
Network Coding-Based Broadcast in Mobile Ad
hoc Networks

Li (Erran) Li Ramachandran Ramjee Milind Buddhikot Scott Miller
Bell Labs, Alcatel-Lucent

erranlli,ramjee,mbuddhikot,scm@bell-labs.com

Abstract— Broadcast operation, which disseminates informa-
tion network-wide, is very important in multi-hop wireless
networks. Due to the broadcast nature of wireless media, not
all nodes need to transmit in order for the message to reach
every node. Previous work on broadcast support can be classified
as probabilistic (each node rebroadcasts a packet with a given
probability) or deterministic approaches (nodes pre-select a few
neighbors for rebroadcasting). In this paper, we show how
network-coding can be applied to a deterministic broadcast
approaches, resulting in significant reductions in the number
of transmissions in the network. We propose two algorithms,
that rely only on local two-hop topology information and makes
extensive use of opportunistic listening to reduce the number
of transmissions: 1) a simple XOR-based coding algorithm that
provides up to 45% gains compared to a non-coding approach
and 2) a Reed-Solomon based coding algorithm that determines
the optimal coding gain achievable for a coding algorithm that
relies only on local information, with gains up to 61% in our
simulations. We also show that our coding-based deterministic
approach outperforms the coding-based probabilistic approach
presented in [1].

I. INTRODUCTION

Mobile ad hoc networks (MANETs) are an important tech-
nology for mission critical military communications. They
enable communication between a group of nodes to form a
network in absence of infrastructure components such as base
stations and power sources. The nodes themselves are often
portable radios in soldier’s backpacks, in combat vehicles,
etc where size, weight, energy efficiency, and the ability
to maintain reliable communication are key constraints. The
applications that use these networks often require continuous
”group communication”. For example, soldiers in a team
continuously exchanging voice messages, or a set of battlefield
tanks exchanging shared situation awareness information such
as their locations or their targets. Furthermore, even in the
case of unicast routing in mobile ad hoc networks, flooding or
broadcast is frequently used to discover unicast routes between
a source and a destination. Thus, efficient support for group
broadcast semantics, where data is sent to all or most of the
nodes, is critical for these networks.

To date, research on efficient broadcast support in mobile ad
hoc networks has proceeded along two main approaches: prob-
abilistic and deterministic. Probabilistic or gossiping-based
approaches [2] require each node to rebroadcast the packet
to its neighbors with a given forwarding probability. The key
challenge with these approaches is to tune the forwarding
probability: keeping it as low as possible for maximum

efficiency while maintaining it high enough, so that all the
nodes are able to receive the broadcast packets. Deterministic
approaches on the other hand predetermine and select the
neighboring nodes that forward the broadcast packet. If the
complete topology is used (feasible for static ad hoc networks),
a good approximation algorithm [3] for constructing a small
connected dominating set-based approach will yield very few
transmissions to reach all nodes; otherwise, pruning-based
solutions based on one or two hop topology information have
to be adopted [4], [5].

Separately, network coding [6], i.e. allowing intermediate
nodes to combine packets before forwarding, has been shown
to significantly improve transmission efficiency in wired net-
works. Recently, network coding has been adapted to support
unicast and multicast applications in wireless networks [7], [8],
[1], [9]. The closest related work to ours is [1], where network
coding is adapted to a probabilistic approach for supporting
broadcast in mobile ad hoc networks. However, this approach
has several drawbacks. As mentioned earlier, fine-tuning the
forwarding probability in probabilistic approaches is a hard
problem - in order to ensure that most nodes receive the
broadcast, one typically chooses a higher forwarding proba-
bility, that results in inefficiencies compared to a deterministic
approach. Also, the approach in [1] has to group packets
transmitted from various sources into globally unique sets
called generations - solving this in a distributed manner is a
hard problem and limits coding gains. Furthermore, the use of
a globally unique set of coded packets implies that decoding
delay can be large1.

In this paper, we show how network coding can provide
significant gains when applied to a deterministic broadcasting
approach. We apply coding to the partial dominant pruning
(PDP)-based deterministic approach presented in [5] for illus-
trating our algorithms but since our algorithm executes locally
at each node, it can be directly applied to other localized deter-
ministic approaches for broadcasting such as those proposed
in [4], [5] etc. The algorithm relies only on local two-hop
topology information and makes extensive use of opportunistic
listening to reduce the number of transmissions. We propose
two algorithms: 1) a simple XOR-based coding algorithm
that provides up to 45% gains compared to a non-coding
approach and 2) a Reed-Solomon based coding algorithm that

1Enough information must be received from the various sources before a
generation can be decoded at a node.

determines the optimal coding gain achievable for a coding
algorithm that relies only on local information, with coding
gains up to 60% in our simulations. In both these algorithms,
the set of packets that are grouped together to achieve coding
gains is local to each node and thus we avoid the generation
management and decoding delay issues of [1]. We also show
using simulations that the coding-based deterministic approach
outperforms the coding-based probabilistic approach presented
in [1].

The rest of the paper is structured as follows. In Section II,
we present related work. In Section III, we present some
background on PDP and our motivation for a coding-based
deterministic broadcasting approach. In Section IV, we present
an overview of our approach and in Section V, we present the
details of our localized coding algorithms. In Section VI, we
present a detailed evaluation of our algorithm using simulation.
In Section VII, we discuss other issues. Finally, we present our
conclusions with a discussion of future work.

II. RELATED WORK

The problem of broadcast support in mobile ad hoc net-
works has been extensively studied [10], [4], [5], [2]. The
high overhead of using naive flooding to support broadcast
was highlighted in [10]. Since then, researchers have adopted
either deterministic [4], [5] or probabilistic [2] approaches to
support broadcast efficiently.

Under deterministic approaches, if complete topology in-
formation is known, a connected dominating set-based ap-
proach [3] will yield optimal results. However, for mobile
ad hoc networks, the availability of complete topology in-
formation, that remains current for reasonable durations, is
unrealistic. Thus, algorithms that rely only on local topology
information were developed [4], [5]. In [4], authors propose
two algorithms called self pruning and dominant pruning,
that rely on 1-hop and 2-hop neighborhood information resp.,
to reduce redundant broadcasts as compared to a flooding-
based approach. In [5], the authors propose total dominant
pruning and partial dominant pruning (PDP), that rely on 3-
hop and 2-hop neighborhood information resp., to improve
on the proposals by [4]. We describe the PDP algorithm in
Section III, which we use to highlight our coding algorithms
in this paper.

Recently, there has been a lot of interest in the use of
network coding to improve transmission efficiency in net-
works [6], [8], [7], [1], [9]. The seminal work in [6] showed
networks that allow intermediate nodes to combine informa-
tion before forwarding results in significant throughput gains
over networks with intermediate nodes that only forward
information. Support for multicast and broadcast in wireless
networks with network coding can also be tackled either using
deterministic or probabilistic approaches. Under probabilistic
approaches, authors in [1] show that practical coding-based
probabilistic schemes significantly outperform non-coding-
based probabilistic schemes. Under deterministic approaches,
authors in [7], [8] study theoretical solutions based on solving
linear programs that assume knowledge of the entire network

v

u

t s

r
p1

p5

p2 p4p3

p5p4p3p2p1v

10001u

00101t

01010s

10101r

Fig: 1 (a)

Fig: 1 (b)

Fig. 1. Example to illustrate coding gains

topology and show significant gains in terms of efficiency
and computational overhead over approaches that do not
use network coding. Practical and deterministic coding-based
schemes for support of unicast traffic in wireless networks
have been studied in [9]. In this paper we consider practical
and deterministic coding-based schemes that use only local
topology information for efficient support of broadcast and
show that our approach performs better than both probabilistic
coding-based schemes and practical and deterministic non-
coding-based schemes.

III. BACKGROUND AND MOTIVATION

In this section, we first describe the partial dominant pruning
(PDP) algorithm presented in [5]. We then motivate, through
an example, the gains that can be achieved by adding our
coding algorithms, to a deterministic broadcast approach such
as PDP.

We now describe the PDP algorithm. Let
�������

represent
the set of neighbors of node

�
, including

�
and let

�������������
represent the two-hop neighborhood of node

�
. Let

�
send a

broadcast packet to 	 , choosing 	 as its forward node; 	 then
selects a forward list, which contains the minimum number
of broadcast nodes that would re-broadcast packets to cover
all nodes in its 2-hop neighborhood,

������� 	 ��� . Among nodes
in
���
��� 	 ��� , nodes in

������
have already received the packet

while nodes in
��� 	 � will receive the packet when 	 broadcasts

it. Further, neighbors of nodes common to nodes in
�������

and��� 	 � , i.e.
���������������� 	 ��� will also receive it. Thus, 	 just

needs to determine its forward node set � ����� 	 � from nodes
in � ����� 	 ������� 	 ���������� to cover nodes in � ����� 	 ������
��� 	 ������������������� 	 �������
�������� ���"!#��� . A greedy set
cover algorithm is used for the selection of these forwarding
nodes - basically, at each step, the node in set � that covers
the maximum number of nodes in � is added to the forward
list, until either all nodes in � are covered or no more nodes
can be added to the forward list.

2

Let us consider a 5 node network shown in Figure 1(a).
There are four source nodes, $ with packet %�& , ' with packets%)(� %+* , , with packet %�- , and

�
with packet %�. . When each of

these nodes execute the PDP algorithm, they would determine
that node 	 is the forwarding node that would cover each of
their respective two-hop neighborhood. Thus, node 	 would be
chosen as the forwarder for packets % & to % . in this example.
As each of the source nodes transmit packets % & to % . , node	 builds its neighbor reception table as shown in Figure 1(b).
Each row represents one neighbor node of 	 and each column
represents whether the neighbor node received the respective
packet or not (denoted by 1 or 0, respectively). Note that, node	 is aware of its 2-hop neighborhood information and thus,
when node $ transmits packet %/& , it can deduce that nodes ,
and

�
, which are neighbors of $ also receive the packet.

Given this neighbor reception table, in the basic PDP
algorithm, node 	 has to broadcast each of the packets %�&
through %). , as at least one of its neighbors is missing this
packet. This results in a total of 0 transmissions for forwarding.
Now consider a simple XOR-based coding approach. Suppose
node 	 broadcasts % � % &21 % (. Nodes $ � , ��� recover % (by
simply doing % 1 % & ; node ' recovers % & by simply doing% 1 % (. Thus, in one transmission, both % & and % (are delivered
to the neighbors of node 	 . However, packets % - � % * � % . need
to be transmitted individually as XOR does not help in this
case. Thus, a total of 3 transmissions are sufficient when a
XOR-based coding algorithm is used. As we discuss later, the
problem of computing the set of packets 4 to XOR such that
the maximum number of neighbors in

� & ���� will decode a
missing packet in one transmission while the rest has gotten
all packets in 4 is NP-hard. We use a greedy heuristic for our
XOR-based coding algorithm.

Lets now consider packets %& through %�. again, but in a
more general context. Nodes $ � ' � , ��� each are missing at most5

packets. We need to send an appropriately coded combina-
tion of packets % & through % . such that each of these nodes
recover their respective missing packets. In order to come
up with such a coded combination, consider forward error
correction (FEC) codes, specifically Reed-Solomon codes used
between a sender and a receiver, that guarantees the property
that by sending 6�798 bits, the receiver can recover from
erasures in any 8 bits. Now, in our example, if node 	 sends

5
packets using Reed-Solomon codes as a broadcast, each of the
nodes $ � ' � , ��� can independently recover up to any

5
missing

packets out of the 0 packets. Note that, unlike the XOR-
based approach, this requires some batching. However, batches
are local to a node and its neighbors, unlike the generations
in [1] that are global in scope. As we show in detail later,
a Reed-Solomon code-based algorithm can be used to create
the coded packets for broadcasting, resulting in the optimal
(fewest) number of transmissions. Thus, in this example, we
can reduce the number of transmissions for the forwarding
node 	 , from five to three broadcasts, thereby increasing the
broadcast efficiency of the network.

IV. CODEB OVERVIEW

We introduce CODEB, a new coding-based broadcast pro-
tocol for ad-hoc networks. Similar to COPE [9], it inserts a
coding layer between the IP and MAC layer which detects
coding opportunities and exploits them to reduce the number
of transmissions needed.

CODEB incorporates three main techniques:: Opportunistic listening: Similar to COPE, nodes in
CODEB operate in promiscuous mode equipped with
omni-directional antennae. Nodes snoop all communica-
tions over the wireless medium and store the overheard
packets for a limited period ; . Nodes also periodically
broadcasts the set of nodes it can hear (i.e., its one-hop
neighbors) to all its one-hop neighbors. This allows each
node to build a two-hop neighbor graph; given this and
the previous hop

�
of a packet % , node 	 can infer2 that

the neighbors of
�

has received % . If % is a coded packet,
other inferences are possible as discussed later. Based
on this, each node creates a neighbor reception table as
shown in Figure 1(b). If a new packet can not find any
coding opportunities, the packet can either be sent to the
interface queue directly, or be buffered in the coding layer
for some time. For delay tolerant applications, buffering
can increase coding opportunities. Note that, we do not
broadcast “reception report”— the set of packets a node
has received.: Forwarder selection and pruning: Unlike a gossiping
based approach [1] where all nodes serve as forwarders
with a given probability, we pick a subset of neighbors
as forwarders. We use the PDP algorithm [5] to select
forwarders and maintain forwarder selection independent
of coding, thereby allowing our scheme to be used
with other forwarder selection algorithms. The forwarder
set is stamped in the packet header and a node only
rebroadcasts a packet when it is chosen as a forwarder.
Note that, due to opportunistic listening, even if a node
is a forwarder of a given packet, it does not necessarily
have to send it if it determines that all its neighbors have
received the given packet.: Opportunistic coding: By opportunistic coding, we
mean that each node examines its set of to-be-forwarded
packets and its current neighbor table obtained through
opportunistic listening, and dynamically determines if it
can exploit coding opportunities to send coded packet(s),
instead of sending native (non-encoded) packet(s). As
discussed before, we present two algorithms for coding
packets: 1) a simple XOR-based algorithm that tries to
XOR a number of packets in the buffer to enable the
maximum number of nodes to decode a new packet and
2) an optimal coding scheme that makes use of Reed-
Solomon code as the coefficients for linearly combining
native packets. Note that, opportunistic coding for broad-
cast is very different from coding for unicast, such as

2assuming broadcast is reliable; else, a NACK-based scheme can be used
for reliability.

3

COPE [9]. In unicast, only the intended next hop needs
to receive a given packet. However, for broadcast, all the
neighbors must receive the given packet. To appreciate
the difference between COPE and CODEB, for the XOR-
based algorithm, to find the optimal number of packets
to XOR, both problems are NP-hard. However, in the
case of COPE, it is the same as finding a maximum
independent set, and the problem is hard to approximate
within a constant factor factor (reduction omitted for
lack of space). In the case of CODEB, it is actually
the same as finding a maximum hypergraph matching
which is also hard to approximate within a constant factor
(see Section V). For the linear code-based solution, there
exists optimal and efficient polynomial algorithms for
CODEB. The same algorithm is not optimal for COPE.

V. ALGORITHMS

We briefly describe the algorithm used in our CODEB
broadcast protocol. The pseudo-code is shown in Figure 2.
We assume nodes exchange their neighbor information so
that each node knows the network topology within its 2-
hop neighborhood. When any packet is received, the node
first updates its neighbor table (line 1, described further in
Section V-C). In PDP, for each native packet, only a subset
of neighbors are delegated as forwarders; other nodes do not
re-broadcast (line 2). If node

�
is a forwarder, but based on

its neighbor table it determines that all its neighbors have
already received the packet, it does not re-broadcast (line
3). Otherwise, node

�
tries to see if it can get any coding

opportunities by encoding the packet with a set of already
received packets that it needs to forward. (line 5). If yes,
we will generate one or more encoded packets and schedule
the transmission (line7). If not, for delay tolerant applications,
the node will buffer the packet for a random amount of time
(line 10) and process it later. This can create more coding
opportunities. For non-delay tolerant applications, we send the
packet immediately (line 11). Finally, if the received packet
is a coded packet, we decode it before processing the packet
(line 15,16). Packet decoding is covered in Section V-B.

A. Packet encoding algorithm

The function getCodeSet() implements the packet coding
algorithm. In this section, we present two encoding algorithms:
a greedy XOR-based algorithm and the optimal Reed-Solomon
code-based algorithm.

1) XOR-based algorithm: For the XOR-based algorithm,
we design for simplicity. If the neighbor reception table of a
node

�
is accurate and

�
sends an XOR-ed packet % , a neighbor	 of

�
should be able to decode % using stored native packets.

That is, a XOR-ed packet can be decoded by each of
�

’s
neighbor without waiting for further coded packets to arrive.
In more detail, each node

�
with a set of native packets <

in its output queue seeks to find a subset of native packets4 to XOR. Let the set of neighbors of
�

, each of which can
decode a missing packet be

� & ����� (determined by 4 and the
neighbor reception tables). The rest is denoted as

� (����� . Our

Process(p) – On receiving a new packet %
or on time-out of a buffered packet %

1. �2%�=?>@,BA ��C $EDFAHGI	@;J> CIK A � % � ;
2. if

�MLN �FOJ=@AP$ � % � return;
3. if > K�K
��C $EDFAHGI	 � % � return;
4. if

� >@,RQS	TA � % � , then
5. � �VU AP,�WFXE=@AEYZAP, �
� ;
6. if ([��[T\^]) then
7. 'PA_6/=TWFXE=@AP=@<`8T,�' � � � ;
8. else
9. if(a ;bQScdAHX � , � % �) then
10. 4 � A � A � % ��e+� ;
11. else 'PAP6/= � >?,RQS	TA � % � ;
12. endif
13. endif
14. else
15. foreach f � =@AHGgXE=@A � % �
16. <F$EXEGgAE'P' � f �
17. endfor
18. endif

Fig. 2. Packet processing procedure of node h
goal is to maximize the cardinality of

� & ���� . We first show
that the optimal XOR-based algorithm is NP-hard.

Theorem 1: Given a neighbor set
������

of
�

, and a set of
packets < of

�
in the output queue (i.e. interface queue). For

each 	 � 	 N ������� , let <�i be the subset of packets
�

knows
that 	 has received through opportunistic listening. It is NP-
hard to find a set of packets 4 such that [� & ����� [is maximized
where for each neighbor 	 N � & ���� , [4 � <�ij[�] , and for
each 	 LN � & ���� , [4 � <�ik[�ml .

Proof: The proof is via a reduction of this problem from
3-dimensional matching. The 3D matching problem is stated
as follows.

Definition 1: Given an instance of the following problem:
Disjoint sets � �onEC & �qpqp_pg�rCgs�t , W �un G & �_pqpqp_� G s�t , v �n = & �_pqp_pg� = s�t , and a family � �wn ; & �qp_pqp_� ;x t of triples with[;�y � �z[� [;y � W{[� [;y � v�[for Q �] �qpqp_pg� c . The question
is: does � contain a matching, i.e. a subfamily �#| for which[� [� 6 and }�~H�R���/��; y � �^}dW�}�v ?

For each element A N ��} W�}{v , we create a neighbor for�
. For each triple

� > �rCH� G � , we create a packet. We assume only
neighbor > ��CH� G has not received this packet. It is easy to see
that a 3D matching of size 6 exists if and only if there exists
a corresponding 4 such that

� & ������������� (each neighbor
will be able to decode a missing packet).

Since the problem is NP-hard and also hard to approximate
within a constant factor (by noting that it is equivalent to
maximum hypergraph matching), we design a practical greedy
algorithm. The XOR-based greedy algorithm is illustrated in
Figure 3. The algorithm takes the packet % at the head of
the queue (line 1) and sequentially looks for other packets
in the queue (line 2) that when combined with % will allow
all neighbors of node

�
to decode the packet (line 4-6). If

successful, these packets are added to set B (line 8). Note that

4

getCodeSet()
Pick packet % at the head of the output queue
1. � � %
2. foreach remaining packet f in the queue
3. foreach neighbor 	
4. if (Gg>@66/XH,B=@APGqXE=?A � % 1 f ��� then
5. goto line 10;
6. endif
7. endfor
8. � � ��}�f
9. % � % 1 f
10. continue
11. endfor
12. return B

Fig. 3. Coding procedure of node h using XOR

the Gg>@66/XH,B=?AHGgXE=@A procedure uses the neighbor table obtained
through opportunistic listening to ensure that all neighbors
have already received at least [�z[-1 of the packets in set� , in order to decode the coded packet.

2) Reed-Solomon code based optimal algorithm: Recall
that, in Section III, we argued that the problem of finding the
fewest number of coded transmissions to enable all neigh-
bors to receive a batch of 6 packets can be solved using
Reed-Solomon codes. We now formally show that the Reed-
Solomon code (RScode) based algorithm is optimal for our
problem. For ease of description, a packet % also denotes the
vector where each element in index Q is the corresponding byte
in % . An ordered set of packets < also denotes the matrix
where row Q corresponds to the Q -th packet in < .

Theorem 2: Let < be the ordered set of 6 native packets in�
’s output queue. Let <�i be the set of packets 	 has received,

for each 	 N ������ . Let 8 �V�{�E��n [< � <�ij[� 	 N �������It . Let� � ����]q� ��� �q�_��6�] & � & �q�_��6 &�q�q���_�q���q�_���q�_�]H� �?� �q�_��6��
�q���

be the 8���6 Vandermonde matrix (represents the Reed-
Solomon code) where] � � � �q�q� � 6 are labels of elements in the
finite field � (r� (= �^ in our case for one byte). The minimal
number of encoded packets that needs to be sent such that
each neighbor 	 can decode the packets in < � < i is 8 and
the set of 8 packets are given by 4 � � �d< .

Proof: Let ¡ i such that < i � ¡ i < . The proof is by
noting that ¢ <�i4�£ � ¢ ¡2i� £ <
and

¢ ¡2i� £ has full rank 6 .

The pseudo-code of this algorithm is shown in Figure 4. The
algorithm constructs coded packet set 4 � � < (line 1-3). It
then adds the set of native packet IDs to each coded packet

getCodeSet()
1. Pick native packet set < in the output queue
2. 8 � c�>@¤�¥�QB'H'_QS6 U <¦>TGq8kAP,�' ��������I� < �
3. Construct encoded packet set 4 � � <
4. Add packet ID of each packet % N < to fHy
5. Add the row index Q of

�
to fPy

6. return 4
Fig. 4. Coding procedure of node h using Reed-Solomon (RS) code

(line 4). In practice, this set of IDs can be spread across the 8
packets. It then adds the index number of codes used (line 5).
We do not have to add the row of coefficients to the packet
since our coding scheme is deterministic. In contrast, random
linear combination based schemes such as [1] have to carry all
the coefficients in the packet, resulting in significant overhead.
Note that the RScode-based algorithm is very fault tolerant,
as long as each node has received at least 6 � 8 distinct native
packets (it does not matter which set), the node can decode the
rest of the missing packets. To combat the unreliable nature of
wireless links, one can proactively send more than 8 encoded
packets or implement a NACK based scheme.

B. Packet decoding

Similar to COPE, each node maintains a Packet Pool, in
which it keeps a copy of each native packet it has received
or sent out. The packets are stored in a hash table keyed
on packet ID, and the table is garbage collected every few
seconds. When a coded packet is received, the node decodes
and then processes the packet (lines 15-16 in Figure 2).

In the case of the XOR-based algorithm, when a node 	
receives an encoded packet consisting of 6 native packets, the
nodes goes through the IDs of the native packets one by one,
and retrieves the corresponding packet from its packet pool if
possible. In the end, it XORs the n-1 packets with the received
encoded packet to retrieve the missing packet f . Node 	 can
now process packet f .

In the case of RScode-based algorithm, when a node 	
receives an encoded packet consisting of 6 native packets (set<), 	 first goes over all native packets received in packet pool.
It collects < i , the subset of packets in < that it has already
received. It then constructs ¡ i and adds the new coefficient
vector to matrix ¡ i . For each decoded native packet f , node	 can now process f .
C. Pruning

For each packet % received, the procedure�2%�=?>@,BA ��C $EDFAHGI	?;§> CgK A � % � in Figure 2 updates the reception
status of each neighbor of node

�
in the neighbor table

based on the 2-hop neighbor set
�������������

. Based on the
neighbor table, if a node designated as a forwarded for packet% determines that all its neighbors have already received % ,
it can prune that transmission. When receiving a native or
coded packet, we simply update the neighbors of the sender
of packet % as having received the native packet or all the

5

packets in the coded packet. We refer this as update rule 1.
Note that, for Reed-Solomon encoded packet % , this update
rule prevents a node from purging already scheduled coded
packets based on newly snooped packets (may need fewer
than 8 coded packet). The reason is that, for a neighbor O
of both

�
and 	 , both nodes

�
and 	 may assume (based

on snooped packet from each other) that the other node
will send the encoded packets in order for O to decode the
missing packets, resulting in O not receiving any packets.
Therefore, if one wants to prune scheduled coded packets,
one has to use the following priority rule (update rule 2):
node 	 can assume O N �������F�m��� 	 � has received all
underlying 6 native packets (packet IDs are in the header) if
and only if ¨@v � 	 � \^¨@v ���� . This is not needed if all coded
packets are transmitted instead of opportunistically purged
(see Section VII).

D. Analysis

We show that our CODEB algorithm enables all nodes to
eventually receive the set of packets injected into the network
as long as the network is connected and packet transmission
is reliable.

Theorem 3: Given a set of packets < injected into a con-
nected network © �ª�"!«�r¬#�

, CODEB enables all nodes to
receive < eventually with the assumption that broadcast is
reliable.

Proof: We only give the proof for update rule 2. The
proof for update rule 1 can be proven similarly. It suffices
to show that each node will eventually receive each packet% N < . Suppose in the end, not all nodes receive % . Let

! &
be the set of nodes that has received % . Let

!�
be the set of

“boundary” nodes such that at least one neighbor 	 of
� N !

is in
! & . There are two cases: (1) 	 is a forwarder of % selected

by previous hop; (2) 	 is not a forwarder.
For the first case, 	 will not send % in native or in coded

packets if and only if 	 infers that
�

has received it. 	 must
have snooped native % or coded packets f including % from a
node O which

�
is a neighbor of O . If there are multiple suchO , we pick O with the smallest ID. If the snooped packet is a

native packet or XOR-coded packet, then
�

must have received
it. If the snooped packet f is a Reed-Solomon coded packet,
then ¨@v ���� \®¨?v � O � . So O will either complete sending
the batch of packets that enable

�
to decode % or stop half

way because another neighbor , (also a neighbor of
�

) with
a smaller ID will take the responsibility for % or any other
packet in the same batch. However, this chain will end at the
the node with the smallest ID. Otherwise, there will be a cycle
where each node has a smaller ID than the previous node in
the cycle, which is a contradiction.

For the second case, let , be the previous hop of 	 which	 has gotten the packet % from in either native/XOR-coded
packet or through Reed-Solomon decoding. There are two
cases. Case A: , must have decided that some other node 	j|
is a forwarder of % and 	k| is a neighbor of

�
, i.e. , must

select a subset of nodes that “cover” all nodes within its 2-
hop neighborhood. This goes back to case (1). Case B: , has

decided that another node , | will cover
�

, according to PDP
algorithm. This goes back to Case A. According to PDP [5],
there is no loop where each node assumes the previous one in
the loop covers

�
.

VI. EVALUATION

We implemented our CODEB algorithm in the NS2 sim-
ulator. For the experiments, we use IEEE 802.11 as the
MAC layer protocol. The radio model assumes a nominal
bit rate of 2Mb/sec and a nominal range of 250 meters. The
radio propagation model is the two-ray ground model. Our
application traffic is CBR (constant bit rate). The broadcast
sources are chosen randomly. The application packets are all
256 bytes. We have a total of 30 broadcast sessions. We vary
the sending rate of each session to simulate varying load
conditions. We use two sending rates: 2 packets/sec and 4
packets/sec. The first is referred to as low load and the second
as high load. In the simulations, 60 to 100 nodes are randomly
placed in a square grid with a fixed density. For each area of¯±° �?0 l (, on average there are either 15 or 30 nodes to simulate
sparse and dense topologies respectively. Each data point is
averaged over 5 random topologies.

We use the PDP algorithm [5] with the mark/unmark
termination criterion. That is, based on the set of snooped
packet, a node cancels a broadcast event if all of its neighbors
have been marked (i.e. received the packet). If a node’s 2-hop
neighbor is marked due to the reception of a snooped packet,
the node does not need to choose a forwarder to cover that
neighbor. For the RScode based algorithm, we choose a batch
size of 8. The per-packet overhead of CODEB with respect to
PDP is small. It needs to include 6 (=8) packet IDs and the
row index of the encoding matrix in 8 coded packets.

We use two metrics to compare CODEB with PDP. The first
is the coding gain. The coding gain is defined to be the ratio of
the number of transmission required by a specific non-coding
approach (PDP in this paper), to the number of transmissions
used by CODEB to deliver the same set of packets to all
nodes. The second metric is the packet delivery ratio which
is defined for broadcast as the ratio of the number of data
packets successfully delivered to the number of data packets
generated by the CBR sources multiplied by the total number
of nodes.

A. Static Networks

First consider the performance of the algorithms in dense
networks, as shown in Figure 5. As expected, the optimal
RScode algorithm outperforms the simple XOR algorithm. For
example, in the 100-node topology using low load, XOR can
send 15% more packets than RScode. The packet delivery ratio
of RScode is also slightly higher than XOR. The coding gain
for the RScode algorithm can be as high as 1.61, which means
that PDP sends 61% more packets than RScode algorithm.
This gain occurs even as RScode delivers 6% more packets
on average to each of the nodes compared to PDP. Compared
to the low load case, the coding gain for the high load case
is lower but the difference in packet delivery ratio between

6

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

60 70 80 90 100

C
od

in
g

G
ai

n

Number of Nodes

CODEB:RScode
CODEB:XOR

75

80

85

90

95

100

60 70 80 90 100

 P
ac

ke
t D

el
iv

er
y

R
at

io
(%

)

Number of Nodes

CODEB: RScode
CODEB: XOR

PDP

(a) Coding gain for low load (b) Packet delivery ratio for low load

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

60 70 80 90 100

C
od

in
g

G
ai

n

Number of Nodes

CODEB:RScode
CODEB:XOR

75

80

85

90

95

100

60 70 80 90 100

 P
ac

ke
t D

el
iv

er
y

R
at

io
(%

)

Number of Nodes

CODEB: RScode
CODEB: XOR

PDP

(c) Coding gain for high load (d) Packet delivery ratio for high load

Fig. 5. Performance comparison of CODEB and PDP on dense topology: low load and high load

RScode and PDP widens to more than 10%. This is because
losses predominate in the high load case, reducing the impact
of coding opportunities. Overall, the coding gain is significant
and ranges from 1.32 to 1.61.

Now consider the performance of the algorithms in sparse
networks, as shown in Figure 6. The coding gain for the sparse
topology is generally less than that for the dense topology. This
is because of limited opportunities for overhearing transmis-
sions and fewer neighbors to exploit coding opportunities. The
coding gain ranges from 1.22 to 1.45. The increase in packet
delivery ratio is upto 8%.

B. Mobility

Let us now consider the performance of the algorithms with
mobile nodes, as shown in Figure 7. In this experiment, we
have 80 nodes, a dense topology and low load. We use the
random waypoint mobility model with zero pause time. The
max speed is varied to 5 m/sec and 10 m/sec respectively. We
see that there is a drop of about 24% in coding gain (from 50%
to 38% for RScode algorithm) as node mobility increases from
0 to 10m/s. This is due to the fact that the neighbor reception
table gets less accurate in the presence of mobility. While
a node, based on this table, might infer all its neighbors can
decode its coded transmissions, due to mobility or losses, those
nodes may be unable to do so. Codes that allow progressive
decoding capabilities may alleviate this to some extent (see
Section VII for discussion). Another reason for lowered gains
is because mobility itself is beneficial to all schemes including
PDP, i.e., fewer packets are needed to cover all the nodes. For
example, for a speed of 10 m/sec, PDP sends only 60% of what
it sends for the static case (not shown in figure). Of course,

mobility also results in lowered packet delivery ratio for all
the schemes. A simple NACK-based protocol, where a node
broadcasts a NACK identifying missing packets and one of
its neighbors that has this packet, responds by rebroadcasting
the packet, should help improve packet delivery ratio without
sacrificing efficiency.

C. Comparison with probabilistic coding

Finally, we would like to compare our CODEB algorithm
with a coding scheme applied to a gossiping-based protocol.
In this section, we compare CODEB to the coding-based
broadcast approach which uses gossiping as proposed in [1].
We will refer to their scheme as CODE+GOSSIP. Since their
protocol uses an ideal MAC layer, we run CODEB with the
same MAC layer for ease of comparison. We use the 80-
node network with mobility to compare the two approaches.
Again, each data point is averaged over 5 random topolo-
gies. We set the forwarding factor of CODE+GOSSIP to
(8+²Hc�QS6 iI�³��´§µ¶iI·B¸ ´§µ¶iI�¹·�¸), where 8 � 5

as suggested in [1]
for close to 100% delivery ratio. We also show results when8 � � .

As we can see from Figure 8, our CODEB approach sends
significantly fewer packets. In general, CODE+GOSSIP results
in far more transmissions as compared to CODEB - 40% to
120% more for no mobility to 120% to 230% for a node speed
of 10m/s, using 8 � � and

5
respectively. This also highlights

some of the difficulties of using a probabilistic approach, i.e.,
it is hard to tune the forwarding factor accurately. Lowering8 from 3 to 2 can reduce the number of transmissions
but also result in unpredictable lowering in packet delivery
ratio (94% for static network with ideal MAC). Thus, while

7

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

60 70 80 90 100

C
od

in
g

G
ai

n

Number of Nodes

CODEB:RScode
CODEB:XOR

75

80

85

90

95

100

60 70 80 90 100

 P
ac

ke
t D

el
iv

er
y

R
at

io
(%

)

Number of Nodes

CODEB: RScode
CODEB: XOR

PDP

(a) Coding gain for low load (b) Packet delivery ratio for low load

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

1.65

1.7

60 70 80 90 100

C
od

in
g

G
ai

n

Number of Nodes

CODEB:RScode
CODEB:XOR

75

80

85

90

95

100

60 70 80 90 100

 P
ac

ke
t D

el
iv

er
y

R
at

io
(%

)

Number of Nodes

CODEB: RScode
CODEB: XOR

PDP

(c) Coding gain for high load (d) Packet delivery ratio for high load

Fig. 6. Performance comparison of CODEB and PDP on sparse topology: low load and high load

1.2

1.25

1.3

1.35

1.4

1.45

1.5

1.55

1.6

0 5 10

C
od

in
g

G
ai

n

Node Speed

CODEB:RScode
CODEB:XOR

75

80

85

90

95

100

0 5 10

 P
ac

ke
t D

el
iv

er
y

R
at

io
(%

)

Node Speed

CODEB:RScode
CODEB: XOR

PDP

(a) Coding gain for low load (b) Packet delivery ratio for low load

Fig. 7. Mobility: performance comparison of CODEB and PDP on dense topology, and low load

1

1.5

2

2.5

3

3.5

0 5 10

G
ai

n

Node Speed

CODEB:RScode over CODE+GOSSIP: k=3
CODEB:RScode over CODE+GOSSIP: k=2

75

80

85

90

95

100

0 5 10

 P
ac

ke
t D

el
iv

er
y

R
at

io
(%

)

Node Speed

CODEB:RScode
CODE+GOSSIP: k=3
CODE+GOSSIP: k=2

(a) CODE:RScode over CODE+GOSSIP (b) Packet delivery ratio

Fig. 8. Performance comparison of CODEB and CODE+GOSSIP on dense topology

CODE+GOSSIP is more resilient to mobility compared to
CODEB, it results in significantly more transmissions. The
addition of a simple NACK-based protocol to CODEB, as
discussed earlier, can increase the packet delivery ratio to
100% without significantly impacting broadcast efficiency.

D. Summary

In summary, the coding gain of CODEB can be as high as
1.6, which means PDP sends 61% more packets compared to
CODEB. On top of the coding gain, CODEB also simultane-
ously improves the packet delivery ratio by as much as 10%.

8

Among the two algorithms, as expected, the RScode-based
optimal algorithm outperforms the XOR-based algorithm by
up to 15%. The coding gain is higher when the network
load is low or moderate (at high load, losses predominate)
and when the networks are dense (more opportunities for
coding when the number of immediate neighbors are higher).
In the presence of mobility, the coding gain achieved by
CODEB decreases by about 24% when node speed increases
from 0 to 10m/s. Finally, CODEB results in significantly
fewer transmission compared to the gossiping-based coding
algorithm proposed in [1].

VII. DISCUSSION

In this section, we discuss other issues relevant to CODEB.
By separating the choice of forwarders (e.g. PDP) from how
to code packets (CODEB), our design favors simplicity. While
this approach results in significant gains, one can envision a
combined forwarding and coding algorithm that can perform
better. For example, consider the network of nodes shown
in Figure 9. If node

�
, originating packets %�] and %�� , can

determine both forwarding and coding within its two hop
neighborhood, it can ask node 	 to send packet %�] , node O
to send packet %�� and node ¤ to send packet %�] 1 %�� , thereby
allowing nodes º and » to receive both %�] and %�� in the least
number of broadcasts.

Along the same lines, our design does not allow an encoded
packet to travel more than one-hop and a node encodes native
packets independently. There could be more coding gains if
these conditions are relaxed. However, this may introduce
coordination overhead and vulnerability in the presence of
rapid topology changes. We have assumed that each node
chooses the set of forwarders independently and explicitly. An
interesting research question is whether there exists efficient
schemes where nodes implicitly volunteer to be forwarders
based on the local RF condition. This is especially important
for adverse setting where links are very unreliable. In this
context, one can also explore encoding packets using other
codes that enable faster or incremental decoding as compared
to Reed-Solomon code. For example, codes that allow pro-
gressive decoding could enable partial error recovery in the
case of high link error rates or fast moving mobile nodes (if
a node is missing 8 +1 packets, it may still be able to recover
up to 8 packets using a code that transmits 8 coded packets).

There are other improvements one can do. A node can
reduce the number of coded packets to send in a batch based on
newly snooped packets. This requires purging pending packets
from output queue. A node can add a coded packet f to an
“un-intended” batch

C | if it is innovative to
C | and encodes

a subset of packets of the packets in
C | . This enables faster

decoding. There is an optimal batch size. It is interesting to
investigate how to set it optimally. If the number of native
packets exceeds the batch size, an interesting question is to
find a subset of packets that fits the batch size and enable
maximum number of missing packets to be received by the
neighbors.

v

xu

y

w

p1p2

z

p1

p2

p2p1 +

Fig. 9. Joint forwarding and coding

VIII. CONCLUSION AND FUTURE WORK

Broadcast operation is often used both to disseminate
information to all nodes and for finding unicast routes in
military ad-hoc networks. Therefore, broadcast efficiency is
very important. Due to the potentially dynamic nature of ad-
hoc networks, localized algorithms are much more robust and
effective with less maintenance overhead. In this paper, we
show how to incorporate network coding into a non-coding
based localized algorithm called PDP for improving broadcast
efficiency. While we illustrate our approach in the context of
PDP, our CODEB coding algorithm can potentially be applied
to other non-coding based schemes. The algorithm tries to
optimize the coding gains given a set of native packets and
the subset of packets each neighbor receives. We design two
coding algorithms: an XOR-based simple coding algorithm
that enables decoding without waiting for more coded packets
to arrive and a Reed-Solomon-based coding algorithm that
is optimal but requires a node to wait until it receives the
appropriate number of coded packets. The first problem is
NP-hard. We outline a simple greedy algorithm. The second
can be solved efficiently and optimally using Reed-Solomon
codes. Our extensive simulation shows that non-coding based
scheme sends as much as 60% more packets with reduced
packet delivery ratio. For future work, we intend to explore
more on the reliability issue and implement CODEB in a real
802.11-based mobile ad hoc testbed in order to thoroughly
evaluate its efficacy.

REFERENCES

[1] C. Fragouli, J. Widmer, and J.-Y. L. Boudec, “A network coding
approach to energy efficient broadcasting: from theory to practice,” in
Proceedings of IEEE INFOCOM, Apr 2006.

[2] Z. Haas, J. Halpern, and L. Li, “Gossip-based ad hoc routing,” in
Proceedings of IEEE INFOCOM, June 2002.

[3] K. M. Alzoubi, P.-J. Wan, and O. Frieder, “New distributed algorithm for
connected dominating set in wireless ad hoc networks,” in Proceedings
of HICSS, 2002.

[4] H. Lim and C. Kim, “Flooding in wireless ad hoc networks,” Computer
Communications Journal, 2001.

[5] W. Lou and J.Wu, “On reducing broadcast redundancy in ad hoc wireless
networks,” IEEE Transactions on Mobile Computing, 2002.

[6] R. Ahlswede, N. Cai, S. Li, and R. Yeung, “Network information flow,”
IEEE Transactions on Information Theory, 2000.

[7] e. a. D.S. Lun, “Achieving minimum-cost multicast: A decentralized
approach based on network coding,” in Proceedings of IEEE INFOCOM,
Mar 2005.

[8] Y. Wu, P. Chou, and S.-Y. Kung, “Minimum-energy multicast in mobile
ad hoc networks using network coding,” IEEE Transactions on commu-
nications, 2005.

[9] S. Katti, D. Katabi, W. Hu, H. Rahul, and M. Medard, “The importance
of being opportunistic: Practical network coding for wireless environ-
ments,” in Proceedings of ACM SIGCOMM, Sep 2006.

[10] S. Ni, Y. Tseng, Y. Chen, and J. Sheu, “The broadcast storm problem in
a mobile ad hoc network,” in Proceedings of ACM MOBICOM, 1999.

9

