
Space-Code Bloom Filter for Efficient Per-Flow
Traffic Measurement

Abhishek Kumar
�
, Jun (Jim) Xu

�
, Jia Wang

�
, Oliver Spatschek

�
, Li (Erran) Li

�

�
College of Computing

Georgia Institute of Technology
Atlanta, Georgia 30332–0280�

akumar,jx � @cc.gatech.edu

�
AT&T Labs - Research

Florham Park, NJ 07932-0971�
jiawang,spatsch � @research.att.com

�
Bell Labs

Lucent Technologies
Holmdel, NJ 07733-3030

erranlli@bell-labs.com

Abstract— Per-flow traffic measurement is critical for usage
accounting, traffic engineering, and anomaly detection. Previ-
ous methodologies are either based on random sampling (e.g.,
Cisco’s NetFlow), which is inaccurate, or only account for the
“elephants”. We introduce a novel technique for measuring per-
flow traffic approximately, for all flows regardless of their sizes, at
very high-speed (say, OC768). The core of this technique is a novel
data structure called Space Code Bloom Filter (SCBF). A SCBF
is an approximate representation of a multiset; each element in
this multiset is a traffic flow and its multiplicity is the number of
packets in the flow. The multiplicity of an element in the multiset
represented by SCBF can be estimated through either of two
mechanisms – Maximum Likelihood Estimation (MLE) or Mean
Value Estimation (MVE). Through parameter tuning, SCBF
allows for graceful tradeoff between measurement accuracy and
computational and storage complexity. SCBF also contributes
to the foundation of data streaming by introducing a new
paradigm called blind streaming. We evaluate the performance of
SCBF through mathematical analysis and through experiments
on packet traces gathered from a tier-1 ISP backbone. Our
results demonstrate that SCBF achieves reasonable measurement
accuracy with very low storage and computational complexity.

Index Terms— Network Measurement, Traffic Analysis, Data
Structures, Statistical Inference, Bloom Filter.

I. INTRODUCTION

Accurate traffic measurement and monitoring is critical for
network management. For example, per-flow traffic account-
ing has applications in usage-based charging/pricing, network
anomaly detection, security, and traffic engineering [1]. While
there has been considerable research on characterizing the
statistical distribution of per-flow traffic [2] or on identifying
and measuring a few large flows (elephants) [1], [3], [4], little
work has been done on investigating highly efficient algo-
rithms and data structures to facilitate per-flow measurement
on very high-speed links.

To fill this gap, we propose a novel data structure called
Space-Code Bloom Filter (SCBF) and explore its applications
to network measurement in general, and to per-flow traffic
accounting in particular. A (traditional) bloom filter [5] is an
approximate representation of a set � , which given an arbitrary

This work was supported in part by the National Science Foundation under
Grant ITR/SY ANI-0113933 and under NSF CAREER Award Grant ANI-
0238315.

element � , allows for the membership query “ ���	� ?”. A
Space-Code Bloom Filter (SCBF), on the other hand, is an
approximate representation of a multiset
 , which allows
for the query “how many occurrences of � are there in

 ?”. Just as a bloom filter achieves a nice tradeoff between
space efficiency (bits per element) and the ratio of false
positives, SCBF achieves a nice tradeoff between the accuracy
of counting and the number of bits used for counting.

SCBF has several important applications in network mea-
surement. This paper focuses on its application to performing
“per-flow” traffic accounting without per flow state on a high-
speed link. Given a flow identifier, SCBF returns the estimated
number of packets in the flow during a measurement epoch.
Here, a flow identifier can be an IP address, a source and
destination IP address pair, the combination of IP addresses
and port numbers, or other attributes that can identify a flow.

Per-flow accounting is a challenging task on high-speed
network links. While keeping per-flow state would make
accounting straightforward, it is not desirable since such a
large state will only fit on DRAM and the DRAM speed
can not keep up with the rate of a high-speed link. While
random sampling, such as used in Cisco Netflow, reduces
the requirement on memory speed, it introduces excessive
measurement errors for flows other than elephants, as shown
in Section II.

