Each node has an 802.11b
interface and has a maximum transmission radius of ªqª È units.
Each item has a radius of interest *21 , i.e., only nodes within
that radius of interest benefit from caching the item. We vary
this radius from 200 to 700. In our simulation the effect of the
transit subscribers is captured by the query rate. We assume a
query can originate from anywhere in the network within the
item’s radius of interest. We assume that we have 1000 items
whose popularity follows a Zipf distribution. We vary the Å
parameter of the Zipf distribution. The items’ size is 1 unit
for the uniform market sharing game and for the non-uniform
market sharing game it follows a lognormal distribution with
mean 7.5 and standard deviation 1.5. Each resident subscriber
can cache at most 5 items in the uniform case, 20 units for
the non-uniform case. We focus our study on issues related
to the impact of selfish behavior on network performance and
therefore, do not perform packet level simulations. All our
results are averaged over 10 random networks.

A. Uniform Market Sharing Game

We would like to investigate the price of anarchy and how
quickly the players converge to a Nash equilibrium. Figure 2-
a shows the price of anarchy with respect to the item’s
range of interest *21 . The larger *21 is, the more edges in
the bipartite graph between items and resident subscribers.
For Zipf distribution with Å H �«��3 , the worst-case price of
anarchy from our analysis is ª � Ç7È and � for complete and
incomplete bipartite graphs respectively. The price of anarchy465 from our simulation is between ª � 7q� and ª � 798 . Therefore,465 is within 90% to 95% of 1.45 and 65% to 68% of 2.
Therefore, the price of anarchy is far from the worst case for
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Fig. 2. Price of Anarchy and Number of Steps to Converge to a Nash
Equilibrium for Uniform Game.

the incomplete bipartite graph case and close to the worst case
for the complete bipartite graph. Note that the price of anarchy
function 4 %�H }Í } ��Î�Ï � ÐyÑ Ã � increases in interval [0 0.63] and
decreases in [0.63 1). However, according to [4], in the case
of popular items, Å is between �Â� 8qÈ and �«� - . In this particular
range of Å we observed that the price of anarchy 4 5 increases
only slightly as *:1 increases. This is because popular items
are within the range of more players and as more players cache
common items, 4 5 increases. To see the impact of Å on the
price of anarchy, we ran our simulation with Å�H �Â� - andÅnH ª . The observations are similar to the case of ÅnHì�«��3 .

Number of Steps
1 2 3 4

percentage of Nodes 78% 20% 1% 1%

TABLE I

UNIFORM GAME: PERCENTAGE OF NODES WITH THE SAME NUMBER OF

STEPS.

Figure 2-b shows the average number of steps required of
each player to converge to the pure strategy Nash equilibrium.
As we can see, each player takes an average of 1.3 steps or
less. Recall that, by a step, we mean that the player changes
to a different set of items to cache in response to the action
taken by other players. Table I shows for a given network
setting the percentage of nodes requiring the same number of
steps after an equilibrium is attained. We see that, 78% of

Number of Cache Replacements
0 1 2 3 4 5 6

percentage of Nodes 78% 0% 19% 0% 2% 0% 1%

TABLE II

UNIFORM GAME: PERCENTAGE OF NODES WITH THE SAME NUMBER OF

CACHE REPLACEMENTS. RANGE OF INTEREST ;=<?>A@�B�B .

the players never change the set of items to cache. 20% of
them change once. Only 1% change twice and three times.
Table II shows the percentage of nodes with the same number
of cache replacements. We see that 78% of the players stay
with the original set of items. Only 19% replaced two items.
2% changed 4 items and 1% changed 6 items in the cache.

B. General Market Sharing Game
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Fig. 3. The Approximate Social vs. Nash Payoff and Number of Steps to
Converge to a 2-approximate Nash Equilibrium for General Market Sharing
Game.

For the general market sharing game, as finding the best
response for a player is NP-hard, we choose to investigate
a 2-approximate Nash equilibrium based on a simple 2-
approximate greedy algorithm. The algorithm [25] works as
follows. Order the items by payoff over size. Let the sorted
order of objects be C } NDC ~ N�íBí�í�NDC ô . Find the lowest # such that
the size of the first # objects exceeds the cache space. Pick
the more profitable of eEC } NDC ~ N�íBí�í�NDC ¬ � } g or eFC ¬ g . We refer
to the sum of the payoffs of the items cached when the players
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reach this 2-approximate Nash equilibrium as 2-approximate
Nash payoff and denote it as uHG î .

