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Routing Bandwidth Guaranteed Paths with Local
Restoration in Label Switched Networks

Li (Erran) Li, Milind M. Buddhikot, Chandra Chekuri, Katherine Guo

Abstract— The emerging Multi-Protocol Label Switching
(MPLS) networks enable network service providers to route
bandwidth guaranteed paths between customer sites [3], [2],
[8], [5]. This basic Label Switched Path (LSP) routing is often
enhanced using restoration routing which sets up alternate LSPs
to guarantee uninterrupted connectivity in case network links
or nodes along primary path fail. In this paper, we address
the problem of distributed routing of restoration paths, which
can be defined as follows: given a request for a bandwidth
guaranteed LSP between two nodes, find a primary LSP and a
set of backup LSPs that protect the links along the primary LSP.
A routing algorithm that computes these paths must optimize the
restoration latency and the amount of bandwidth used.

In this paper, we introduce the concept of “backtracking” to
bound the restoration latency. We consider three different cases
characterized by a parameter called backtracking distance

�
:

(1) no backtracking (
�����

), (2) limited backtracking (
����

), and (3) unlimited backtracking (
�����

). We use a link
cost model that captures bandwidth sharing among links using
various types of aggregate link state information. We first show
that joint optimization of primary and backup paths is NP-hard
in all cases. We then consider algorithms that compute primary
and backup paths in two separate steps. Using link cost metrics
that capture bandwidth sharing, we devise heuristics for each
case. Our simulation study shows that these algorithms offer a
way to tradeoff bandwidth to meet a range of restoration latency
requirements.

Index Terms— MPLS, traffic management, routing

I. INTRODUCTION

The emerging Multi-Protocol Label Switching (MPLS) net-
works enable network service providers (NSPs) to setup policy
and quality-of-service (QoS) constrained label switched paths
(LSPs) between network nodes. The QoS constraint in the
form of minimum or peak bandwidth guarantee per LSP has
been considered most commonly in literature[3], [1], [10].
Such constraint-based routing [3], [5] is central to network
traffic engineering [3], [2] and basic constructs of several new
network services such as layer-3 provider provisioned VPNs
(PPVPN) [14] and layer-2 PPVPNs [4]. Specific examples
of such constructs are the VPN tunnels in L3 PPVPNs, and
the Virtual Private Wire Service (VPWS) and Virtual Private
LAN Service (VPLS) in L2 PPVPNs. The two main steps in
setting up LSPs are (1) computing a path that satisfies required
constraints and (2) establishing and maintaining forwarding
state along that path. Clearly, the routing algorithm used in
step 1 is a basic building block for new network services.
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Note that the failure of nodes or links along LSPs leads to
service disruption. The NSPs have considered enhancing the
reliability and availability of new services using restoration
routing, which sets up alternate paths to carry traffic under
fault conditions. There are two variants of restoration routing:
(1) End-to-end restoration: routes two link disjoint paths –
one primary path and one backup path between every source,
destination node pair [9], [12]. Resources are always reserved
on the backup and are guaranteed to be available when the
backup path is activated. In the event of a failure along the
primary path, the source node detects path failure and activates
the backup path. In the absence of an explicit signaling proto-
col, source node learns of link failures via intra-domain routing
updates such as OSPF link state advertisements (LSA) packets
or IS-IS Link State Packets (IS-IS LSP) which are processed
in the slow-path typically in a routing daemon in the router or
switch controller. Also, such packets are typically generated by
timer driven events. This causes very large restoration latencies
of the order of seconds or at best 100s of milliseconds. (2)
Local restoration: routes a primary path between the source
and destination and a set of paths that protect the links along
the primary path [11]. It can minimize the need for source
node to be involved in the path restoration and therefore can
achieve fast restoration. Though local restoration may use
more (bandwidth) resources, it is attractive as it can meet
stringent restoration latency requirements that are often of
the order of 50 ms – similar to existing SONET protection
mechanisms [17].

The problem of end-to-end and local restoration routing
has been addressed in several recent research papers [9],
[12]. In this paper, we primarily focus on the problem of
local restoration routing. We first describe the new concept of
restoration routing with backtracking characterized by a single
parameter called backtracking distance � . We consider three
cases: (1) no backtracking ( ����
 ), (2) limited backtracking
( ����� ), and (3) unlimited backtracking ( ����� ). We first
consider the joint optimization of primary and backup paths
and show that the problem is NP-hard. We therefore propose
computation of primary and backup paths in two steps. In the
case of ����
 and ����� , we show that even the two-
step optimization problem is NP-hard, whereas for �����
an optimal solution exists for computation of backup path.
We then describe heuristics that use per-link network state
in the form of (1) residual link capacity ( ��� ), (2) bandwidth
consumed by primary paths ( ��� ), (3) bandwidth consumed
by backup paths ( � � ) and optionally a fixed sized Backup
Load Distribution matrix [9], [12]. We also present simulation
results to characterize the performance of these algorithms. We
show that our algorithms offer a means to tradeoff bandwidth
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to meet a range of restoration latency requirements.

A. Related Work

The MPLS Forum has proposed use of constraint-based
routing to setup “protection LSPs” to bypass failed links
and nodes [3]. In this scheme, the upstream router detects
the link failure and tunnels all traffic on that link along
a pre-established MPLS LSP implemented using the label
stacking mechanism. Clearly, this mechanism can be extended
to selectively reroute certain LSPs on the link instead of the
entire link traffic. Extensions have been proposed to the RSVP
resource reservation protocol to signal such a protection LSP
[7]. However, the existing fast reroute model does not require
protection LSPs to have bandwidth guarantees and aims to
provide continuation of best-effort connectivity. The orthog-
onal question of how to route such best-effort or bandwidth
guaranteed protection LSPs is still a topic of investigation.
Our work provides an algorithmic framework and candidate
algorithms to solve this important problem.

The paper by Kodialam et al.[11] represents the current
state-of-the art approach for local restoration. Their algorithm
iteratively uses a shortest path algorithm to find restoration
path for each link in the primary path. The shortest path
algorithm is invoked for each edge in the network. Therefore,
the running time of their algorithm is  "!$#&%('*),+-%/."#1032 where# is the number of edges in the network and % is the number
of nodes in the network. In contrast, our running time is "!*45%('$),+6%7.�45#82 where 4 is the primary path length for�:9;� and a constant for �<�=� . Their algorithm does not
explicitly encourage link sharing among multiple backup paths
for the same primary path and therefore, in the worst case may
compute backup paths that are largely link disjoint. Their work
also does not provide a theoretical and algorithmic framework
for local restoration that allows a network designer to tradeoff
bandwidth for better restoration latency. Our research reported
here overcomes these limitations.

B. Outline of the Paper

The outline of the rest of this paper is as follows: Section II
presents the background material for the remaining discussion
in the paper. Section III introduces the concept of restoration
routing with backtracking and describes the three cases we
consider. In Section IV, we show that the joint optimization
of primary path and corresponding local restoration subgraph
is NP-hard and advocate a two-step approach for computing
them. Section V describes in detail backup subgraph com-
putation algorithms for � �>
@?A�B?A� cases. The concept
of post-processing to achieve further bandwidth savings and
the post-processing algorithms for each case are discussed in
Section VI. Section VII describes our simulation experiments
in detail. Finally, Section VIII presents our conclusions and
future directions.

II. BACKGROUND

In this section, we will present relevant background material
on various aspects of the problem of routing bandwidth
guaranteed backup paths.

A. Network and Service Model

The label switched network is modeled as a graph C��!*DE?GFH2 , I D&I5�J% , I FKIL�J# where graph nodes correspond to
the network nodes and graph edges correspond to the physical
links between the nodes. Each link in fact consists of two
simplex links in opposite direction: one for the transmit path
and the other for the receive path. The graph nodes can be
classified into two types[3]: (1) Label Edge Router (LER):
These are nodes at which the network traffic enters or leaves
the network. Such nodes are connected to the customer edge
(CE) routers which use the transport services of the LSP
service provider, (2) Label Switched Router (LSR): these are
the transit routers that forward packets based on the MPLS
labels.

Each LER independently receives requests from connected
CEs to setup bandwidth guaranteed paths. Each such requestM is modeled as a 3-tuple M � !ONP?RQ5?AST2 where N is the
source node, Q is the destination node and S is the bandwidth
requirement [4]. In MPLS networks, an LSP between N and Q
is a simplex flow, that is, packets flow in one direction fromN to Q along a constrained routed path [3]. For reverse traffic
flow, additional simplex LSP must be computed and routed
from Q to N . Clearly, the path from N to Q can be different
from the path from Q to N . Also, the amount of bandwidth
reserved on each paths can be different. This request model is
often referred to as pipe model in the VPN literature [3]. We
call this model and corresponding constrained path routing
asymmetric request model. The algorithms reported in this
paper assume this request model.

B. Fault Model

In the context of protected path routing it is important to
consider two kinds of failures, namely link failures and router
failures. A common fault model for link failures assumed in
the literature and justified by network measurements is that
at any given time only one link in the network fails [17].
In other words, in the event of a link failure, no other link
fails until the failed link is repaired. Although this model
do not deal with failure of bundled links. Addressing more
catastrophic failures like bundled links will result in more
backup bandwidth reservation. The single link failure model
is a good tradeoff between the amount of backup bandwidth
reservation and the severity of the failures it can deal with. We
consider single link failure in this paper. We do not address
router failure case due to space constraints.

C. Bandwidth Sharing

We distinguish bandwidth sharing into two categories: (1)
Inter-request sharing: The single fault model dictates that two
link-disjoint primary LSPs corresponding to two requests each
of S units do not fail simultaneously. This allows them to share
a single backup path of S units. In other words, inter-request
bandwidth sharing allows one of the two primary paths to
use the backup links “for free.” (2) Intra-request sharing: In
local restoration, since each link on the primary path requires
a backup path, and only one link failure can happen at any
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given time, the backup paths for different links in the same
primary path can share links. Also, backup paths can share
primary path links. Notice this type of sharing does not exist
in the end-to-end path restoration schemes.

Our goal is to develop online distributed local restoration
routing algorithms that utilize both inter-request sharing and
intra-request sharing in order to minimize the total bandwidth
reserved.

D. Network State Information

In our work we focus on online routing algorithms that route
a new path request based only on the knowledge of current
state of the network and do not exploit properties of future
requests. One can design schemes with varying degrees of
partial state. Kodialam et al. [10] describes one such partial
information scenario, referred to as the  "!GI FKI 2 information
case here on, wherein for every link ' in network C �!*DE?GFU2 with capacity V � , three state variables are maintained
and exchanged among peering routers: (1) � � : Amount of
bandwidth used on link ' by all primary paths that use link ' .
(2) �W� : Amount of bandwidth reserved by all backup paths that
contain link ' . (3) �X� : Residual capacity on the link ' defined
as VY�[Z\!*�]�6.^�W�*2 . Norden et al.[12] proposed algorithms that
use these three per-link state variables and a new form of state
called Backup Load Distribution (BLD) matrix. Specifically,
given a network with # links, each network node (router
or switch) maintains a #�_`# BLD matrix. If the primary
load �(a on a link b is S units, entries cUdY�Kegf hR?ibPjO?3k�lhml�#`?Ob�n��h , record what fraction of S is backed up on
link h . Note that this approach, which we call as the  "!GI FKI 0o2
information case, allows maximum bandwidth sharing. The
algorithms we propose in this paper work with both cases of
state information.

E. Modeling Link Cost

Each link (interchangeably called edge) has Vp�q?G�X�q?G�r�q?R�s�
state variables associated with it and may be assigned one or
more link costs. In response to the tunnel request M ��!ONP?RQ5?AST2 ,
the source node uses its knowledge of network state such as
topology, Vt�q?G�X�q?R�s�u?G�r� for all links 'mv:F and optionallycUdE� matrix to compute two things: (1) a primary pathw �x!*N��zy({o?|y 0 ?~}3}~}|Q���yB��2 where edge '��]��!$y��|?|yB���r{~2tv8F ,
(2) a subgraph CU�u���W�<!*D��u���,?GFW�u���A2 such that a backup path
exists in C �u��� that can route traffic from N to Q if any link ' �
fails.

The computation of
w

and C �u��� is based on two kinds of
link costs described below.

Cost of link ' in the primary path: If a link is used in
the primary path

w
of request M ��!ON�?GQL?RST2 , then S units of

bandwidth has to be consumed on each link in
w

. Therefore
the cost �(� of using a link ' in the primary path is S if ���r��S ,
otherwise � .

Cost of link ' in backup path: Consider a primary pathw
with # links !qkP?A�[?~����� #12 . Let us consider a represen-

tative link ' that is a candidate link in a backup pathdEc � for link h�v w
. We are interested in characteriz-

ing the cost of using ' . The amount of bandwidth that

can be used on ' for free to backup h is ����f 'q?GhOj��� � Z Backup load induced by h on ' before request M . In the "!GI FKI 2 information case, free bandwidth is ���"f 'q?|hOj���� � Z�� � ,
whereas in the  "!GI FKI 0o2 information case, the free bandwidth
on ' is ����f 'q?GhOj5��� � Z8cUdY�Kegf 'q?|hOj . For the rest of the paper
we focus only on the  "!RI F&I 0 2 information case. However, all
our results apply equally to the  "!GI FKI 2 information case.

From the perspective of backup routing, every link has two
kinds of bandwidth available: (1) Free bandwidth ( ��� ): that
is completely sharable and does not require extra resource
reservation. (2) Residual bandwidth ( � ): is the actual capacity
left unused on the link. If the LSP request size SW������� , thenS�Z���� � units of bandwidth must be allocated on the link
to account for the worst case backup load on the link. If the
residual bandwidth � � falls short of SYZ\��� � (i.e SYZ\��� � �� � ), then the link ' cannot be used on the backup path and is
called an “infeasible link”. Given this, the cost of using link '
on a backup path to backup link h on primary path consists of
two parts: (1) cost of using the free bandwidth on the link and
(2) cost of using the residual bandwidth on the link. Equation 1
illustrates the exact form of cost �Hf '|?|hOj incurred to backup linkh on ' . The cost metrics Vp� ( Vt� ) should be selected in such
a way that selecting a link with high residual capacity ��� ,
results in smaller cost. See [12] for more details on these cost
metrics.

Since there are # links in the primary path, each candidate
link ' has # associated costs �Hf '|?3kTji?|�Hf '|?R�oj-}3}~}q�Uf 'q?|#&j . Given
that a link ' may be used in backup paths for multiple linksh in primary path, to make the problem tractable, we have to
follow a pessimistic approach and reduce the free available
bandwidth for ' as follows:

��� � � #�hi% ���P� ��¡(¢ ���"f '|?|hOj� � � Z\#8£-¤ �$�P�¥��¡(¢ cHdE�Kegf 'q?GhOj (3)

where F¦! w 2 denotes the edge set used in path
w

. Correspond-
ingly, the cost �p� of using link ' on the backup path for any
link in

w
can be computed using Equation 2.

III. CONCEPT OF LOCAL RESTORATION WITH
BACKTRACKING

In this section, we introduce the concept of backtracking
and discuss properties of backup subgraph C �u��� in various
cases of backtracking.

A. Backtracking

In the case of end-to-end restoration routing, detection of
link failures and subsequent restoration by source node can
lead to long restoration latencies. Local restoration attempts
to address this by “localizing” fault detection and subsequent
restoration actions. Consider the simple example shown in
Figure 1-(a) where there are as many backup paths dEc�� as
links in the primary path and restoration is truly local and
rapid. Under single link failure model, completely link disjointdEc � s result in bandwidth wastage. Instead, a model wherein
backup paths (1) share links amongst them and also (2) share
links in the primary path can be used to minimize bandwidth
usage at the cost of increased restoration latency. Consider the
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TABLE I
VECTOR AND SCALAR LINK COSTS

Vector § of costs for link ' Simplified scalar cost for link '

�Uf 'q?Gh*j¨�
©ªª« ªª¬
� if SYZ`���"f 'q?|hOj(�z� �S¥­pVt� if SXl����"f 'q?|hOj���"f 'q?|hOj-­pVt�Y. if SX�����"f 'q?|hOj!OSEZ\���"f '|?|hOj�2(­pVY� and !*StZ\����f 'q?GhOjB9z�X�*2

(1) � � �
©ªª« ªª¬
� if SYZ\��� � ��� �S¥­pVt� if SXl����W����X�5­pVt�E. if SX�����W�!OSYZ`���X�*2]­pVt� and !OStZ`���X��9��X�$2

(2)

a Naïve local restoration

Primary
s u1 u2 u3 d

Local Backup
LB1

LB2 LB3

LB4

v2 v3
v4

v1

Downstream

b Local restoration with backtracking

u0 u1 u2 u3 d

v1
v2

LB1

LB2

s

Fig. 1. Local restoration and backtracking

scenario shown in Figure 1-(b): In this case, links !$yr{o?|y 0 2 ,
and !$y 0 ?|yB®~2 are protected by a single backup path, dEcU{¦�!�y({o?|¯�{�?|¯ 0 ?|yB®32 . Clearly, in a naíve setup, the backup path for
link !�y 0 ?Gy�®32 is !�y 0 ?|y({T2T?GdYc�{ , which backtracks over primary
path by a distance of one link namely !�y 0 ?Gy°{32 . Similarly for
link !�yB®�?RQ-2 , the backup path !$yB®P?|y 0 2 , !�y 0 ?Gy°{32 , !�y({o?GyL±o2 , dEc 0 ,
backtracks by a distance of three links. If restoration must be
truly local, i.e failure of !�y 0 ?Gy ® 2 must be restored by y 0 and
failure of !$y ® ?GQ62 must be restored by y ® , then y 0 , y ® must
“switch back or backtrack” traffic on links !�y ® ?|y 0 2 , !�y 0 ?|y { 2 ,!�y { ?|y ± 2 . Such repeated link traversals cause undesirable traffic
loops, loss and bandwidth wastage. This is especially true
when the node performing the restoration is multiple hops
away from the node to which failed link belongs. Alternatively,
if nodes y 0 and yB® can inform y({ out-of-band of their links
failures, y({ can perform the restoration. However, in this case
restoration is non-local and requires new form of signaling or
modifications to existing routing protocol state updates.

We define the backtracking distance � as the maximum
number of hops (links) in the primary path that must be tra-
versed upstream towards the source before reaching the node at
which the required backup (restoration) path originates. Three
cases that are of interest are as follows:² No backtracking ( �³�´
 ): In this case, the backup

path must originate at the node at which the failed link
originates. This case represents true local restoration and
provides best restoration latency. The link restoration
paths computed in this case can use a subset of primary
path links downstream towards the destination node.² Bounded backtracking ( �<��� ): In this case, the backup
path can originate at a node on the primary path up to �
hops away from the node that owns the link.² Infinite backtracking ( �µ�¶� ): This case allows unlim-
ited backtracking and therefore, in the worst case may
result in backup paths that originate at the source node.
The end-to-end restoration can be considered a special
case of this where the maximum backtracking allowed is

equal to length of the primary path but the restoration
always has to be initiated at the source node.

Clearly, �·�¸
 may require the highest amount backup
bandwidth, and lowest restoration latency whereas �¹�º�
requires the least amount of bandwidth and highest restoration
latency. Therefore, case �»�g� is interesting as it allows us
to tradeoff bandwidth for better restoration latency. In the rest
of the paper we address the problem of computing primary
path

w
and its corresponding backup restoration graph C��u���

for various cases of backtracking.

IV. JOINT OPTIMIZATION OF PRIMARY AND BACKUP
PATHS

In this section, we consider the problem of joint optimiza-
tion of computing primary path and its associated backup
subgraph C¼�q�o� such that the total cost is minimized. For a
new request M ��!*N�?GQL?RST2 and a given network C���!*DE?GFU2 ,
ideally we would like to have a primary path

w �½!*N;�y({o?|y 0 ?~}3}3}RQ;�»yB��2 and C¼�q�o�^�¨!*D��u���,?GFW�u���A2 such that the
total cost ¾ �¿�P� ��¡(¢ �°�B.�¾ �¿�P�°À*ÁTÂ �p� is minimized under the
following constraints: for every edge 'Ã��!�y � ?|y ���r{ 2WvÄF¦! w 2 ,
there is a path from yLa to yLÅ in C¼�u��� such that 
"lÆh5Z�b"lz�
and Ç¦�µh .�k , i.e. the backtracking distance of the backup
path does not exceed � hops and the path must end at a node
that is downstream from y°����{ in

w
.

There are two characteristics of this joint optimization
problem that make it hard to solve: (1) For each edge, its
cost depends on whether it is used for primary path or
backup path. (2) Equation 1 shows that the cost of a backup
link also depends on which set of primary links it protects.
The following theorem characterizes the complexity of this
optimization problem.

Theorem 4.1: For all values of backtracking � ( 
@?A�B?A� ),
computation of primary path

w
and a restoration subgraphC �u��� such that they are jointly optimal is NP-hard.

For proof, please see Appendix-.

V. TWO-STEP ALGORITHMS

In this section, we consider two-step algorithms that com-
pute the primary path in the first step and then construct the
restoration graph CU�u��� in the second step. The basic pseudo-
code for these algorithms is presented in Table II.

The problem of primary path routing – computing a band-
width guaranteed path between a pair of source and destination
nodes- has received significant attention in recent years. The
simplest solution to this problem is to use Dijkstra’s shortest
path algorithm. However, its drawback is that though it yields
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TABLE II
A TWO-STEP ALGORITHM

1. Given graph G and req r=(s,d,r);
2. P=WSPF(G,r); // Primary path using WSPF
3. If (P==NULL) return reject;
4. Switch (D) // Backup path computation
5. case 0:
6. ÈÃÉiÊ3Ë =modified_directed_Steiner(G,P,r);
7. break;
8. case Ì :
9. È ÉiÊ3Ë =Suurballe(G,P,r);
10. break;
11. case k:
12. È ÉiÊ3Ë =modified_Suurballe(G,P,r,k);
13. if ( ÈÃÉiÊ3Ë ==NULL) return reject;
14. postprocessing( ÈÃÉiÊ3Ë );
15. return accept;

an optimal solution for a single request, over a span of
multiple requests, it can lead to high request rejection and
low network utilization [1], [10]. Several new algorithms
such as Widest Shortest Path First (WSPF) [1], Minimum
Interference Routing [10], rectify this limitation. The WSPF
algorithm alleviates this problem by selecting the shortest path
with maximum (“widest”) residual capacity on its component
links. We choose WSPF (line 2) as a good tradeoff between
simplicity and performance.

In the remaining section, we discuss backup path computa-
tion for cases of �<�;
 (line 6), �<�¶� (line 9), and �<�;�
(line 12) in detail.

A. Computing Backup Path for �<��

In this case, we need to find a subgraph CH�u��� such that there

is an alternative path with no backtracking if any link in the
primary path fails, and the total link costs for all backup paths
are minimized. The following theorem states that the problem
is NP-hard.

1 2 3 4 5 6

s du2 u3 u4 u5 u6
u1

Primary Path PA

u6 [6,-]

v5

u5

v4

u4
v3

[3, u3u4]
[4, u4u5]

[5, u5u6]

u2

v1

[2, u2u3]

Egress edge coveredRank 

[1, u1u2]

u3

u1

v2

Directed Steiner tree Gsteiner
rooted at u6 (d)
with terminal nodes u1 u2 u3 u4 u5

B

Backup sub-graph Gsub with Steiner tree 
edges reversed

C

u2 u3 u4 u5 u6
u1

v1

v3 v4 v5

v2

s d

Fig. 2. Example of backup path for Í7Î�Ï
Theorem 5.1: Given a network Cg�g!*DE?GFH2 and a primary

path
w

from N to Q , the problem of computing optimal backup
subgraph C¼�u��� for �<��
 case is NP-hard.
For proof, please refer to Appendix-. This theorem also gives
us the algorithm for the computation of C �u��� . Specifically,
(1) Compute a directed Steiner tree CUÐ Å$Ñu� on subgraph C¼ÒB�!*DE?GF�Z7F¦! w 2|2 , rooted at Q and with the nodes D¦! w 2EZÔÓoQ@Õ
in the primary path as its terminal nodes where D¦! w 2 denotes

the node set used in path
w

. (2) Reverse all the edges of the
tree to obtain backup subgraph C �u��� . Figure 2 illustrates this
with an example. It shows the primary path

w � ( NW�;y { , y 0 ,y ® , yLÖ , yB× , Q���y�Ø ), the corresponding Steiner tree C �iÅ$Ñu� and
the backup subgraph C �q�o� which has links that are reverse of
those in C �iÅ$Ñu� .

Among the approximation algorithms that compute directed
Steiner tree such as [16], [13], [6], we choose the SCTF
algorithms [13]. SCTF has good approximation ratio if the
graph is not very asymmetric (asymmetry is measured as the
sum of the larger cost of edges !�y�?|¯[2 and !�¯�?|y°2 divided
by the sum of the smaller cost.). Applying SCTF algorithm
with minor modifications, the backup subgraph is computed
as follows: the current subgraph C �u��� is initialized to be
the single node Q ; the algorithm then iteratively computes a
shortest path from the current set of nodes in the primary path
that are not in the current subgraph to the current subgraph; the
algorithm terminates when all the primary nodes are in CH�q�o� .
Each iteration involves computing a shortest path from one
set of nodes to another set of nodes. This requires only one
invocation of Dijkstra’s algorithm by adding dummy source
and destination. The running time is  "!*45%('$),+6%H.\45#82 where4K�xI DK! w 23I�ZÔk , %8��I D&I and #��xI FKI .

The reversed directed Steiner tree as a restoration sub-
graph C¼�u��� has several advantages: (1) For every link in
the primary path, there are multiple restoration paths that
end on the immediate neighbor or neighbors downstream.
This encourages sharing of primary path links and minimizes
new bandwidth reservation. In our example (Figure 2), in
the case of links !$yB®P?|y Ö 2 and !�y Ö ?Gy × 2 , the backup paths!�yB®�?G¯�®�?G¯ Ö ?Gy × 2 , and !$y Ö ?|¯ Ö ?|y × 2 share the primary path link!�yB×�?Gy�Ø,2 for restoration. (2) Also, the explicit tree structure
ensures that local restoration paths share links. In our example,
restoration path for !�y { ?Gy 0 2 is dEcx�x!�y { ?G¯ 0 ?Gy ® 2 which is also
part of the restoration path !$y 0 ?|¯ { ?|y { ?|¯ 0 ?|y ® 2 for !�y 0 ?Gy ® 2 . In
the Section VI, we describe an algorithm that optimally selects
restoration paths from the CU�u��� .
B. Computing Backup Paths for �<�¶�

Given a primary path
w

for request !ON�?GQL?RST2 in directed
graph CJ�x!*DE?GFU2 , if there is no constraint on the backtracking
distance, the following procedure due to Suurballe [15] com-
putes a minimum cost backup set of edges for

w
. The idea

is to reverse the direction of the edges on the path
w

and set
their cost to zero. All other edges are assigned cost as defined
in Equation 2. Compute a shortest path Ù from N to Q in the
resulting graph C¼Ò .

Suurballe [15] shows that the edges of Ù that are not in
w

represent the optimal backup path for the primary path
w

with�¸��� . Figure 3-(a) illustrates an example, where primary
path

w
is !�y({�?3�3�~�°?|y({u±o2 and backup subgraph consists of

paths !$y°{�?|¯�{�?|¯ 0 ¯�®�?Gy�®,2 , !�y 0 ?G¯ Ö ?|¯ × ?|¯ Ø , ¯�ÚP?|y Ö ?G¯�Û�?|¯�Ü�?|¯�{q±P?Gy Ø 2 ,!�yB×�?G¯ {G{ ?5¯ { 0 ?G¯ {q® ?Ly {q± 2 .
C. Computing Backup Paths for �<�¶�

For this case, we state the following theorem.
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Theorem 5.2: Given a primary path
w

in CÞ�ß!*DE?GFH2 ,
computing the minimum-cost backup subgraph CH�q�o� based on
cost �p� using bounded backtracking of �<�¶� is NP-hard.

For proof, please refer to Appendix-. For the computation
of backup subgraph for �à�·� case, we build upon the
procedure due to [15]. Table III illustrates the pseudo code
of our heuristic algorithm. We first compute a backup path Ù
for
w

as in Section V-B. It is easy to see that the cost of Ù
is a lower bound on the cost of any solution for the �»���
case. The edges of Ù allow the edges on the primary path
to be restored, however the maximum distance some edge
in the primary path has to backtrack might not be bounded
by � . Procedure #�£-¤�� checks the maximum backtracking
distance and if it exceeds � , additional paths are added in
a greedy fashion to the edges of Ù . We use an example to
illustrate our ideas. Consider the example in Figure 3-(a) after

TABLE III
HEURISTIC ALGORITHM FOR BACKUP PATH COMPUTATION OF Í7Î�Ý

CASE

modified_Suurballe(G,P,r,k)
1. Q=Suurballe(G,P);
2. If (Q==NULL) return NULL;
3.
4. if (maxD(P,Q)>k)
5. È�á =compExtraPaths(G,P,Q,k);
6. if ( È�á ==NULL) return NULL;
7. else ÈÃÉiÊ3Ë =Q â5È á ;
8. return È ÉiÊ3Ë ;

line 2 in Table III. We use �:�ãk in the example. This
requires that the restoration path for a link !$y°�G?|yB����{T2 in the
primary path must originate at y � or y ��ä({ . Note that the edges
of Ù computed from Suurballe’s procedure allow all edges
except !$y Ú ?|y Û 2 , !�y Û ?Gy Ü 2 and !�y Ü ?|y {u± 2 to have a restoration
path with backtracking distance at most k . In the example,
the backup path with the smallest backtracking distance for
the link !�yBÛP?|yBÜ~2 is the one that originates at y × which has
a backtracking distance å . If we add paths c w {�?Gc w 0 as
shown in Figure 3-(b) to the CH�u��� , we can obtain an efficient
solution that satisfies the backtracking distance constraint. Our
algorithm (Line æ ) finds such paths in the following way.

For every link !�y°�|?Gy����r{T2 in the primary path which
does not have a restoration path with backtracking dis-
tance bounded by � , we add a path from some node
in the set Ó~y �$äB� ?Gy �$äB�T�r{ ?~�3�~�°?|y � Õ to reach a node inÓ~y ���r{ ?|y ��� 0 ?3�~�3�°?RQ@Õ . This ensures that we satisfy the require-
ment for all links on the primary path. We process unsatisfied
links in the order of their increasing distance to the destination.

In the example, the link !�y°ÜP?|y({u±o2 is considered first. To satisfy
this link we consider adding paths from either y(Û or yBÜ
to reach the node y]{u± . We consider yBÛ first and if we are
unable to find a path to reach y]{q± , we then consider y°Ü . In
general, when trying to satisfy link !�y(�q?|yB���r{T2 , we search for
paths starting with yB�$äB� and stop when we find a path. In
the example, we find c w { from yBÛ . Note that we find a
shortest path at each step to minimize the cost of solution.
Once a link is satisfied, we move to the next unsatisfied
link (farther away from the destination) and repeat the above
procedure. In the above example, adding path c w { satisfies
both !�y Ü ?|y {u± 2 and !$y Û ?|y Ü 2 and the next unsatisfied link is!�y Ú ?Gy Û 2 . The process stops when no unsatisfied links remain.
All the c w � so obtained combined with the original Ù – i.e.C¼�u���Y��Ó,c w �qÕ6ç/Ù provides the restoration graph that satisfies
required backtracking constraint.

In the above procedure, we need to find a shortest path
from a node yèv·Ó,y ��ä°� ?3�~�3�(?Gy � Õ to reach any node inÓ~yB���r{o?Gy���� 0 ?~�3�~�°?GQ5Õ . This can be implemented by Dijkstra’s
algorithm by first shrinking the nodes Ó~y(���r{�?|yB��� 0 ?3�~�3�°?RQ@Õ into
a single super node. In computing the shortest path we reduce
the cost of the edges in CU�q�o� computed till now to zero so as
to make sure that we reuse the edges that are already in our
solution as much as possible.

VI. POST-PROCESSING

In the following we first discuss the concept of post-
processing and provide algorithms for each case of backtrack-
ing.

A. Need for Post-processing

s=uo u1 u2 u4u3

LB1

LB2

v1

v2

v3
v4

1

6

2 3 4 5 d=u5

Fig. 4. Need for post-processing

Figure 4 illustrates primary path
w !�y ± ?-y { ?|y 0 , y ® ?GyLÖ , y�×,2 ,

and the corresponding backup subgraph C �u��� for ����
 for
a request of size S/��k~é units. Recall that C �u��� is the reverse
of the Steiner tree rooted at y°× . Here link kU!�y ± ?|y { 2 is backed
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up using path dYc { , constituted by !$y ± ?|¯ { 2 , !$¯ { ?G¯ 0 2 , !�¯ 0 ?|¯�Ö�2!�¯�Ö-?|yB×32 , whereas link ê`!$y ® ?|y�Ö,2 is backed up by using pathdEc 0 constituted by !�y ® ?|¯ ® 2 , !�¯ ® ?|¯�Ö,2 , !$¯�Ö�?Gy�×32 . Consider linkë !$y ± ?|¯ { 2 on dEc { , with residual bandwidth ��Ø��;�P� , backup
load �XØU��å-� . The backup load induced by link ê on link

ë
is cUdY�Kegf ë ?|êPj5�¶��
 , whereas load induced by link k on linkë

is cUdE�&egf ë ?3kTjL��k~
 .
Unfortunately, when link cost � � is assigned for Steiner

tree computation, a pessimistic assumption has to be made:
the worst case backup load on link

ë
is ��
 units induced

by link ê . This has to be done to account for possibility
that backup path for link ê may include link

ë
. So the extra

bandwidth reservation on link
ë

is SWZ�!$��Ø�Z�cUdE�&egf ë ?|ê�j�2
or (18 - (32 -20))=6 units. In other words, the Equation 2
we employ to compute ����� in Steiner tree computation is
rather conservative as it assumes that any candidate link in
backup graph may have to backup worst case load from a
link in the primary path. If we introduce post-processing that
follows computation of Steiner tree and path selection, we can
fix this situation. Specifically, in our example, if we account
for the fact that only backup path dYc¼{ for link k uses linkë

, we can see that the amount of free bandwidth on link
ë

is!$�WØXZìcUdY�Kegf ë ?3k3j¿2p��å-��Z�k,
"���P� , which is greater than
the request size. Clearly, in that case no extra bandwidth has
to be reserved on link

ë
. Such post processing of the solution

can reduce extra bandwidth reservation for backup paths and
therefore save bandwidth.

We provide post-processing algorithms for each case of � .
The two main goals of these algorithms are: (1) Identify for
each primary path link, a set of potential restoration paths
with minimum backtracking distance. (2) Minimize the total
bandwidth reserved on the backup paths subject to assignment
of restoration paths. We state the following theorem for post-
processing for all three cases of backtracking:

Theorem 6.1: Given a primary path
w

, the backup subgraphC �u��� that our algorithms compute is a forest consisting a set
of trees Ó~í � Õ . The amount of bandwidth needed to be reserved
can be computed optimally by a single traversal of

w
and one

ordered traversal of each tree í � . The backup paths for each
primary edge can be found in time linear in the output size.

We do not give a formal proof of the theorem. However
the description of the algorithms in the following subsections
contains all the ideas behind the proof.

B. Post-processing for �<��

For this case we describe a post-processing algorithm that

results in the minimum use of bandwidth subject to using
the edges of C¼�u��� for restoration. We use the example from
Figure 2 to illustrate the algorithm. The algorithm is based
on the fact that the backup edges form a Steiner tree C��iÅ$Ñu�
on the vertices of the primary path

w
. For a link !�y(�|?Gy����r{32

on the path
w

, the restoration path has to originate at y(� . InC¼�iÅ$Ñu� , for every yB� in
w

, there is a unique directed path dEc��
from y � to the destination Q . We could use this path dYc � as
a restoration path for !$y � ?|y ����{ 2 , however we notice that dYc �
can intersect the path

w
at several places and in particular

there could be a vertex y a , b��<h .�k that lies on dEc � . In

this case, it is easy to see that the portion of dYc � from y �
to y a is sufficient to restore the link !�y � ?Gy ���r{ 2 . In Figure 2,
the path dEc ® is !�y ® ?|¯ ® ?|¯�Ö-?|yB×�?|¯�×�?|yBØ32 . However the portion
of dEc ® that is !$y ® ?|¯ ® ?|¯�Ö-?|yB×32 is sufficient to restore the link!�y ® ?GyLÖo2 . More generally, for the unique path dEc � from y � toQ , let y a be the first vertex in dEc � such that bÄ�Jhr.=k . LetÙ�Ò� be the portion of dEc�� from yB� to y@a . We use Ù¼Ò� to restore
the link !�yB�|?|yB���r{32 . In Figure 2, the path dYc 0 intersects

w
at y({o?Gy�®�?|y × and finally reaches Q1��y Ø . We use the portion
of dEc 0 from y({ to yB® , hence Ù¼Ò0 is !�y 0 ?G¯�{o?Gy°{�?|¯ 0 ?|yB®32 . It is
easily seen that this Ù¼Ò� as constructed above is necessary and
sufficient for the restoration of !$y°�|?Gy����r{32 .

Now we address the issue of minimizing the bandwidth. For
each link î in C¼�uÅ$Ñu� , let ïBð be the set of all h such that the link î
is in the restoration path ÙUÒ� for link !�y � ?|y ���r{ 2 . In our example
from Figure 2, the link !$¯ 0 ?Gy ® 2 is used by Ù¼Ò{ and Ù¼Ò0 , henceï ��ñRòôó �oõR¢ �JÓ�k�?R�6Õ . For link !�¯�Ö-?|yB×32 , we have ï ��ñGöTó �o÷|¢ �JÓ,å@?Gê@Õ .
In other words, ï ð is the precise set of all primary path links
that use î in their backup paths. Therefore it is sufficient to
reserve bandwidth on î that will satisfy the links in ï(ð and not
all the links of

w
. This results in savings in bandwidth. More

precisely, the free bandwidth on î for backing up links in ï(ð
is ���Wðp��ø�ù�ú5�$� Ðoû ���"f î�?|hOj . This is to be contrasted with the
pessimistic estimation ���Wðt�;ø"ù�ú �$�P�¥��¡(¢ ���"f î�?Gh*j used in the
computation of CU�iÅ$Ñu� . Since ïBð is a proper subset of FK! w 2 , we
can potentially use more free bandwidth on î than estimated.

The revised bounds on the free bandwidth can be easily
computed once the restoration paths Ù Ò� are computed for allh . However, we note that both the ÙUÒ� for all links of

w
and the��� ð for all the links in C �uÅ$Ñu� can be computed in a single DFS

traversal of C �iÅ$Ñu� by keeping some simple state information
at the vertices of the trees. The traversal of C �iÅ$Ñu� takes  "!�#12
time where # is the number of vertices (edges) in C �iÅ$Ñu� .
The explicit enumeration of the restoration paths needs an
additional  "!O4L2 time, where 4 is the sum total of the lengths
of Ù�Ò� . Hence, the running time is linear in the size of the tree
and the size of the output.

C. Post-processing for �<�=��?A�
The post-processing algorithms for ���¶� and �<��� are

conceptually similar to the case ���:
 and hence we omit
the details. However we do need to take care of two issues.
First, for a given link !$y � ?|y ����{ 2 in

w
there might be several

restoration paths that satisfy the backtracking constraint. By
choosing the restoration path with the minimum backtracking
distance we can make the restoration path for each link unique.
Second, instead of a single tree as in the ����
 case we might
have a forest consisting of many trees. We process each of
these trees much as we do in the �<��
 case.

VII. SIMULATION EXPERIMENTS

In this section, we describe simulation experiments that
characterize the benefits of our proposed local link restoration
schemes over existing end-to-end path restoration schemes. We
conduct a set of experiments that compare our three schemes
( � �à
@?A�B?A� ) with two end-to-end restoration schemes,
namely Enhanced Widest-Shortest-Path First(EWSPF) [12],
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and simple Shortest Path First (SPF). EWSPF exploits band-
width sharing among backup paths and has been shown to
perform better than other schemes in the literature [12]. The
SPF scheme uses link costs based on the residual capacity
and computes two independent paths: one used as primary
and the other as backup and do not attempt to share backup
paths. It is used as a base line to show how much benefit
bandwidth sharing schemes can provide. Because our topology
is relatively small, we only consider �<��k case for the limited
backtracking algorithm.

A. Simulation Setup

This section describes the network topology, traffic param-
eters and performance metrics used in the simulation.

TABLE IV
SIMULATION PARAMETERS

Parameter Value
Request (REQ) arrival Poisson at every router

Call holding time (HT) 200 time units, expo-
nentially distributed

Simulation time (STT) Fixed 50,000 units
Request Volume (RV) during
entire STT 50,000 to 300,000
Max single LSP REQ size 5% of the link capacity

Mean REQ inter-arrival time Computed using RV
and STT

Destination node selection Randomly distributed

Table IV shows the parameters used in the experiments.
Call holding time is how long each request lasts. Note that
in reality, request load at various nodes may not be random
and the amount of requests between certain node pairs may
be dis-proportional. However, no real life call traffic data
sets are currently available in public domain, therefore we
use Poisson distribution to model request arrival process. We
use 6 quantization levels for the EWSPF algorithm which are
@� 
�æ[?R
@��kP?R
@� å@?G
5� æ@?G
5�ýü and k�� 
 times the maximum requested
bandwidth [12]. Figure 5 illustrates the network topologies
used in our experiments. The network topology is the same as
the topology in [12]. The topology represents the Delaunay
triangulation for the 20 largest metro areas in continental
U.S. In the homogeneous topology, all links are of the same
capacity (OC-48). In the heterogeneous topology case, the
network core consists of fast OC-48 links (thick links) that
connect access networks with slower OC-12 links(thin links).

B. Performance Metrics

We defined performance metrics to characterize (1) restora-
tion latency and (2) bandwidth sharing performance [12].

1) Restoration Latency Performance: A brute force direct
simulation of faults and subsequent measurement of restora-
tion latency requires a very complex model that simulates
multi-gigabit data traffic, link faults and corresponding fault
propagation traffic in a complete network. Such a simulation
that involves simulation of traffic instead of just request
arrivals and corresponding route computations yields at best
only representative performance numbers. So instead of taking

this inordinately complex approach, we use an indirect way
to measure restoration latency based on the following two
performance metrics: (1) Histogram of Backtracking Distance
(HBD): Given a primary path of length ' , the restoration model
used dictates the amount of worst case backtracking for a
link in the primary path. For example, with local restoration
and backtracking distance of �þ�»� , the backup path may
backtrack 
5?3k or � links. On the other hand for end-to-end
restoration, for the k �iÅ link in the path, backtracking is equal
to zero, whereas for the ' Å$ÿ link in the path, restoration
backtracks to source node and has backtracking distance of'BZ�k . The more the backtracking, the more is the restoration
latency. Therefore, we compute a histogram, where bin h
corresponds to total number of links in the admitted primary
paths for which backup path backtracks h links. Clearly, this
histogram characterizes the probability that a given amount
of backtracking will occur. (2) Average Case Backtracking
Distance (ABD): We define this metric as follows:

�WcH�<� ¾�� �����{ ¾ � ¡�� �a���{ � �ýa¾	� ��
�r{ I w � I (4)

where %�� is total number of accepted requests,
w � is the

primary path routed for request h , I w � I represents the length
of the path and � � a is the actual backtracking distance to
backup the b -th link of the primary path

w � . �XcU� measures
the average backtracking distance among all the backup paths.
Clearly, it captures expected case of backtracking and there-
fore, restoration latency.

2) Bandwidth Sharing Performance: We used the following
performance metrics in our evaluation [12]: (1) Fraction
Rejected (FR): is the fraction of requests that are dropped
during each simulation run. (2) Total bandwidth consumed:
is the total bandwidth consumed by each scheme including
primary and backup reservations.

C. Simulation Results

In the following, we discuss variation of these performance
metrics for different cases of � and request volumes.
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1) Restoration Latency Performance: Figure 6 shows the
histogram of backtracking distance for all the schemes using
the request volume 300,000 as a representative case. For
schemes EWSPF, SPF and ���x� , backtracking distance is
not bounded and can range from 0 to 13. Approximately koü�

and é�
 of backup paths require backtracking distance � andå respectively. For schemes �<��
 and �<�Jk that bound the
backtracking distance, the backtracking distance stays within
the preset limits.
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Fig. 7. Average backtracking distance (ABD)

Figure 7 shows the average backtracking distance ABD for
all the schemes. We see that the two metrics have similar
behavior. Note that the ABD for EWSPF and � � �
increases more rapidly than that for SPF. This happens because
SPF has high rate of request rejection and utilizes network
links rapidly. So it begins with shorter backup paths but as
the links fill up, it can’t find longer feasible paths because a
large subset of network links become infeasible due to lack of
residual bandwidth. So with increased request rejection, the
path length and therefore ABD metric remains flat. On the
contrary, EWSPF exploits more bandwidth sharing and can
route increasingly longer paths as load increases which results
in higher ABD. Note that the case of �¨�»� results in a
similar behavior. This clearly suggests that as the load on the
network increases, higher ABD will result in higher restoration
latency and also, poorer control on providing tighter bounds
on it. On the contrary, with our algorithms for ���=
5?3k , the

ABD stays within the pre-set limits. Note that the ABD for
EWSPF is about k,��
 longer than that for �¹��� for all
request size. The reason is that our algorithm for �½���
tries to reduce the backtracking distance even if it does not
place a bound.

2) Bandwidth Sharing Performance: Before we look into
networks with finite capacity, we look at the bandwidth
consumed if the network has infinite capacity on every link.
This is interesting to look at because we can understand the
amount of bandwidth reservation required for each scheme
without all the complications associated with networks with
bounded capacity, e.g. each scheme accept different request
set.

From figure 8, we see that only a small fraction of the total
bandwidth is used for backup paths, e.g. for request volume
300,000, figure 8 shows the total bandwidth is roughly 1100
units and the total backup bandwidth is only 250 units which is
about 22%. From figure 8, only about �P��
 of the total reserved
bandwidth are used for backup paths. Therefore, bandwidth
sharing is very significant. From figure 8-b, we also see that���=
 reserves å�ê�
 more bandwidth that EWSPF and ���� . ���ºk reserves k,
�
 more bandwidth that EWSPF and�<�¶� .

Homogenous Network Topology
Fraction Rejected (FR): As expected, FR increases as the load
or RV increases. All the sharing schemes are significantly
better than SPF and can accept up to 22% more requests.
This suggests backup bandwidth sharing enables much more
efficient use of network resources than no-sharing case. There
are two factors that impact FR. (1) Since end-to-end restoration
schemes use one path to restore all the link failures in the
primary path, fewer links need extra bandwidth reservation
than �:9;� . (2) Local restoration schemes can share backup
bandwidth more aggressively than end-to-end schemes. This
is because: in the end-to-end scheme, each link in the backup
path has to assume that the maximum load in the primary link
can be backed up on that link (see Equation 2). On the other
hand, in the local restoration schemes with post processing,
each link only needs to backup the set of links whose backup
path uses that link, that is, more bandwidth can be shared.
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Fig. 8. Network with infinite capacity on each link

Although EWSPF and ���¨� are analogous in terms of
unlimited backtracking, unlike the EWSPF case, backup paths
for �µ�¶� case can share primary path links. Therefore, FR
for EWSPF should be higher than that of scheme ����� ,
(See Section VI). However, since the networks used in our
simulation is relatively small, there are not many cases where
scheme ����� can share primary path links. Therefore, the
FR for EWSPF and �<�=� is indistinguishable. With respect
to �<��
 and �µ��k , the first factor is more effective as many
more links are needed for backup bandwidth reservation, this
results in our algorithm for ����
 and ����k rejects up toê�
 and ��
 more requests respectively than EWSPF.

Total Bandwidth Consumed: Figure 9-b shows the total
bandwidth consumed for all the schemes. We see that even
if SPF rejects up to 22% more request, it consumes much
more bandwidth than the other schemes. For example, SPF
consumes 28% more bandwidth than �<�;
 when the request
volume is 150,000. Scheme � �½
 consumes 17% more
bandwidth than EWSPF. Scheme �º�:k only consumes 3%
more than EWSPF. This suggests, scheme �»��k is a good
tradeoff between restoration latency and network resource
consumption.

Heterogeneous Network Topology
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Fig. 9. Bandwidth Sharing Performance: Homogenous Topology

Figure 10-a shows the FR vs the volume for an LF value
of 5% of the OC-48 links. Since the access links are at OC-
12, an LF of 5% of OC-48 will allow for requests of 20% of
the access link. This results in the access links to get saturated
very quickly and lead to higher rejection ratio for all schemes.
The rejection ratios of EWSPF, schemes �Þ�þ
 , �ß�èk
and ����� are indistinguishable. The amount of bandwidth
they consume is similar to one another. The total bandwidth
consumed for scheme �<��
 is marginally higher �;ê�
 than
that for EWSPF. We also performed experiments with an LF of
2% (omitted due to space constraints) which would be at most
8% of the OC-12 links. For such a case, the FR of scheme����
 is only marginally higher–less than 2% than that of
scheme �<��k , �<�¶� and EWSPF. The bandwidth used by
scheme ����
 is still marginally higher–less than 7% than
that used by EWSPF. This suggests that, in the heterogeneous
topology case considered, scheme ���;
 is a good algorithm
to choose for best restoration latency with only marginally
sacrifice on performance and resource consumption.

VIII. CONCLUSIONS

In this paper, we proposed a framework for provisioning
bandwidth guaranteed paths with bounded restoration latency.
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Fig. 10. Bandwidth Sharing Performance: Heterogeneous Topology

We introduced the novel concept of backtracking distance� and considered three different cases: (1) no backtracking
( �<��
 ), (2) limited backtracking ( �µ��� ), and (3) unlimited
backtracking ( � �Þ� ). We used a link cost model that
captures bandwidth sharing among links using various types
of available link state information. We first showed that joint
optimization of primary and backup paths is NP-hard in all
cases. We then considered two-step algorithms where primary
path and backup paths are computed in two separate steps.
Using our link cost model, we devised heuristic algorithms
for each case.

Out simulation study to characterize the sharing and restora-
tion latency performance of our schemes shows that ����k
provides best tradeoff between bandwidth usage and restora-
tion latency. Since the fault information only needs to be
propagated at most one hop in this case, restoration latency
performance may be acceptable for most service needs.
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APPENDIX

Theorem 1.1: Joint optimization of primary path and
backup subgraph is NP-hard for all three cases of backtracking
distances: �µ�;
5?R�B?ô� .

Proof: We can show that our joint optimization problem is
at least as hard as the Set cover problem and therefore, is an
NP-hard problem. The hardness factor depends on how we
measure the objective functions. This happens because of the
dependence of the backup cost on an edge by edge basis.

Primary path

S=uo u1 un un+m = dun+1

r

Variable cost links
modeling set covering

ui+1ui un+j

v w

Fig. 11. Reduction from set cover

The sketch of the reduction is as follows: Let us consider a
set cover instance which has # sets ï { ?~}3}~}°?Rï�� each a subset
of a universe of % elements kP?A�[?3�~�3�q% . The goal is to find
a smallest collection of sets that together cover (contain) all
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elements. This problem is known to be �
��� % -hard and can be
approximated to within ����� % factor via the greedy algorithm.

We will reduce this problem to our problem using the
construction shown in Figure 11. Let vertices in a path

w
be labeled y]{ to y � � � , where the first % vertices as elements
of the universe and the next # vertices as the sets. Add an
extra vertex M and connect all the %�.8# vertices to it in a star
like fashion. Also, connect the vertex near M to all the nodesy�� below.

Let the request be M �x!*N�?GQL?RST2 . Let the residue bandwidth of
edges in

w
be greater than S and the residue bandwidth of all

the edges in the star be less than S . Therefore, the primary path
of request M will be

w
since it is the only one that guarantees

its bandwidth requirement.
We model the covering aspect as follows. For a vertexy � �Ba such that b���
 the edge ! M ?|y � ��a,2 will be the edge

representing the set ï�a . This edge has a cost of 1 for backing
up the edges !�y � ?|y ����{ 2 if y � is in set ï a , otherwise the cost
will be a large quantity.

� )�N3ÇT! M , y � ��a ) �
©ªª« ªª¬
k b¦�Æ%¥? Backing !$y � ?Gy ���r{ 2

if y � v8ï ac¼hO+6c b¦�Æ%¥? Backing !$y � ?Gy ���r{ 2
if y ���v8ï a

(5)

Hence, to back up an edge !�y � ?|y ����{ 2ô?GhWl=% we need to use
the path !�y � ? M 2 followed by ! M ?Gy � ��a 2 where ï a contains y � .
We can make the cost of backing up edges !�y � ��aP?Gy � ��aG�r{T2 ,b7��
 cheap by making the cost of covering them by other
edges 0. Note that it is easy to see that these costs are realizable
in our problem. To make � )�N~ÇT! M ?|y � �Ba,2 small for backing up!�yB�q?|yB���r{32 , we can add dummy nodes ¯ and � , add directed
edges !$¯L?GyB�*2 , !�yB����{32 and !�y � ��a�?G�X2 and add request M Ò from¯ to � . Since there are only two paths

w {��µ!$¯L?Gy��|?|yB���r{�?|�X2
and

w 0 �è!$¯L? M ?|y � ��aP?|��2 . w { will be used as the primary
and

w 0 as the backup. Because the primary edge !�y � ?Gy ���r{ 2
uses edge ! M ?|y � ��a 2 for backup request M Ò , bandwidth reserved
on ! M ?Gy � ��a 2 by M Ò can be used by M for free. Therefore,� )�N~ÇT! M ?|y � ��a 2 is small to backup !$y � ?Gy ���r{ 2 . Now, the cost
of solution will consist two parts: (1) the cost V { consists
of the cost of the primary path

w
and the cost of backup

edges !$yB�q? M 2 , hsl¶% . (2) the cost V 0 is the number of edges
of the form ! M ?|y � �Ba,2 that are actually used to backup edge!�yB�q?|yB���r{32T?|hYl�% . The collection of sets of ï�a represented by
edges ! M ?|y � �Ba,2 in the backup subgraph corresponds to a set
cover and hence the cost V 0 will measure the set cover cost.

Theorem 1.2: Given a network Cg�g!*DE?GFH2 and a primary
path

w
between source and destination pair !ON�?GQ62 , the compu-

tation of optimal backup subgraph C �u��� for �<��
 case based
on cost � � as defined in Equation 2 is NP-hard.

Proof: Given the known NP-hard directed Steiner tree opti-
mization problem, we can reduce it to our problem easily as
follows. In the Steiner tree problem, we want to connect a rootQ to a subset of nodes e of Cµ��!*DE?GFU2 with minimal cost
(nodes in e are called terminal nodes). Let C¼Ò¼��!OD ?RF¼Ò¿2
where ' Ò �´!�y�?|¯[27v<F Ò iff '&�è!�¯�?|y°27v<F and the cost�WÒ� �;� � , i.e. C¼Ò is the graph C with every edge reversed. Order

the nodes in e arbitrarily as y { , y 0 , }~}3} , y ÿ where 4Æ��I eµI .
Connect these nodes by a directed simple path

w
from y {

to y ÿ . Let C�Ò ÒU� !*DE?GF¼Ò(çìF¦! w 2G2 (Note that C�ÒýÒ can be a
directed multigraph. It is easy to take care of the case that
the algorithm for computing optimal backup paths requires a
graph to be a simple digraph. What we need to do is, for each!�yB�q?Gy����r{32�v=F¼Ò , add a pseudo node ¯P� to e , add directed
edges !�yB�|?|¯��i2 , !�¯��G?|yB���r{~2 and set their cost to zero. Let the
resulting graph be C¼ÒýÒ . Details are omitted.). Let the optimal
backup subgraph be CU�q�o� . Let C�Ò�u��� be the graph CU�u��� with
every edge reversed. We claim that CUÒ�u��� corresponds to the
optimal Steiner tree on C���!*DE?GFH2 with root M and terminal
node set e .

Because we do not allow backtracking, it is easy to see that
there is a simple path � � from y �,ä°{ to y � in C �q�o� where � �
does not use any edges in FK! w 2 . Similarly, there is a path
� �oä°{ from y �,ä 0 to y �,ä°{ or y � in C �u��� where � �,ä({ does not
use any edges in F¦! w 2 . By a simple induction on the length of
the postfix of

w
, the subgraph C �q�o� connects all the nodes inw

where CU�u��� does not use any edges in F¦! w 2 . If we reverse
the direction of edges in CU�u��� , then there is a path from Q
to any node in D¦! w 2pZ¶Ó,Q5Õ , i.e. C Ò �u��� is a directed Steiner
tree in graph Cg�g!*DE?GFH2 . Because ¾ �¿�P�°À*ÁTÂ �p� is minimum,
it is easy to see C¼Ò�u��� is a minimum directed Steiner tree inC , which is known to be NP-hard.

Theorem 1.3: Given a network C��g!OD ?RFU2 and a primary
path

w
between source and destination pair !*N�?GQ62 , the com-

putation of optimal backup subgraph C �u��� for ����� case
based on cost � � is NP-hard.

Proof: Our reduction is similar to �ã��
 case. We need
to take care of the specifics of �¹��� case. CUÒ is defined
the same as in the proof for ���g
 . Order the nodes in e
as y°{ , y 0 , }3}~} , y°ÿ where 4��þI eµI . For each node y°�8vµe ,
add � �³� nodes yB� { , yB�$0 , }~}3} , yB� � and add edge setÓ-!$y�� a ?|yB� aG�r{ 2/ITb���k�?R�[?~}3}~}�?A�XZmkPÕ�ç�Ó6!�yB�q?Gy�� { 2ôÕ where each
edge has zero cost for backup computation. In addition, add
edges set Ó6!�yB� � ?|yB����{T2/I�hÃ��k�?R�[?~}3}~}�?A4"Z�k�Õ .

Let the resulting graph be C¼Ò Ò���!*D¼ÒO?RF¼Ò Ò�2 and denote e�çÓ~yB� a I�yB�Ãv8e , k�l7b lz��Õ by eJÒ . Let
w

be the simple path
from N&�<y({ to Q`�<y°ÿ which uses only edges in FUÒ(ZÔF .
Lets consider node y � � in

w
. If link !�y � � ?|y ���r{ 2 fails, any path

from y � � to Q must have path !�y � � ?Gy � �,ä°{ ?3}~}3}°?Gy � 2 as a prefix,
that is to backtrack � steps. Therefore, there must be a path
between y � and Q without using any edge in

w
in order fory � � not to backtrack more than � steps. By similar induction

as in the proof of Theorem 5.1, CUÒ�u��� is a directed Steiner
tree in C���!OD ?RFU2 which connects M to each node in e with
minimum total cost.
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