Our approach is to perform traffic accounting on a very
small amount of high-speed SRAM, organized as an SCBF
page. Once an SCBF page becomes full (we formalize this
notion later), it is eventually paged to persistent storages
such as disks. Later, to find out the traffic volume of a flow
identified by a label � during a measurement epoch, the SCBF
pages corresponding to the epoch can be queried using �
to provide the approximate answer. The challenges facing
this approach are threefold. First, the amount of persistent
storage to store SCBF pages cannot be unreasonably large,
even for a high-speed link like OC-768 (40 Gbps). Second,
the computational complexity of processing each packet needs
to be low enough to catch up with the link speed. Third, the
accounting needs to be fairly accurate for all the flows, despite
the aforementioned storage and complexity constraints.

SCBF is designed to meet all these challenges. Our design

can easily scale to maintaining approximate per-flow counts at
an OC-192 (10 Gbps) or even an OC-768 (40 Gbps) link using
a limited amount of fast memory. The storage cost for a fully
utilized OC-192 link is tolerable: about 4 bits per packet or 18
GB per hour. Such a cost is manageable for tier-1 ISPs as the
storage cost right now is about 1 dollar per GB. In addition,
it is very amenable to pipelined hardware implementation to
facilitate high-speed processing.

Conceptually, an SCBF can be thought of as a large number
of statistical estimators running in parallel. Each estimator
tracks the traffic volume of a certain flow. SCBF nicely codes
and compresses the current “readings” of these estimators
within a small memory module so that they do not interfere
with each other. Like space-time coding allows signals to
multiplex on both space and time domains, SCBF allows
“signals” to multiplex on both space and code domains,
hence the name Space-Code. The demultiplexing operation for
obtaining the “reading” of a given flow in an SCBF employs
an estimation procedure. We present two alternative estimation
mechanisms, Maximum Likelihood Estimation (MLE) and
Mean Value Estimation (MVE). We show through careful
analysis that the “readings” of all flows will be accurate to
a certain ratio with high probability.

SCBF not only has important applications in network
measurement, but also contributes to the foundation of data
streaming [4], [6]. Data streaming is concerned with process-
ing a long stream of data items in one pass using a small
working memory in order to answer a class of queries regard-
ing the stream. The challenge is to use this small memory
to “remember” as much information pertinent to the queries
as possible. The contributions of SCBF to data streaming are
twofold. First, it is among the earliest work in the networking
context [4]. Although data streaming has emerged as a major
field in database [7], [6], [8], the techniques invented in the
database context tend to be computationally complex, and thus
have limited application to problems in networking. Second,
SCBF introduces a new paradigm called blind streaming in
which incrementing the reading of an estimator does not
require the decoding of its current reading, and hence the
blindness. This significantly reduces the computational and
hardware implementation complexity of each operation, as
discussed in Section II-B.

The rest of this paper is organized as follows. The next
section presents an overview of the architecture of SCBF and
introduces the metrics for measuring its performance. We also
introduce the paradigm of blind streaming and discuss its
impact on our design. Section III describes the design of SCBF
in detail. We provide some essential mathematical details of
the design of SCBF in Section IV, deferring the rest to the
appendix. Section V presents analytical results on the accuracy
of SCBF followed by experimental evaluation of a software
implementation using packet header traces from a tier-1 ISP IP
backbone network. A brief review of related work is presented
in Section VI. We conclude in Section VII.

II. ARCHITECTURE, PERFORMANCE METRICS, AND

BLIND STREAMING

The proposed SCBF scheme is motivated by the need to
provide per-flow traffic accounting at very high speed (e.g,
OC-768). A naı̈ve solution to this problem would be to
maintain per-flow counters that are updated upon every packet
arrival. However, as shown in [1], this approach cannot scale
to the link speed of OC-192 since fast SRAM modules can
only hold a tiny fraction of per-flow state due to their size
limitations, and large DRAM modules cannot support such
speed. Random sampling with a small rate such as 1% may
meet the speed requirement for keeping the per-flow state in
DRAM. However, such sampling leads to intolerable inaccura-
cies in network measurement [1]. In particular, sampling will
typically miss the majority of small flows (containing only
a few packets). Ignoring these mice altogether may lead to
wrong conclusions in applications such as estimation of flow
distribution and network anomaly detection.

CPU

SRAM
Module 1

SRAM
Module 2

Persistent
Storage

1. Process
header

2. Write
to SCBF

3. Paging
to disk
once "full"

4. Query

5.Answer

SCBF Module0. New
packet
arrival

Header

Fig. 1. The system model for using SCBF for traffic measurement.

Our vision is to design a synopsis data structure that keeps
track of the approximate number of packets in each flow
regardless of its size, yet is small enough to fit in fast SRAM.
The proposed SCBF scheme is a brainchild of this vision.
Here we describe the conceptual design of SCBF, deferring
its detailed description to Section III. The overall architecture
of using SCBF to perform per-flow accounting is shown in
Figure 1. SCBF is updated upon each packet arrival (arcs
1 and 2 in Figure 1) so that it will not fail to record the
presence of any flow, small or large. When the SCBF becomes
full, it will be paged to persistent storage devices (arc 3).
Typically, two alternating SCBF modules will be used so that
one can process new packets while the other is being paged, as
shown in Figure 1. In other words, these two SCBF modules
store approximate flow accounting information in alternating
measurement epochs. In addition, SCBF succinctly represents
a large number of counters so that paging is infrequent enough
to fit within the disk bandwidth even for OC-768 link speed.
Finally, a query concerning the size of a flow can be made
to a SCBF page stored on the disk (arc 4). The result of
the query (arc 5) is the approximate number of packets in
the flow during the measurement epoch recorded by that
SCBF page. The aggregate size of a flow, independent of
measurement epochs, can be obtained by taking the sum of
flow-size estimates obtained by querying pages corresponding
to consecutive epochs.

A. Performance Metrics

The key challenge in designing SCBF is to achieve a nice
tradeoff between the following three key performance metrics.
1. Storage complexity. This refers to the amount of space
consumed on persistent storage to store the SCBF pages. This
can be equivalently characterized as the traffic rate between
the SCBF module and the disk. Our goal is to make this
complexity as small as possible, given a fixed link speed.
At least this rate should not exceed the disk bandwidth. We
will show that this complexity is manageable even on OC-768
speed since SCBF takes advantage of the “quasi-Zipf Law”
of the Internet traffic: a small number of flows contribute to
the majority of Internet traffic while the majority of flows are
small1.
2. Computational complexity. We are also concerned with
the number of memory accesses to the SCBF module for each
packet. This has to be minimized. We show that on the average,
our scheme will incur no more than 5 bits of write per packet
to the memory. We will see later that most of these writes
overwrite already written bits, thus filling up the SCBF page
at a much slower rate.
3. Accuracy of estimation. We would like our estimation
of the traffic-volume of individual flows in a measurement
epoch to be as close to the actual value as possible. In this
work, our goal is constant relative error tolerance, i.e., for the
estimate �� to be within �������
	�� �� ������	�� ��� with a constant
high probability. Here

�
is the actual value of the traffic-

volume of a given flow and �� is our estimate of this value. We
present two estimation mechanisms – Maximum Likelihood
Estimation (MLE) and Mean value Estimation (MVE) – to
achieve this.

With SCBF, a very high level of accuracy can be achieved
if one is willing to incur more complexity in terms of storage
and computation. Therefore, there is an inherent tradeoff
between the complexities and the accuracy of estimation. This
tradeoff can be exploited through the choice of various design
parameters, as explained in Section III-C.

B. Blind Streaming

The reader might have noticed that in Figure 1, we do not
have an arc from the SCBF module to the CPU. One may
also wonder whether this is a mistake, since when a new
packet arrives, its flow identifier should be used to look up a
corresponding entry for update. In fact, SCBF is designed to
avoid such a read before update, i.e., the SCBF data structure
is write-only! We refer to this feature as blind streaming, in
the sense that reading and decoding data in the SCBF is not
required before updating it.

Blind streaming is a new paradigm of data streaming that is
especially suitable for high-speed networks for the following
reasons. First, in blind streaming, we do not need to deal with
the race condition between read and write operations, making
a pipelined hardware implementation extremely simple. Note

1Our measurement results in Figure 8(b) are an independent verification of
this “law”.

that in traditional data processing, a datum has to be locked
after read and unlocked after write to ensure consistency.
Second, blind streaming also doubles the streaming speed by
eliminating the reading process. The loss of accuracy due to
this blindness is tolerable, as we will show in Section V.

III. DESIGN DETAILS

A. Space-Code Bloom Filter

At the core of our scheme lies a novel data structure –
the Space-Code Bloom Filter (SCBF). It represents a multiset
approximately, extending the capability of a traditional Bloom
Filter (BF) to represent a set. Given an element � , it not only
allows one to check if � is in a multiset, but also counts the
number of occurrences of � . In the following, we describe the
design of both BF and SCBF.

A traditional Bloom filter representing a set � �� ��� ��� ����� ��� � of size � is described by an array � of
bits, initialized to 0. A Bloom filter uses ! independent hash
functions "#� "�� $������ "�% with range

� � $������ � . We refer to this
set of hash functions as a group. During insertion , given
an element � to be inserted into a set � , the bits �&� "#'(� �)� � ,
�+*-,.*/! , are set to 1. To query for an element 0 , i.e. to
check if 0 is in � , we check the value of the bits �&� ")'1�203� � ,
,4�5� 768������� ! . The answer to the query is yes if all these bits
are 1, and no otherwise.

A Bloom filter guarantees not to have any false negatives,
i.e., returning “no” even though the set actually contains
the element. However, it may contain false positives, i.e.,
returning “yes” while the element is not in the set. There is
a convenient tradeoff between the probability of encountering
a false positive and the number of elements the filter tries to
hold. It was shown in [5] that fixing a false positive threshold9 , the filter can hold the highest number of elements � when
the parameter ! is set to around ���;:�<>= � 9 � . In this case the
completely full filter contains exactly half the bits set to 1,
and the other half to 0. We refer to this as the “50% golden
rule”.

In a traditional Bloom filter, once an element � is in-
serted, later insertions of � will write to the same bits
�&� "#�?� �#� �@ �A� "��B� �)� �C$D�D$DE �A� ")%8� �#� � , and will not result in any
change to � . SCBF, on the other hand, uses a filter made
up of F groups of hash functions

� " �� � �#� " �� � �#� �D$D�DE " �% � �)� � ,� " � � � �)� " �� � �#� $D�D�DG " � % � �#� � HD$D�DE � "3I � � �)� "JI� � �)� �D�D$DK "3I% � �)� � .
Each group can be viewed as a traditional Bloom filter.

The insertion and query algorithms of SCBF are shown
in Figure 2. During insertion, one group of hash functions� " ' � � �)� " '� � �#� $D�D�DG " ' % � �#� � is chosen randomly, and the bits
�&� " ' � � �#� �@ �A� " '� � �)� �C$D�D$DE �A� " ' % � �#� � are set to 1. While querying
to find out the number of occurrences of element 0 in the
set, we count the number of groups that 0 has matched. An
element 0 matches a group

� " ' � " '� �D$D�DE " ' % � if all the bits
�&� " ' � �203� �C �&� " '� �203� �@�D$D�DE �&� " ' % �L03� � are 1. Based on the number
of groups that 0 has matched, denoted as �M , we can estimate the
multiplicity of 0 in the multiset, and return the result generated
by this estimation procedure as the answer. In other words, a
query for the flow 0 first counts the number of groups matched

1. Insertion algorithm (given �):
2.

�������	��
���������
;

3. Set bits ��� ��� � � � ��� , ..., ��� ��� � � ��� to 1;

1. Query algorithm (given !):
2. "# �%$

;
3. for(

���&�
;
�(')�

;
�*+*

)
4. if (bits ��� ��� � � ! ��� , ..., ��� ��� � ! ��� are all 1)
5. "# � "# *%�

;
6. return ,�-/. �102� .43 � "# � ;

Fig. 2. Insertion and Query in SCBF

by 0 and then calls an estimation procedure that uses this count
to estimate the multiplicity of 0 in the multiset. We present
two alternative mechanisms for estimating the multiplicity of
0 from the observation �M . The first is Maximum Likelihood
Estimation (MLE), which can be thought of as guessing the
most likely multiplicity of 0 that would have caused the
observation �M . The second estimation mechanism is Mean
Value Estimation (MVE) which computes that multiplicity of
0 which is expected to cause the observation �M on the average.

From an implementation perspective, both MLE and MVE
can be implemented as a simple lookup into an estimate
table precomputed for all possible values of �M . Thus each call
to 576�8 ,C :9;8�<B� � � involves a single lookup into a small table.
The precomputation of the estimate tables themselves is a
computationally intensive procedure but has to be done only
once, during the design of the SCBF. We present the theoretical
details of MLE and MVE and discuss the precomputation
of the estimate tables in Section IV. Although the one-time
precomputation of lookup tables is equally involved for both
MLE and MVE, we run into precision issues in floating point
computation in the case of MLE. Fortunately, these precision
problems do not dominate the computation for a range of
parameters. Thus we were able to evaluate and compare
the levels of accuracy attained by both these mechanisms in
Section V.

B. Multi-Resolution Space-Code Bloom Filter

The distribution of flow-sizes in Internet traffic is known to
be heavy-tailed, implying that the potential multiplicity of an
element can be very high (i.e. some flows are very large). By
the Coupon Collector’s problem [9], all F groups in a SCBF
will be used for insertion at least once with high probability
after about �LF :>= F � copies of � are inserted. In other words
almost all elements with multiplicities of �LF?:>= F � or more will
match all the F groups in an SCBF. For example, in an SCBF
with 32 groups of hash functions (FA�@? 68 F :>= FBA � �>�), if
200 copies of � are inserted, it is almost certain that all 32
groups will be chosen at least once. Inserting an additional
200 copies of � will not change anything as all the 32 groups
have already been used. Thus any estimation mechanism will
be unable to decide whether the number of copies of � inserted
in the SCBF was 200 or 400. So, an SCBF with F groups
is unable to distinguish between multiplicities that are larger
than �LF :>= F � . Making F very large does not solve this problem

1. Insertion algorithm (given �):
2. for(C �&�

; C ')�
; C *)*

)
3. Insert � into SCBF C with probability D	E
4. /*shown in Figure 2.*/

1. Query algorithm (given !):
2. Check !GFH- occurrences in SCBF 1, 2, ...,

�
3. and obtain counts "# � � "#�I �KJLJMJL� "#ON respectively;
4. return ,�-/. �P0B� .43 � "# � � "# I �KJLJLJL� "# N � ;

Fig. 3. Insertion and Query Algorithms in MRSCBF

for two reasons. First, the number of false positives (noise)
become large with larger F , and if the actual multiplicity of
an element 0 (signal) is small, the noise will overwhelm the
signal. Second, the storage efficiency of the scheme worsens
as multiple occurrences of an element are spread to a very
large space.

Our solution to this problem is Multi-Resolution SCBF
(MRSCBF). An MRSCBF employs multiple SCBFs (or fil-
ters), operating at different resolutions and uses all of them
together to cover the entire range of multiplicities. The inser-
tion and query algorithms for MRSCBF are shown in Figure 3.
The insertion algorithm for MRSCBF is a simple extension
of that of SCBF. When a packet arrives, it will result in an
insertion into each SCBF , with a corresponding sampling
probability Q ' . Suppose there are a total of R filters (SCBFs).
Without loss of generality, we assume QK�TSUQ��VS ����� SUQXW .
The higher Q ' values correspond to higher resolution while
lower Q ' values imply lower resolution. In this scheme, the
elements with low multiplicities will be estimated by filter(s)
of higher resolutions, while elements with high multiplicities
will be estimated by filters of lower resolutions. In other
words, filters into which packets are sampled and inserted with
high probabilities can keep track of small flows while filters
with low sampling probabilities track the larger flows.

In the query algorithm, we count the number of groups
that � matches in filters � 163�D$D�D� R , denoted as �M � �M � �D�D$D� �M W
respectively. Due to the varying sampling probabilities of the
individual filters, in general the values �M � �M � �D$D�D� �M W will all be
different. The final estimate will be 576�8 ,@ T9;8�<B� �M � �M � �D$D�D� �M W � ,
the result of a joint estimation procedure based on the observa-
tions. The first step in this estimation procedure is to identify
one or more of the total R filters whose observations are the
most relevant for estimation. The theory and mechanism for
identifying relevant filters is explained in Section IV-C. Once
the relevant filter(s) are identified, a precomputed estimate
table can be looked-up using the corresponding observations.

Like in SCBF, the estimate table for MRSCBF again will be
precomputed. We developed techniques, discussed in section
IV-A.2 and IV-C, to optimally compute the estimate table
without sacrificing accuracy.

Tuning the sampling probabilities Q � Q � ������� Q W , and the
number of groups F is closely related to the level of esti-
mation accuracy we would like to achieve. To achieve the
constant relative error tolerance (discussed in Section II-A),

Multiplicity

Resolution 1

Resolution 2

Resolution 3

Resolution 4

Resolution 5

Legend

Range of accurate coverage

 Range of coverage

0

Fig. 4. The conceptual design of MRSCBF

the probabilities are set as Q ' ��� '�� � , ,A� � 768$������ R , i.e., a
geometric progression. Here ���/� is a constant, which is a
function of the number of groups F . The philosophy behind
setting parameters this way is captured in Figure 4. Each
group covers a certain multiplicity range and in part of this
range, it has accurate coverage. When the parameters Q��' 6 are
set as above, the accurate coverage ranges of these groups
“touch” each other on the borders and jointly cover the whole
multiplicity range. With geometrically decreasing sampling
probabilities, the absolute inaccuracy in estimation by the
corresponding filters also increases geometrically. But filters
with small sampling probabilities are only used to estimate
the size of large flows, or in other words, have a geometrically
larger range of coverage. So the relative accuracy of estimation
remains constant. For the analysis and evaluation of MRSCBF
throughout the rest of the paper, we set F � ? 6 and � � �� ,
unless specified otherwise.

This multi-resolution design works very well for Internet
traffic, in which the majority of the flows are mice but a small
number of large flows (elephants) account for the majority of
the packets (the aforementioned “quasi-Zipf” law). Our design
ensures that for each possible flow size, one of the filters
will have a resolution that measures its count with reasonable
accuracy. The storage efficiency of MRSCBF is reasonable
since the small flows are restricted to filters with high sampling
probabilities, and hence will not occupy too many bits. Only
large flows get sampled into other filters2, and due to the ge-
ometrically decreasing sampling probability, the bits occupied
by large flows will grow only logarithmically with their size.
However, MRSCBF pays a little price on storage efficiency for
blind streaming, which is that the high multiplicity elements
will completely fill up all the high resolution filters so that
these filters do not carry much information3. Nevertheless, this
price is moderate because the fraction of large flows is very
small in the Internet traffic.

2Some small flows too might get sampled into filters with small sampling
probabilities, but their impact on storage efficiency is negligible. This does
not impact the accuracy either, because the mechanism for choosing the most
relevant filter(s) identifies such filters as irrelevant.

3Recall that flows with distinct labels hash to different location in the filter
array. Though a high multiplicity element fills up the high resolution filter for
itself, it does not have any impact at all on the accuracy of the same filter for
other elements.

C. Performance Guarantees

At this point in our discussion, we are ready to evaluate the
performance of MRSCBF according to one of the three metrics
discussed in Section II-A – its computational complexity.

Consider an MRSCBF configured with aforementioned pa-
rameters (F � ? 6 , � � ��). Let !>' be the number of hash
functions used in a group4 belonging to filter , , and let Q�'
be the sampling probability of filter , . The computational
complexity of the scheme is 	 W'�
� ! '�� Q ' bits per packet. When
the sampling probabilities Q ' follow a geometric progression,
as described in section III-B, this value tends to be small. In
our experiments with MRSCBF, we set !8� to 3, ! � to 4,and
!�� �D$D�DE !	W to 6. With other parameters shown above , the total
complexity is no more than 5 bits per packet. This would allow
us to comfortably support OC-768 speed using SRAM with
access latency of 5ns. Assuming average packet-size of 1000
bits and full utilization, an OC-768 link would see 40 million
packets per second or one packet every 25ns, thus leaving 5ns
for each of the 5 bits to be written to bit-addressable SRAM.

The performance of MRSCBF along the other two metrics
of storage complexity and accuracy is evaluated in Section V
through analysis and experiments on real packet-header traces.

IV. MAXIMUM LIKELIHOOD ESTIMATION AND ANALYSIS

In this section, we formally specify the two estimation
mechanisms - Maximum Likelihood Estimation (MLE) (Sec-
tion IV-A) and Mean Value estimation (MVE) (Section IV-
B), and present the mathematics behind the two procedures.
We also describe the mechanism used to choose the “most
relevant” filter(s) in an MRSCBF (Section IV-C). Finally, we
compare the advantages and disadvantages of MLE and MVE
in Section IV-D.

A. Maximum Likelihood Estimation

1) MLE with observations from one SCBF: We first de-
scribe the MLE procedure for one SCBF in a MRSCBF. Let�

be the set of groups that are matched by an element � in
SCBF , . We know from the design of MRSCBF that elements
are inserted into SCBF , with sampling probability Q ' . To
find out the number of occurrences of � from the observation�

, we use the principle of MLE, i.e., we would like to
find � that maximizes � R8� � ����� � � . In other words, �� �
9;R�� :9 �� � R8� � ����� � � . However, to compute � R8� � ����� � � ,
we need to prescribe an a priori distribution for

�
. We found

that, when
�

is assumed to have a uniform a priori distribution,
9;R�� :9 �� � R8� � ����� � � � 9;R�� :9 �� � R8� � � � ��� � . In this case,

MLE using � R8� � ����� � � produces the same value as MLE
using � R8� � � � ��� � . This significantly simplifies the MLE
process since � RB� � � � � � � has a closed form solution (albeit
sophisticated).

4Group sizes can be different from one SCBF to another in MRSCBF, but
we use the same group size across all SCBFs for simplicity.

Now we explain why 9;R�� :9 �� � R8� � � ��� � � �
9 R��B T9 �� � RB� � � � � � � when

�
has a uniform a priori distri-

bution. By Bayes’ rule, � R8� � � ��� � � � � W�� ��� �
 ���
	 � W�� �
 ���� W�� � � .
Since the value � R8� � � in the denominator is a constant, the
� that maximizes � R8� � � ��� � � has to maximize � R8� � � � �
� � � � R8� � ��� � , the numerator. When

�
has uniform a priori

distribution, � R8� � � � � becomes a constant with respect to �
and the result follows.

How to prescribe the default a priori distribution (the belief
before any observation) has always been a controversial issue
in statistics [10]. It is however a widely acceptable practice to
use uniform as the default when there are no obviously better
choices. Assuming uniform as the default is reasonable also
for the following reason. It can be shown quantitatively that
the evidence

�
in general significantly outweighs the skew

caused by any a priori distribution that is slowly varying. A
distribution is slowly varying if � � R8� � � � � � � R8� � � � �
� � �K*5	 when 	 is a very small constant. Clearly there is no
reason to believe that the a priori distribution of

�
is not

slowly varying.
Now that maximizing � R8� � � ��� � � becomes maximizing
� RB� � � � � � � . The following theorem characterizes how
to compute � R8� � � � � � � . Its proof can be found in the
Appendix.

Theorem 1: Let
M � � � � , Q be the sampling probability and� be the fraction of bits that are set to ‘1’ in the MRSCBF.

Then � R8� � � � ��� � is equal to������ ������������! #" %$ & ��' �)(�*� ',+.- � � �!/ ��0 1" 2�354 6�7 �58 49 � � � 0 �*�:� � ��� 0<; ��� 4 � 9� � 3 4 �=�4 7 �
> 4 � 9? � 3 4 � ?4 7 � �A@B@C@ > (�D� + ��� 0 4 � 94 � 9 � 3 9 4 7 �,EGF

(1)
2) MLE with observations from multiple SCBF’s in

MRSCBF: Now we describe the MLE process for MRSCBF.
Let
� � , � � , ...,

� W be the set of groups that are matched by the
element � in SCBF 1, 2, ..., R respectively. Since

� � , D$D�D , � W
are independent, when independent hash functions are used in
SCBF’s, we haveHJILK M �ON @B@!@ N M NQP RTS $)U S NV

� � HJILK M � P RWS $LU (2)

Therefore
YX 5 � � � $D�D�DK � W�� = 9;R�� :9 �� Z W'
 � � RB� � ' � � �
� � . Note that � R8� � ' � � ��� � can be computed from Equation
1. However, although above MLE decoding formula (Equation
2) is correct in principle, it cannot be used in practice since the
complexity of precomputing the decoding table is prohibitive.
We return to this issue in Section IV-C, after discussing MVE
in the following subsection.

B. Mean Value Estimation

We begin with the description of MVE procedure for a
single SCBF. Again, Let � be the multiplicity of an element
� . The number of positives (number of matched groups) we
observe from the SCBF, when queried for � , is clearly a

random variable that is a function of � (not a function of � with
good hash functions). We denote this random variable as

M � .
Let �#� �#��� 5 � M � � be the function that maps the multiplicity
to the average number of positives it will generate. