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Abstract— Power efficient operation is very critical in energy
constrained multi-hop wireless networks. One important tech-
nique is to intelligently assign transmission powers to nodes while
maintaining network connectivity. Previous work has focused on
assigning a single transmission power to each node. This often
leads to “power imbalance”, where some nodes use much more
power than other nodes. This can reduce network lifetime. In
this paper, we investigate the problem of two power assignments
where nodes alternate the use of these assigned powers. We
rigorously formulate the problem of two power assignment under
the constraint that the network connectivity is maintained. The
objective here is to minimize the maximum average power
used by the nodes. We show that, in general, the problem
is not just NP-hard but also hard to approximate. We then
propose a distributed localized heuristic to compute the two
power assignments. We perform extensive simulations to show
that the algorithm can reduce the average power significantly
when compared with algorithms that assign a single power. By
assuming some properties on radio propagation, we also present
a centralized algorithm with bounded worst case guarantees for
the two power assignment problem.

I. INTRODUCTION

In energy-constrained multi-hop wireless networks such as
sensor networks, it is very important to minimize the power
expended in transmission for prolonged network lifetime.
However, a node cannot use arbitrarily small transmission
power as the connectivity of the network depends on the
power each node uses. Depending on whether traffic demand is
known or not, prior work can be classified into two categories:
the first [3] tries to optimize network lifetime directly based
on various notions of network lifetime. The second [9], [6],
[7] uses heuristic metrics such as minimizing the maximum
transmission power or the sum of the transmission power
over all nodes, in an attempt to reduce transmission power
consumption. The latter approach is often referred to as
topology control.

In this paper, we take the latter approach as in many
practical settings, it is hard to obtain the traffic demand, and
considerable overhead is incurred to obtain global topology
information. The literature on topology control has focused on
configuring one transmission power. With only local topology
information, e.g. the visibility graph (the topology that a node
sees using its maximum transmission power), a node inde-
pendently assigns a transmission power to itself, attempting
to optimize certain metrics such as the min-max power while
ensuring the network is connected (which is the case as long
as the union of visibility graph over all nodes is connected).

One important drawback of this approach is that some nodes

always use a very large transmission power compared to other
nodes since the transmission power assignment is fixed. In
this paper, we explore the benefit of multiple transmission
power assignments. We maintain network connectivity with
each power assignment. We focus on two transmission power
assignments. A node will alternate the use of these two
transmission powers. Some radio technologies may incur a
switching delay when changing transmission powers. The most
efficient is when each node is equipped with two radios. Each
source node can stamp IP packet header with a bit indicating
the power assignment the packet requires. For route request
control packets, the bit will indicate whether a route should
be found on the network topology defined by the first power
or second power assignment. The benefit of multiple power
assignments is “power balancing”. This is analogous to load
balancing. We seek to minimize the maximum over the nodes
of the sum of the two powers.

In this paper, we formally define the multiple power as-
signment problem. We prove that it is NP-hard even for the
case of two powers if we do not assume any property of radio
propagation. Without any property of radio propagation, we
show that there does not exist any polynomial time algorithm
that will not be worse than an optimal single power in all
problem instances. With the assumption of power decays
with the distance to the power of 2 to 4, we present a
constant approximation algorithm for the problem. We then
focus on designing a “localized” distributed algorithm for the
two power assignment problem. As the “localized” algorithm
can be arbitrarily worse than the optimal in the single power
case, we focus on comparing with a “localized” MST based
algorithm [7]. An important property of the LMST algorithm
is that it is the best one can do given the visibility graph.
We design a two power algorithm that will either improve on
LMST or have the same performance as LMST. That is, it will
not be worse than LMST for min-max power assignment. Our
extensive simulation results demonstrate that the algorithm can
effectively “power balance” among nodes.

The rest of the paper is organized as follows. In Section II,
we present a rigorous formulation of the power balancing
problem. In Section V, we show that the general problem is
NP-hard. In Section III, we present the details of centralized
algorithm and show that it has a constant approximation factor.
In Section IV, we present a localized algorithm that will never
be worse than LMST [7]. In Section V, we show that the
general problem is NP-hard. In Section VI, we evaluate our
algorithms using simulation. In Section VII, we present related



work. Finally, in Section VIII, we present our conclusions.

II. PROBLEM FORMULATION

We are given a network of nodes � and edges � . The
edges � may be directed or undirected. Since each undirected
edge can be thought of as a pair of directed edges, we describe
the problem for directed edges � . The extension to undirected
edges is straightforward. Each edge ���
	���
�������� is labelled
with a power ��	���� , such that ��	���� is the minimum power
needed at node � to send a packet to node � . Thus, if ��� is
the power used by a node � then directed edge ����	���
�� � is
active iff ���"!#��	���� .

A set of node powers ��$�
��%�&� is said to be feasible if the
resulting network of active edges is strongly connected. Like-
wise, we define a ' set of node powers �)($ 
*�,+$ 
.-/-.-*��0$ 
1�"�&�
to be feasible if for the set of node powers �32$ 
��4�5� , the
resulting network of active edges is strongly connected, for
every 6,7#897:' . In this paper we are interested in a feasible
power assignment problem for '��<; . This problem is defined
as follows.

The two power assignment problem: The objective of the
two power assignment problem is to find a feasible ; set of
node powers �=($ 
��,+$ 
��>��� and fractions ? ( and ? + adding up
to 6 (i.e. ? (9@ ? + ��6 ) such that the maximum average node
power A�B�C $ ? ( � ($ @ ? + � +$ is minimized.

In a more realistic Euclidean setting the nodes � are
points in the Euclidean plane. The edge path (power) loss is
inversely proportional to a power D of the distance for some
;E7FDG7FH [8]. Thus the power received at node � from
node � transmitting at power ��I on an edge �J�K	���
�� � of
length L is proportional to MONPRQ . In this setting the label of edge
� of length L is proportional to L S . Thus ��	T�U���WVXL�S , for
some constant V . Also, in realistic settings, each node � has
a bounded maximum power which we denote by ��Y�Z�[\	�� � . In
this setting directed edge ���
	���
�������� iff ��Y�Z�[\	��]��!^��	T�U� .

For simplicity we assume that all ��Y�Z�[\	�� � are equal and
the common maximum power is denoted by �_Y�Z�[ . Our results
also extend to the more general case the details of which we
leave for a full version of the paper. Note that in the Euclidean
setting with the assumption of equal maximum node power,
the edges � in the network (possible set of active edges) are
undirected. Thus, in the rest of the paper, we will mainly work
with undirected networks `a�b	T�c
��=� .

III. CENTRALIZED ALGORITHM

A. Preliminaries and Notations

We assume that there are d network edges � ( e �%ef�gd ),
which are indexed from 6 to d . Thus, we denote the set
of edges by � ( 
�� + 
.-.-/-��Uh . For a given set of edge weightsi 	����R
=�%�j� we say that edge � 2 is heavier than edge �.k if
either i 	�� 2 ��l i 	T�mk�� or 8>lWn and i 	�� 2 �%� i 	T�mk�� . Thus,
we use a tie breaking rule to differentiate among equal weight
edges. We denote by oj	�� � the set of one hop neighbors of
node � .

B. The Algorithm

The centralized algorithm is assumed to have a global view
of the network and its topology. The algorithm has two phases.
In the first phase the algorithm finds a spanning tree of the
network as follows. For each vertex � , let ��Y�p qf	��]� be the
minimum power needed to communicate with at least one
neighbor. Thus, � h 2sr� �tA)uwv]�U��	����.e �x�F	���
�� �R
��#�yoz	��]�{� .
In this phase the weight of edge �z�|	���
�� � is then set asi 	T�U�9�#A�B�C}�~� h 2wr� 
�� h 2wr$ � @ ��	���� . The algorithm then finds
a Minimum Spanning Tree (MST) of the network using these
edge weights with the tie breaking rule described earlier to
differentiate among equal weight edges.

Given the MST, we denote a node � to be the “buddy” �%	����
of node � if the edge 	���
��]� is the lightest among all the edges
incident on node � in the MST. Due to the tie breaking rule,
�%	���� is unique for every node � . It can also be shown (proof
omitted) that i 	T���c�<;O��	���� , where ���b	���
��]� .

Next, the algorithm labels the vertices � with two labels �
and 6 such that for any edge � in the MST its two end-nodes
do not have the same label. Note that this is equivalent to
a ; -vertex coloring of the MST and is done by selecting an
arbitrary node � as the root of the MST. All nodes that are at
even (hop) distance from � in the MST are assigned label � ,
and all the other nodes are assigned label 6 . It can be verified
that this is indeed a ; -vertex coloring of the MST.

The second phase of the algorithm involves repeatedly
running the following steps for different values of a parameter� in the range 6U�O;:7 � 7�6 . Each choice of � results in
a pair of strongly connected networks � ( 	 � � and � + 	 � � over
the node set � . In the end the algorithm outputs the best pair
of strongly connected networks � ( 	 � � and � + 	 � � among the
different choices for � (i.e. for which the maximum average
node power is minimized).

Let ������� be the largest edge weight in the MST. Let � (
and � + be a partition of the edges of the MST with ����� (
iff the edge power ��	���� is at most � ������� . Intuitively, � + is
the set of long edges of the MST and � ( is the set of short
edges of the MST. Note that the set of short edges ( � ( ) can be
thought of as forming a set � of connected components such
that the end-nodes of any long edge � ( �3��� + ) lie in different
connected components of the set � . It can be shown (proof
omitted), based on the way the sets � ( and � + are defined,
that if � is a buddy of � ( �>	�� �c�:� ) then the edge 	���
��}� must
be in � ( and hence the two nodes � and � must be in the
same connected component of � .

For every long edge �t��	���
�������� + , the algorithm
does the following in the second phase. Let � and � be in
(distinct) connected components � ( and � + of � respectively.
Let �%	��}�c�:� ( and let �>	�� �c�<� ( . Note that � ( and � ( must
be in � ( and � + respectively. If there do not exist both the
edges �U� ( ��	���
�� ( �&�g� and �U�+ ��	���
�� ( �&�g� then edge
� is moved from the set � + to the set � ( . Note that this
also results in the components � ( and � + getting merged into
one connected component in set � . We denote these new sets
with this transformation also as � + and � ( . We denote by



���������<� (1� � + the set of MST edges.
Let �_������	��]� denote the power for node � in the MST

(the maximum power on any edge incident on � in the MST).
The algorithm assigns an ordered pair of powers 	���($ 
��,+$ � to
each node � as follows. Let � $ be the set of nodes whose
buddy is node � . Thus � $ �t�~�^�]�%	��}�,����� . Consider the
case when either � has an edge �=�W	���
��]���J� ( incident on
it that belonged to the original set � + (got moved to the set
� ( by the algorithm), or the case when all the nodes in the
set �]$ � �/��� have either an edge ���5� ( incident on them
that belonged to the original set � + or have no edge from the
set � + incident on them. In both these cases the two powers
�3($ and ��+$ are both set to � �)��� 	�� � . Let � be the nodes
whose power is set this way. Now, consider a node �<��z� .
Let  �$ denote the set of nodes in �¡$ � �~�f� that are not in
� . We define a high power �_¢�	�� � for node � as follows.
��¢�	�� � is at least �_�)����	�� � . ��¢�	�� � is also at least ��	���� , where
edge ����	���
 i � such that for �
�a  $ and �¤£�¥� there is
an MST edge 	���
 i � . ��¢f	���� is chosen as the lowest power
to satisfy these constraints. Likewise we define a low power
�§¦�	���� for node � as follows. ��¦�	���� is at most ��	���� , where
edge �X�F	���
��>	�� ��� if �#�y  $ . �§¦�	�� � is also at most ��	���� ,
where edge ����	���
�� � for �J�X  $ 
��^£�5� . ��¦�	���� is chosen as
the highest power to satisfy these constraints. Depending on
whether node � is labelled � or 6 , the power �)($ or ��+$ is set
to � ¢ 	�� � and the power � +$ or � ($ is set to � ¦ 	�� � respectively.

Next, for the choice of � used above, the algorithm outputs
two networks � ( 	 � � and � + 	 � � as follows. � ( 	 � � is the
(directed) network obtained by setting the power of every node
� to �3($ . � + 	 � � is the (directed) network obtained by setting
the power of every node � to �3+$ . We can show (proof omitted)
that both these networks are strongly connected. Intuitively, in
� ( 	 � � , a node � with label � may only use its small power.
However then for node � there must exist a MST neighbor �
( � is in the set   for node � ) that node � can reach with its
small power and where node � with its high power is able to
reach all the MST neighbors of node � . Since � and � are MST
neighbors � has label 6 . Thus, � must use its high power in
� ( 	 � � . Therefore, � is able to reach its MST neighbors by a ;
hop path in � ( 	 � � . Thus, the MST connectivity is maintained
in � ( 	 � � , and also by the same reasoning in � + 	 � � .

Note that the algorithm only needs to try out at most d¨�
e �%e possible values for � to find the best pair of networks
� ( 	 � � and � + 	 � � . This is because two values of � would result
in the same pair of networks, � ( 	 � � and � + 	 � � , if they lead to
the same partition � ( and � + of the edges of the MST (based
on the weight threshold � � ����� ).

C. Analysis

Now we establish that the algorithm has a non-trivial
bounded worst case performance. We say that the network
is well “powered” if the maximum node power � Y�Z�[ is much
higher than the minimum power � Y�p q needed at each node
so that the resulting topology is connected. In particular we
assume that ��Y�Z�[ is at least ; ©wS�ª�(�«¬�§Y�p q , where D is the
path loss exponent. The implication of a network being well

powered is that for every long edge �E�­	���
�� �4�¨� + in
the first phase MST of the centralized algorithm the edges
	���
��>	�� ���m
/	���
��>	�� ��� are both in � . Hence no edge is moved
from the set � + to the set � ( .

Theorem 3.1: For a well powered network, compared to
an optimal two power solution, the solution output by the
algorithm is guaranteed to use no more than 6�-¯®±° times the
node power for D��y; and no more than 6�- ²�°O° times the node
power for D��:³ .

Proof: Since the network ` is well powered, all the edges
that eventually end up being in � ( are of the size � � ����� . It
can be shown (proof omitted) that in the optimal solution the
average node power �_´ M � must be at least ���)�����±; . Thus
��´ M �^!<�J�����_�O; . We consider the solution where both the
networks � ( 	 � � and � + 	 � � are used with frequency one half
each ( ? ( �<? + �g6��±; ).

By construction, the average power of a node � , for which
the algorithm sets both its powers to � �)��� 	�� � , is at most� � ����� , since all MST edges incident on node � must be
from the set � ( . It can be shown (proof omitted) that for any
other node � there are two possibilities in the solution output
by the algorithm. Either its average power is at most � �µ����� ,
or there are nodes � and i such that �&��	���
 i �>�5� and
�%	��}�1�<� and both the edges ��� �}�g	���
 i � and �U���
	���
��}� are
in the MST. In addition an edge ��ª from the set � + is incident
on node � in the MST. In this case the average power of node
� is at most 	���	T�U� @ ��	T� � �����O; . We now consider this case.

Note that since �%	��]�#�¶� then for any MST edge � �
incident on node � we have ��	T���w� @ ��	T� � ��7 i 	�� � ��7#������� .
Recall that i 	�� � � is the weight of edge � � in the MST. In
particular this applies to � � ��� � � and to � � �|� ª . So it
follows that ��	��U�·� @ ��	T�~� �·��7�������� . Also since �Uª��#� +
it follows that ��	T�U�w�¤7¸	�6&¹ � �����)��� . Let º�	���� denote
the length of edge � . Then by triangle inequality we have
º�	T�)�W	���
 i ����7Eº�	��U���»	���
��]��� @ º�	��U� �_�W	���
 i ��� . Since ��	T���
is proportional to º�	�����S , we have

��	�����7a	���	T� � �}¼Q @ ��	T� � � ��¼Q � S -
Thus, the average power of node � is at most

	���	��U�½� ¼Q @ ��	��U� �½� ¼Q ��S @ ��	��U�·�
; -

Since ��	��U�·�¾7
	�6�¹ � ��� �)��� and ��	��U�·� @ ��	��U� �·��7y� ����� ,
it follows (proof omitted) that the average power of node �
is maximized when ��	T���w�&�¿	�6=¹ � ��� ����� and ��	��U� �·���� �J����� for �\-¯Àg7 � 7¿6 . Thus in this case the average
power of node � is at most

�������
; 	�	 � ¼Q @ 	�6¾¹ � �f¼Q � S @ 	Á6Â¹ � ���R-

¿From the above it follows (proof omitted) that for Dz�g;
and ³ the best choices for � are �\- ÃOÃ and �\- ²OÃ�³ resulting in
solutions with approximation factors 6O-Ä®�° and 6O- ²O°�° respec-
tively.



IV. LOCALIZED CONSTRUCTION OF TWO POWER

SOLUTION

We now present a localized algorithm for construction
of the two power solution. We prove the algorithm yields
strongly connected topologies. We also prove the algorithm
is a 2-approximation of any optimal algorithm that uses only
localized communication.

The algorithm proceeds in two phases, creating a connected
topology (may be a general graph rather than a tree) based
on one set of node powers in each phase. In the first phase,
each node broadcasts a node discovery message with its loca-
tion information periodically. The nodes use their maximum
transmission power ( � hÂÅRÆ ) to transmit these messages. Since
we assume all nodes have the same maximum transmission
power, a node can transmit to all nodes it received a node
discovery message from recently. This way a node is able to
identify all its neighbors and their locations (set of neighbors
of node � is denoted by oj	��]� ). Based on the neighborhood
information (neighbor locations), each node � constructs a
visibility graph, `��t�Ç	T����
*�¾� � , ���»�È�~�§� � oj	��]� and
� � ���~����	�� ( 
�� + �/e � ( 
�� + �
� � 
��j�
��� . Note that node
� is able to compute the set � � since it knows the location
of each of its neighbors in � � . Thus, it can determine if
there is an edge (in � ) between any two of its neighbors.
Each node � calculates the power it needs to communicate
with its nearest neighbor, � h 2wr� �EA�uwv¡�U��	����.e �3�¤	���
����m
��&�
oj	��]�{� . Then, each node � broadcasts � h 2sr� . Each node �
then assigns weight i 	���� to each edge �,��	�� ( 
�� + �¾�x� � as
A�B±C}�~� h 2sr� ¼ 
*� h 2wr�UÉ � @ ��	���� . For a given set of edge weightsi 	������#�b� the algorithm considers edge � 2 �|	�� 2 
�� 2 � to
be heavier than edge �/k>�Ê	��fkO
��~k~� if either i 	T� 2 ��l i 	T�mk��
or � 2 l¥�fk and i 	T� 2 �&� i 	��.k~� or � 2 lÊ�~k and i 	T� 2 �x�i 	��.kU� , � 2 ���fk . The edge weights assigned to each edge
are the same in all visibility graphs it is a part of. The edge
weight is less than twice the minimum average power any
two power solution will use at the end-points of the edge, if it
picks the edge in the topology corresponding to either power
assignment. We state this in the following lemma:

Lemma 4.1: Any two power solution with topologies `=Ë( �	T�c
��3Ë( �R
�`�Ë+ �
	Ì�1
*�3Ë+ � uses maximum average node power of
at least A�B±C��U�\-¯À i 	T���_�y�\-¯À��~A�B�Cf�U� h 2sr� 
*� h 2sr$ � @ ��	������.e ���
	���
�� �����=Ë( � �=Ë+ � .

Proof: W.l.o.g. let the fractions ? ( 
{? + associated with
these two powers (topologies) satisfy ? ( !¥? + . Thus, since
? ( @ ? + �Í6 , we have ? ( !|6U�O; . Since `�Ë+ is connected,
the edge connecting � ( � ) to other nodes in `=Ë+ uses at least
power � h 2sr� ( � h 2sr$ ). Consider an edge �#�Í	���
������¤�=Ë( .
Note that the power of node � and � in `3Ë( is at least ��	���� ,
since ���5�=Ë( . Thus, the average power of � ( � ) is at least
? + � h 2wr� @ ? ( ��	T�U� ( ? + � h 2sr$ @ ? ( ��	���� ), which (since ? ( !56��±;
and since ��	�����!4A�B�C��U� h 2wr� 
�� h 2wr$ � ) is at least �f- Àf	�� h 2wr� @��	������ ( �f- Àf	�� h 2sr$ @ ��	T�U��� ). Thus, the two power solution uses
maximum average power of at least �\-¯À i 	T�U� , for all edges
�����3Ë( � �3Ë+ .

Next, the nodes follow the distributed MST based topology

construction algorithm (LMST) proposed in [7]. Each node
runs the Kruskal’s algorithm [2] on ` � �Ê	T� � 
*� � � to con-
struct an MST in its visibility graph. Kruskal’s algorithm adds
edges in increasing order of weight to merge disconnected
components of nodes, until all nodes are connected. Then, for
each edge 	���
���� selected by node � on its MST for ` � , it
informs node � that it has selected edge 	���
�� � in its MST. An
edge is formed between two nodes ��
�� in the final topology
if the edge 	���
�� � is present in the MSTs corresponding to
both `�� and `,$ . That is, if the edge 	���
���� is not present in
either one of the MSTs of `�� or `,$ , the edge 	���
�� � is not
formed in the topology. This is known as the `�Î topology
in [7]. The algorithm was proved to be min-max optimal in
terms of the edge powers among the class of local algorithms
(algorithms that do not use global communication) in [7].
That is, the maximum edge weight in the topology, with edge
weight as the power needed to form that edge, is minimum for
the topology constructed by this algorithm, among the class of
all algorithms that only use local information. It can be shown
that the algorithm is min-max optimal for our edge weight
function as well. This is so because in our algorithm, the edges
are added in an increasing order of weight in the MST of each
visibility graph, and an edge 	���
�� � present in MST of `=� is
not included in the final topology only if a path of smaller
weight exists in the MST of `�$ . Thus, the resultant topology
is min-max optimal among the class of localized algorithms.
It can be shown that our algorithm also yields a connected
global topology if the network `���	Ì�1
*�3� is connected. We
use this topology as the first topology (call it ` ( ). The first
topology provides a lower bound on an optimal localized two
power solution, as stated in the following lemma:

Lemma 4.2: Any two power solution using localized com-
munication uses maximum average node power of at least half
the maximum edge weight A�B�C�� i 	T���.e �3��` ( � .

Proof: ` ( is min-max optimal among all algorithms
that find a connected topology using localized communication.
Thus, the maximum edge weight according to the weight
function i 	���� among edges of any two power solution is at
least A�B�C}� i 	����.e ���<` ( � . Using Lemma 4.1, the maximum
average power used in the two power solution is lower
bounded by �f- À_A�B±Cf� i 	����.e ���j` ( � , thus proving the result.

Let the maximum power used in the first topology at node
� be denoted by �=(� . One possibility is to set the second node
power �,+� also to �3(� . This is equivalent to using the first
topology twice (call it LMST duplication algorithm). In this
case both the topologies will be connected, and the maximum
average node power for every node � will be the same as
the maximum node power �=(� in the first topology. Since
the power of an edge is less than its edge weight i 	T�U� , the
algorithm would be a 2-approximation of an optimal localized
two power assignment solution (using Lemma 4.2).

In the following we propose an alternative algorithm (not
just LMST duplication) for assigning the second power �3+�
(Phase II), so that the resulting two topologies are each
strongly connected. This algorithm performs much better than



the LMST duplication algorithm in practice and at least as
good as the LMST duplication algorithm in theory. Thus, our
overall algorithm is also a 2-approximation of an optimal
localized two power assignment algorithm but with better
performance in practice.

Let the maximum power used in the first topology at node
� be �3(� . In the proposed algorithm (Phase II), each node �
broadcasts �3(� , using power �_hÏÅmÆ . Using the received infor-
mation, each node � calculates the maximum power ( ��( �hÂÅRÆ )
among the nodes in `�� . That is, � ( �hÏÅmÆ �ÐA�B�C\$~Ñ�Ò/Óc� ($ .
Then, each node � broadcasts �)( �hÂÅRÆ using power ��hÂÅRÆ . On
receiving these powers each node � computes the maximum
of these received powers as ��+ �hÏÅmÆ �ÔA�B±C $~Ñ�Ò Ó9�3( �$ . Next
any pair of nodes � ( 
�� + with an edge � between them in �
calculate the maximum power ( �=(Õ ) used in the first topology
among all visibility graphs they are a part of. That is, �)(Õ �
A�B±C}�~�,+ � ¼hÏÅmÆ 
��,+ �UÉhÂÅRÆ � . Then, � ( and � + broadcast this maximum
power � (Õ for each such edge � , using power � hÂÅRÆ . Next, each
node � assigns the weight of each edge ���b	�� ( 
�� + � in � � asi �Ö	����1�:A�B±C��U�3(� ¼ 
*�3(�UÉ � @ ��	���� , representing the edges view
of the maximum average powers if this edge is included in
the second power topology.

For a given set of edge weights i �Ì	T���Ï����� the algorithm
considers edge � 2 ��	�� 2 
�� 2 � to be heavier than edge �/k��
	��fkO
��~k~� if either i �Ö	�� 2 �)l i �Ö	��.k~� or � 2 l
�fk and i �Ö	�� 2 ���i �Ö	��.k~� or � 2 l×�~k and i �Ö	T� 2 �J� i �Ö	T�mk~� , � 2 ���fk . Then,
each node � removes an edge � from its visibility graph ` �
if i �Ö	T�U�&lØ;O�3(Õ . The LMST algorithm is then executed on
these visibility graphs, and the ` Î topology is constructed.
This topology is used as the second topology (call it ` + ).
Then, each node � calculates its two powers �)(� and �,+� as
the maximum power among edges connected to it (the node � )
in the first and second topologies respectively. Each node then
sets the two fractions ? ( �b? + ��6U�O; . Algorithm 1 describes
the algorithm for constructing the two topologies. We also
explain the algorithm with the help of an example shown in
Figure 1. Figure 1(a) shows the input topology, with power
needed for each edge marked against it. We assume all nodes
can see the full graph in their visibility graphs. In Phase I, the
edge weights are calculated by adding to the edge power the
maximum over the two end-points of their minimum neighbor
distances (power to reach the neighbor). Figure 1(b) shows the
edge weights, and Figure 1(c) shows the locally constructed
topology (using LMST), which is used as the first topology.
Nodes A and B use a power of two, while nodes C and D use
a power of one. In Phase II, these powers are used to update
the edge weights (by adding maximum over the end-points to
the edge powers), and a topology is constructed using LMST
on these edge-weights. Figure 1(d) shows the edge weights,
and Figure 1(e) shows the second constructed topology. Thus,
the average power used over the two topologies is 6O-¯À for all
nodes. The LMST duplication algorithm (that duplicates the
first topology/node powers) would result in the maximum node
power average being ; (for nodes A and B).

We now prove that the algorithm yields strongly connected
topologies. Lemma 4.3 states the result:
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Fig. 1. Example execution of the localized algorithm

Lemma 4.3: The topologies of the two-power solution
` ( ��	Ì�1
*� ( � and ` + ��	Ì�1
*� + � are strongly connected if
the graph `¿�¿	Ì�1
*�3� is strongly connected on the set of
nodes � .

Proof: The first topology ` ( is computed using the
LMST algorithm, with edge weights i 	���� as defined before.
The topology has been proved to be strongly connected for
any set of unique edge weights [7], if ` is strongly connected.
Thus, ` ( is strongly connected if ` is strongly connected.

In Phase II, the edge weights are changed to i �Ö	���� , and they
are still unique. The input graph ` is modified by pruning
some edges locally. The pruning condition for each edge is
the same for all visibility graphs ` � containing the edge.
Therefore, an edge is either pruned from all visibility graphs
it is a part of, or is not pruned from any of them. Thus,
effectively, the edges are pruned from the global graph ` to
yield a graph `,�)�Í	Ì�1
*���½� . The pruning condition for an
edge � is that the edge weight i �Ö	���� should not exceed twice
the maximum node power in topology ` ( among nodes in
the visibility graphs `��j�×	T����
��¾��� such that ���y��� . For
every edge ���Ø	���
�� �)�^� ( , i �Ì	T���37Ù;_A�B�C��~�3(� 
*�3($ � since
��	�����7yA�B±C��U�3(� 
��3($ � , and thus it will not be pruned. Thus,
all the edges in � ( will be in ��� . Since ` ( ��	T�c
�� ( � is
connected if ` is connected and � (>Ú � � , ` � �¥	T�c
�� � � is
connected if ` is connected. The algorithm of Phase II finally
constructs a topology ( ` + ) using the LMST algorithm on `3�
with weights i �Ì	T��� . Since `�� is connected if ` is connected,
` + is connected as well if ` is connected

We now prove that the algorithm is a 2-approximation of an
optimal localized two power assignment algorithm. Lemma 4.4
states the result.

Lemma 4.4: The two power assignment solution con-



Algorithm 1 Localized construction of two power solution
1: Each node broadcasts its location information.
2: Each node � constructs a visibility graph `3�)�g	Ì�f��
*�¾� �

on its set of neighbors oj	��}� . Here, ���)�g�/��� � oj	��}� and
� � �g�~���g	�� ( 
�� + �.e � ( 
�� + ��� � 
��3����� .

3: Each node � broadcasts the required power to reach its
nearest neighbor, � h 2sr� .

4: Each node assigns weight i 	������
A�B�C��~� h 2wr� ¼ 
�� h 2wr� É � @��	���� to each edge ���
	�� ( 
�� ( ����` � .
5: Next, each node executes the LMST algorithm to compute

the first topology ` ( . Denote the power used at each node
� by �=(� .

6: Each node broadcasts �=(� .
7: Each node � calculates �=( �hÂÅRÆ �#A�B±C $~Ñ�Ò/Ó9�3($ , and broad-

casts it.
8: The end-points of every edge �3��� , � ( 
�� + , calculate �=(Õ

based on the maximum received power, and broadcast it.
9: Each node � constructs a new visibility graph ` �� �

	T� � 
����� � . Here, � � � �~�§� � oj	��}� , and �3�� �
�~���Ç	�� ( 
�� + �/e � ( 
�� + ��� � 
 i �Ì	T���EÛ¶;±�3(Õ � , i �Ö	����<�
A�B�C}�~�3(� ¼ 
��3(� ¼ � @ ��	���� .

10: Each node � executes the LMST algorithm, using visibil-
ity graph `,�� and weights i �Ì	T��� . The resulting topology
is assigned as the second topology ` + .

11: Each node � uses the first power �=(� as the transmission
power among edges adjacent to it in ` ( , and the second
power ��+� as the transmission power among edges adjacent
to it in ` + .

12: Each node sets ? ( �y? + �a6U�O; .

structed by our algorithm has the maximum average power
of any node less than twice the maximum average power in a
solution constructed by an optimal localized algorithm.

Proof: We prove this by proving that the maximum
average power at a node cannot be greater than the maximum
average for the LMST topology duplication algorithm. The
result follows by Lemma 4.2. Note that the edge weight i 	����
in Phase I is at least ��	���� . Thus the maximum node power
used in Phase I ( A�B�C\�c� (� ) is at most A�B±C�� i 	����.e �µ�E` ( � .
By Lemma 4.2 this is at most twice the maximum node
power used by any locally optimal solution. The edge pruning
condition in Phase II is to remove each edge � for which its
weight i �Ì	���� exceeds twice the maximum power used in the
first tree over all the nodes in all visibility graphs ` � that
contained � in Phase I. Since the maximum power used in
` ( is at least as much as the maximum over these visibility
graphs, there is no edge in the network that has a weight
more than twice the maximum power used in ` ( . Thus, the
maximum weight in the resulting topology cannot exceed the
objective value attained by duplicating the first topology. Thus,
the solution is a 2-approximation of an optimal two power
solution constructed using localized communication. Another
thing to note is that in the second phase, LMST is executed
with edge weights representing the sum of powers at each
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Fig. 2. An example reduction from 3-SAT.

node. Since LMST is min-max optimal in terms of the input
edge weights, the solution is much better than duplicating
the first LMST topology (that used different edge weights)
in practice.

V. HARDNESS RESULTS

Lemma 5.1: The two power assignment problem is NP-hard
and hard to approximate to a factor strictly better than ; when
we do not assume any property of radio propagation. Moreover
for this problem, unless P = NP, no polynomial time algorithm
can be strictly better (in the worst case metric) than an optimal
algorithm for the single power assignment problem.

Proof: We show a polynomial time reduction from ³ -SAT
which is known to be NP-complete [4]. The ³ -SAT problem
is to determine if a satisfying truth assignment exists for the
given ³ CNF formula. A ³ CNF formula is defined by variablesÜ ( 
 Ü + 
/-.-.- Ü r and clauses � ( 
{� + 
.-/-.-{� h each a disjunction
of exactly ³ literals over the set of variables. Given a ³ -SAT
instance, the reduction proceeds as follows.

For each variable Ü 2 we create two literal nodes � (2 and � +2
and an edge 	��f(2 
���+2 � . The former corresponds to the literal Ü 2
and represents Ü 2 being true in the satisfying assignment. The
latter corresponds to the literal Ü 2 and represents Ü 2 being false
in the satisfying assignment. Likewise for each clause � 2 we
create two clause nodes �§(2 and �}+2 and an edge 	��¡(2 
���+2 � . There
are three more nodes i ( 
 i + 
 iÂÝ with ³ edges connecting all
pairs of nodes 	 i 2 
 i kU� . All the edges � described so far are
low power edges with edge power ��	T�U���bÞ for some small
value Þ .

In addition to the low power edges described above there are
some high power edges � described below. Each high power
edge � has ��	�������ß for some ß much larger than Þ . The
node � (2 for each clause � 2 has ³ such edges incident on
it. The other end-points of these edges are the literal nodes
corresponding to the literals in the clause � 2 . The nodesi ( and i + each have one such edge to each of the literal
nodes. The node i Ý has such an edge to each of the clause
nodes �}+2 . This completes our description of the reduction.
Figure 2 shows an example reduction from the 3-SAT problem
	 Ü (�à Ü +cà Ü Ý �]á�	 Ü (1à Ü +�à Ü Ý � .

Let the ³ -SAT instance have a satisfying assignment. Let �
be the set of literal nodes for each variable in this satisfying



assignment such that � contains node � (2 if Ü 2 is true in the
satisfying assignment and contains node �\+2 otherwise. We
denote by � the set of other literal nodes. Consider the network
� ( formed by taking all the low power edges � (with power
��	����1�<Þ ) and the high power edges (with power ��	����c�#ß )
connecting the nodes in � with i ( and the high power edges
connecting the nodes in � with the nodes �§(2 for each clause
� 2 . Consider also the network � + formed by taking all the low
power edges � and the high power edges connecting the nodes
in � with i + and the high power edges connecting the nodeiÏÝ with the nodes �}+2 for each clause � 2 . It can be verified
that the edges incident on any node � are all low powered
( ��	T�U�1�<Þ ) in one of the networks � ( or � + . Thus the average
power needed at any node � is at most 	�ß @ ÞR���±; . In addition
it can be verified that both � ( and � + are strongly connected
since all the clauses are satisfied and the clause nodes ��(2 must
be connected to at least one node in the set � . Thus, there
is a feasible solution to the two power assignment problem
instance with average node power at most 	�ß @ ÞR���±; .

Now consider the case when there does not exist a satisfying
assignment. Let � ( and � + be a feasible solution to the two
power assignment problem instance. Thus, both � ( and � +
are strongly connected. We establish that there exists a node �
which is incident on high powered edges ( ��	����1�#ß ) in both
� ( and � + . Let no such node exists. Consider the network
where node i + has no high powered edges incident on it.
W.l.o.g. let this be network � ( . Note that in � ( there must be
a high powered edge from every clause node ��(2 to some literal
node. Let � be the set of literal nodes with an high powered
edge to some clause node �§(2 in � ( . Note that � must have
both the literal nodes � (k and � +k corresponding to some variableÜ k , because otherwise the literal nodes in � will correspond
to a satisfying assignment, which by our assumption does not
exist. But then �\(k and ��+k cannot be incident on any high
powered edges in � + and hence must be disconnected from
the rest of the network in � + . Thus in this case � + cannot be
strongly connected, a contradiction. Thus, we have established
that there exists a node � that is incident on high powered
edges ( ��	����9�5ß ) in both � ( and � + . The average power of
node � is therefore ß in the solution � ( and � + .

Thus, we have shown that if the ³ -SAT instance has a
satisfying assignment then the two power assignment problem
instance has a solution of power 	�ß @ ÞR���±; . Otherwise even
the best power solution to the two power assignment problem
instance has a solution of power ß . Since Þ can be made
arbitrarily small, this establishes that not only is the two power
assignment problem NP-hard but cannot be approximated to
a factor better than ; . Also there does not exist any algorithm
for the two power assignment problem that can have strictly
better performance than finding the one power solution using
the optimal minimum spanning tree construction algorithm.

VI. SIMULATION RESULTS AND DISCUSSION

We investigate the performance of the following algorithms:
the centralized MST duplication (CMSTD), centralized ap-
proximation algorithm of Section III (CAA), localized LMST

based topology duplication (LTD), and the localized algorithm
proposed in Section IV (LA). To characterize the performance
impact of various parameters, we vary the number of nodes,
maximum transmission power ( � hÏÅmÆ ), and the path loss factor.

To get a sense of how far our algorithms are from the
optimal, we normalize our results with a lower bound we
compute for each instance of the problem. The first lower
bound is the maximum nearest neighbor distance (power
required to reach the neighbor) over the nodes in the network.
At least this power will be needed in each tree to connect
the node which achieves this maximum. The second lower
bound is half the maximum edge length (power) in the MST
constructed using the Kruskal’s algorithm. We take the lower
bound to be the maximum of the two lower bounds. The first
lower bound dominates when there is an isolated node far from
all other nodes. Otherwise, the second lower bound dominates
usually. We normalize the objective value of each algorithm
by this lower bound.

A. Variation with Number of Nodes

For the first set of simulations, the network is a unit square.
The path loss factor D is fixed at 2, and the number of nodes
( o ) is varied from 40 to 200. The maximum transmission
power of each node is such that it can communicate with a
node half unit distance away. The transmission range is chosen
so that the global topology at maximum transmission power
is connected (which is difficult to guarantee when nodes are
placed randomly). The network area is divided in four grids,
and one fourth of the nodes are placed in each grid. The
location of the nodes are chosen uniformly randomly in the
grid they are placed in. We generate 20 sets of locations for
each value of o . For o + l4o ( , the set of locations 8 for o +
will have o ( nodes at the same locations they were at in set
8 generated for o ( .

Figure 3 shows the average performance of the algorithms,
relative to the lower bound on the optimal, over these 20 sets
of locations. Results show that the centralized approximation
algorithm (CAA) performs better than the MST duplication
algorithm (CMSTD), as expected from the theoretical analysis
of CAA (for Dâ�Í; , CAA is a 1.76-approximation while
CMSTD is a 2-approximation). The localized topology du-
plication algorithm (LTD) performs the worst among these,
as it follows the same algorithm as CMSTD, but with local
information at each node. The localized algorithm proposed in
Section IV (LA) has a significant improvement over LTD (we
proved that LA will always do at least as good as LTD). LA
also outperforms CAA, since we lose some performance in
CAA when each node connects to the MST neighbors of the
nodes which chose it as their buddy. This leads to a few nodes
having a higher average power in practice compared to LA.
Although, as we will show later, if the maximum transmission
range is small, then CAA outperforms LA by a significant
amount due to non-availability of critical global information
locally in LA. The performance of LA relative to the lower
bound on optimal global solution improves as the number of
nodes increases. This is because as the node density increases,
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Fig. 3. Variation with number of nodes in network of unit length, ã�ä�å .

more edges are available for replacing long edges chosen in
the first power topology. LA performs within 10-15% of the
lower bound for the global optimal, which is very impressive.
The worst case performance of LA is within twice the lower
bound on the centralized optimal, while it is within 2.7 times
the lower bound for other algorithms. Note that the optimal
performance is worse than the lower bound for each instance,
thus even though the algorithms are 2-approximations (CAA
is even better) of the optimal, they can have a performance
degradation worse than two with respect to the lower bound
on some instances.

B. Performance at Different Path Loss Factor

We now change the path loss factor D to four, and perform
the simulations on the same sets of node locations. The
maximum transmission power is increased so that each node
can reach a node half a unit distance away. This ensured
the connectivity of the network at maximum transmission
power for the node locations instances in our simulations.
Figure 4 shows the average performance of the algorithms
relative to the lower bound on the optimal. The algorithms
do not perform as well (compared to the lower bounds) as
for DG��; . The degradation is due to the squaring of the
cost function as D is increased from 2 to 4. In particular,
the centralized approximation algorithm (CAA) does not give
a significant performance gain over the centralized MST
duplication algorithm (CMSTD) for D<�bH . The degradation
of CAA’s performance relative to the lower bound as well
as CMSTD with D agrees with the analysis. The analysis
proved the approximation ratio to be 1.76 for D5�t; , 1.966
for D
�¨³ , and would yield a factor closer to 2 for D
�tH
(CMSTD has an approximation ratio of 2). The performance
of the algorithms with respect to each other is still the same,
with LA performing the best, staying within 35% of the lower
bound on the optimal.

C. Performance at High Maximum Transmission Range

We now double the maximum transmission range, for D��y;
(thus increase � hÏÅmÆ four times). This also leads to each node
having almost a global view of the topology. The rest of the
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range, ã�ä�å .

simulation set-up is the same as for the first set of simulations.
Figure 5 shows the average performance of the algorithms
relative to the lower bound on the optimal. Since the local
algorithms have a global view of the network, CMSTD and
LTD have the same performance. Due to the same reason, the
performance of LA also improves compared to the first set of
simulations. The performance of CMSTD and CAA remains
the same.

D. Variation with Maximum Transmission Range

We now fix the number of nodes, the path loss factor D ,
and vary the maximum transmission range from 0.3 to unit
distance in a unit length network of 40 randomly distributed
nodes. We simulate the node locations (divided into four grids)
20 times (if the network ` is disconnected in some instance,
we simulate another set of locations to replace that). Figure 6
shows the average performance of the algorithms relative to
the lower bounds. Results show that the centralized algorithms
outperform the localized algorithms by a significant amount
at low maximum transmission powers. This is expected as the
localized algorithms have less information about the network
topology locally at low maximum transmission range. As the
maximum range increases, the localized algorithm LA starts
performing better than the centralized algorithms, and the
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localized LMST duplication algorithm (LTD) performs the
same as centralized MST duplication (CMSTD) for maximum
transmission ranges above 0.7. The performance of the cen-
tralized algorithms relative to the lower bounds is constant
above a certain transmission range. This is because for each
instance, the minimum weight topologies do not need edges
larger than a certain weight, and thus increasing maximum
transmission range (power) above a threshold does not change
the solution. In fact, the performance becomes almost the same
for the localized algorithm LA as well, due to the same reason.

E. Result Summary

Our localized algorithm LA typically excels when the trans-
mission range is large in which case, it has more information
to make better decision. With very small transmission range,
the centralized algorithm CAA performs much better than LA.
CAA performs much better than CMSTD for low D , as the
analysis proved. However, as the analysis showed, the relative
performance degrades with increasing D . The LA algorithm
does surprisingly well when compared with the global lower
bound for large maximum transmission power, and signifi-
cantly outperforms the other localized algorithm, LTD, for all
values of maximum transmission powers considered.

VII. RELATED WORK

There is a vast literature on the use of power assignment
to improve energy efficiency in multi-hop wireless networks.
The most closely related to ours are topology control [9], [6],
[7], [5] and network lifetime optimization.

Topology control algorithms [5] typically make use of
localized algorithm and try to either minimize the sum of
powers over all nodes, or minimize the maximum transmission
power among all nodes. In the meantime, the algorithms try to
preserve certain nice properties such as spanner and connec-
tivity. In particular, the LMST [7] based approach tries to min-
max transmission power using localized distributed algorithm.
We extend the algorithm for multiple power assignment with
the objective of “power balancing” among nodes.

The work [3] tries to maximize the lifetime of multicast
sessions. This is achieved by a schedule of power assignments,

i.e. different power is used in different time slots. Our problem
is different from theirs in that, our power assignment is used
by all applications, not just multicast. Our power assignment
function sits between the routing layer and link layer. Thus,
we are oblivious of the application traffic. To appreciate the
difference, for a single power assignment, their problem is NP-
hard while ours can be solved optimally in polynomial time.
The work [1] seeks to maximize the network lifetime with a
set of power assignments where each power is used at different
time slots. They do not limit the number of powers used. In
this paper, we consider a more practical setting where nodes
alternate between two transmission powers.

VIII. CONCLUSION AND FUTURE WORK

Power balancing among nodes in energy-constraint multi-
hop wireless networks is crucial for longevity of the network.
A solution that sits between network layer and link layer
is oblivious to the application and can be used in a wider
context. We present such an approach where nodes at the
2.5 layer alternate different power assignments in an attempt
to minimize the energy expended dynamically. In particular,
for unicast applications, each forwarding node can send the
packet using a different transmission power independently
using the available path to the destination with that power. For
broadcast applications, the source will dictate which power
should be used by intermediate nodes to maintain network
connectivity. Our simulation results demonstrate the power of
multiple power assignments. For future work, we would like
to explore the system aspects of this problem and plan to
implement our solution in a real sensor network test-bed.
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