Computing the optimal social value involves solving a mul-
tiple knapsack problem. As this problem is also NP-hard, we
choose a simple 3-approximation algorithm [6]. The algorithm
greedily applies the 2-approximate knapsack algorithm for
each knapsack. We refer to sum of the payoffs of the cached
items computed by this algorithm as the 3-approximate social
payoff and denote it as uÂ9(I .

Number of Steps
1 2

percentage of Nodes 83% 17%

TABLE III

GENERAL MARKET SHARING GAME: PERCENTAGE OF NODES WITH THE

SAME NUMBER OF STEPS.

Number of Cache Replacements
0 1 2 3

percentage of Nodes 83% 7% 9% 1%

TABLE IV

GENERAL MARKET SHARING GAME: PERCENTAGE OF NODES WITH THE

SAME NUMBER OF CACHE REPLACEMENTS.

The performance of the approximate Nash payoff with
respect to the approximate social payoff is given by the ratiou 9 I
¶
u G î . Figure 3-a shows that this ratio is about 1.3 in our
simulation. Figure 3 also shows the number of steps it takes to
converge to the 2-approximate Nash equilibrium as the range
of interest *:1 increases. Consider the specific networking
setting of *:1sH � ��� . Table III shows that 83% of the players
only take one step while the remaining 17% take 2 steps to
reach the approximate Nash equilibrium. Furthermore from
Table IV, we see that, 83% of players stayed with the initial
set of items, 7% replaced just one item, 9% replaced two and
1% replaced three items.

C. One Step of Greedy Behavior
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Fig. 4. Compare Greedy Payoff with Approximate Social Payoff.

We would also like to see the payoff for one step of greedy
behavior. Each player, when it decides to participate, caches

items according to the 2-approximate knapsack algorithm.
Figure 4 compares the corresponding one step greedy payoffu6J î with the 3-approximate social payoff u«9KI . We see that the
behavior of this payoff ratio is similar to the ratio u«9KI
¶
u6G î
obtained in the previous section. In fact, the one step social
payoff u6J î is only at most 2% worse than the 2-approximate
Nash payoff.

IX. RELATED WORK

Caching has been widely studied in the context of wired
networks [27]. Caching in wireless networks has recently be-
come a popular research area. Sailhan and Issarny [23] propose
protocols to enable cooperative caching in ad-hoc networks.
They also study cache management strategies that aim to re-
duce energy consumption and network load. Xiang et al. [29]
propose a cooperative cache management scheme in cellular
networks. They present a simulation study of cache replication
strategies in base stations for streaming services. Nuggehalli
et al. [19] present an energy-efficient cache placement scheme.
Our work studies caching in a non-cooperative environment.
The problem of non-cooperative caching is fundamentally
different from its cooperative counterpart.

The problem of how to stimulate cooperation among selfish
nodes in ad hoc networks and multi-hop cellular networks
has received significant attention recently. Zhong et al. [30]
propose a credit-based system which relies on a central au-
thority to collect receipts from forwarding nodes. Charges and
rewards are based on the receipts. They assume the availability
of public and private keys to compute message signatures as
receipts. We cannot directly apply their scheme since we use
symmetric keys rather than asymmetric keys in our integrated
3G and ad-hoc networks. Salem et al. [24] propose a charging
and rewarding scheme to make collaboration rational for self-
ish nodes. Their solution is based on symmetric cryptography.
However, they require all data packets to go through the base
station. Since our goal is to offload the data distribution from
the base station as much as possible, their scheme cannot be
applied directly in our context. Jakobsson et al. [12] propose
a micro-payment scheme for multi-hop cellular networks that
encourages collaboration in packet forwarding. The sender
attaches a payment for each packet. In our context, the sender
gets paid by the receiver through the base station. In addition,
it is natural to charge per session in our context. Therefore,
their scheme does not apply directly.

Reputation-based schemes such as [5] are not applicable
in our context since it cannot deal with certain collusion
scenarios, e.g. collusion between the sender and receiver where
forwarding nodes do not get remunerated.

Recently game theory has found applications in wireless
networks [7], [2], [13]. Anderegg and Eidenbenz [2] applied
the VCG mechanism from mechanism design theory to design
a routing protocol. However, they have overlooked the issue of
“mutually dependent types” which resulted in their scheme not
being truthful. Zhong et al. [31] model routing and forwarding
in ad-hoc networks as one “ad-hoc” game. They propose the
first routing and forwarding protocols in ad-hoc networks that
is cooperation-optimal. That is, following the protocol is a
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dominant-subaction in the routing stage, and is a subgame-
perfect Nash equilibrium in the forwarding stage. Wang et
al. [28] propose the first multicast routing protocol without
using VCG mechanism such that each agent maximizes its
profit when it truthfully reports its cost. Eidenbenz et al. [7]
proposed a topology control game that models user’s selfish
behavior in forming ad-hoc network topology. Lin et al. [13]
used game theory to propose an admission and rate control
framework for CDMA data networks. To the best of our
knowledge, we are the first to propose a game-theoretic study
of caching in wireless networks.

The issues of the efficiency of computing Nash equilib-
ria and considering computational constraints of the central
authority and selfish agents, and the outcome of the selfish
behavior of these agents have been investigated recently in
computer science [20], [18]. The market sharing game is a spe-
cial case of congestion games introduced by Rosenthal [21]. In
these games, each player chooses a particular combination of
factors out of a common set of factors. The payoff from each
factor is a function of the number of players who have chosen
this factor in their set. Milchataich [15] studied more general
settings and the length of best response paths in this set of
games. Congestion games are in a general class of potential
games[16]. None of these works considered the efficiency of
the outcome of the selfish behavior of agents or the speed of
convergence to an approximate solution or the computational
constraints of selfish agents. We address all of the above issues
for the special case of market sharing games. We consider a
social function and the outcome of selfish behavior of players
in terms of this social function. Comparing the value of the
social function obtained from the outcome of selfish behavior
with the optimal social value is done via the notion of the
price of anarchy. For example, for a variant of non-atomic
congestion games, Roughgarden and Tardos [22] give some
upper bounds on the price of anarchy.

After this work, there have been some new results on
congestion games. Fabrikant, Papadimitriou, and Talwar [8]
have studied the convergence to equilibria in (network) con-
gestion games with delay functions. Goemans, Mirrokni, and
Vetta [11] have studied the convergence to approximate solu-
tions in (network) congestion games with polynomial delay
functions. Awerbuch, Azar, and Epstein [3] and Koutsou-
pias and Christodoulou have studied the price of anarchy in
(network) congestion games with polynomial delay functions.
All of these papers consider social and payoff functions that
are different from market sharing games. In particular, in
network congestion games, each player is minimizing his delay
instead of maximizing his profit. Finally Fleischer, Goemans,
Mirrokni, and Sviridenko [9] have developed approximation
algorithms and mechanisms for the distributed caching prob-
lem. The distributed caching problem is a generalization of
the (geometric) market sharing games.

X. DISCUSSION AND FUTURE RESEARCH

There are two main issues discussed in this paper. One
is the architecture for enabling mobile content distribution
in ad-hoc networks, and the other one involves the game

theoretic formulation of the non-cooperative caching problem.
In this section, we discuss issues in modeling the problem as a
strategic game and point out some future research directions.

A. Implementation Aspects of the Caching Game

The architectural framework for mobile content distribution
described in this paper assumes that each player can determine
the amount of requests it will handle if it caches an item. In
reality, the player may not know this information. However,
this information can be estimated by observing the cache
request and reply messages of our protocol. We also assumed
that only one player changes the set of cached items at a given
time. Once the change is made, all other relevant players are
assumed to become aware of the changed payoff. In reality,
multiple players may make decisions at the same time. This
issue can be addressed by using a random timer to decide
when to change thus preventing synchronization effects. Using
a timer would allow the effect of the change to stabilize
before players respond to the new change. If the estimated
payoff changes continuously, the player will have no incentive
to change since replacing a cached item will incur a cost.
The cost is incurred since the player has to either request
the changed item from the 3G service provider or from some
other players who have cached the item. We assume the cost
of changing cached items are amortized. Therefore, players
have an incentive to change if the payoff of an item is stable
and it increases his utility.

B. Refined Models of the Caching Game

In market sharing games, we assume that the query of
markets are uniformly distributed. This roughly models certain
routing protocols where the first returned route is selected.
In this case, a client wants to optimize its response time.
In some networking setting, a client may prefer the closest
player. There are many incentives to choose the closest one,
e.g. routes can be more stable if the client is very mobile. In
terms of implementation, the routing protocol can wait longer
and select the closest player from the set of returned routes.
Here, we define a variant of this game called geometric market
sharing game.

Definition 10.1: In the geometric market sharing game,
there is a set < of � agents or players and a set = of >
markets and a set of # market types. Market -�?¥= is of
type L + where ª \ L +v\ # and has query rate A + . Each market
type ª \ L \ # has a cost 4 õ corresponding to the cost for
servicing this type of market. For each agent C and market - ,
we are given a distance M7+ E . Each agent C has a total budgetD E . Each agent should decide which subset of market types
to service. Agent C can service a subset U E of market types,
if the sum of the costs 4 õ of the market types in U E is less
than or equal to D E , i.e., X õ Y 9 Z 4 õ \ D E . Each agent chooses
a feasible set of market types to provide. Given the strategies
of all agents, each market - will get the service from an agent
who services the market type L + with the minimum distance
to market - ; and as a result, the reward of the market - (which
is equal to A + ) goes to this agent. Each agent would like to
provide a set of market types that maximizes its own payoff.
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Similar to the market sharing game, the total payoff (reward)
received by all players is equal to the total query rate of the
markets being serviced (by at least one player).

Consider the geometric market sharing game and the fol-
lowing social function: the sum of payoffs of players. This
social function is the same as the total market that is satisfied
by players. It is not hard to see that this game satisfies all the
properties of the valid-utility games:

Theorem 10.2: The geometric market sharing game is a
valid-utility game and thus, the price of anarchy of this game
(for mixed Nash equilibria) is at most 2.

Proof: The proof is similar to that of Theorem 5.4. Here,
we give a proof sketch. Clearly the social function is non-
decreasing. For submodularity, we observe that adding a new
market type to the strategy of a player increases the social
function if and only if this market type is not provided by
any other player. This shows that if f ´`D , the marginal
increase of adding a market type to f is greater than or
equal to the marginal increase for adding a market type to D .
Using this observation, one can prove that the social function
is submodular. Moreover, the effect of playing a player C in
the social function corresponds to the set of market types thatC provides and no other player provides. Player C will get
the whole payoff of markets of these market types (that only
he provides). Therefore, the payoff a player is at least the
difference that he makes in the social function by playing his
strategy (compared to playing the empty strategy). Finally, by
definition, the social function is equal to the sum of payoffs
of players. Hence, the geometric market sharing game satisfies
all the properties of valid-utility game.

Unlike the market sharing game, we cannot prove existence
of pure Nash equilibria and convergence to it for all instances
of the geometric market sharing game. In fact, we know
examples in which there is no pure Nash equilibrium for this
game.

Theorem 10.3: There are instances of the geometric market
sharing game in which there is no pure Nash equilibria.

Proof: Consider the geometric market sharing game with
two players. The budget of players 1 and 2 are 11 and 8
respectively. There are four market types and one market
of each type. The cost of market types are 6, 8, 3, and 4
respectively. The query rate of markets of these four types are
4, 6, 2, and 3 respectively. Market types 2 and 4 are closer
to player 1. Market types 1 and 3 are closer to player 2. It
is not hard to check that there is no pure Nash equilibrium
in the geometric market sharing game corresponding to this
example. In fact, the only best-response strategies for player
1 are � � ND7q� and � ª N©Ç�� and the only best-response strategies
for player 2 are �	7«N©Ç�� and � � � . Any combination of these best
responses is not a pure Nash equilibrium, and therefore, there
exists no Nash equilibrium in this game.

Goemans, Mirrokni and Vetta [11] have introduced an
equilibrium concept, namely, the sink equilibria, for games
without pure Nash equilibria. Bounding the price of anarchy
for sink equilibria and studying convergence to approximate
solutions in the geometric market sharing games are interesting
problems for future research.

XI. CONCLUSION

In this paper, we propose a mobile content distribution
architecture to offload popular data items from a 3G network
to its subscriber-based ad-hoc network. We present a protocol
to enable decentralized caching and propose novel incentive
mechanisms for proper accounting and crediting. Our incentive
mechanisms prevent or discourage players from colluding for
selfish gains at the expense of other users.

We study the selfish behavior of the players involved in
caching and forwarding by using game theoretic approaches.
We formulate the caching problem as a general market sharing
game. We observe that pure strategy Nash equilibrium exists
in this game and present a polynomial time algorithm to find
it in the case when item sizes are the same. Finding a pure
strategy Nash equilibrium for the general game is NP-hard.
We model computationally bounded agents by using approx-
imation algorithms and observe that they also converge to an
approximate Nash equilibrium. We show that starting from
the empty assignment, after one step of the greedy behavior
by the players, the social value of the resulting assignment is
within an ���o�Ù�q�l��� of the optimum. Mirrokni and Vetta [11]
have extended this result by proving the same bound starting
from any assignment. We show that the price of anarchy is
bounded by 2 for any arbitrary popularity distribution of the
cached items. For the special case where the popularity of
items is according to a Zipf distribution and caching any item
has a positive reward for all players, we obtain a bound of
1.45. Our simulations show that for most real and practical
instances of the game, the price of anarchy is better than the
worst case. These simulations also show that typically most
players converge to the equilibrium in one or two steps most
of the time.
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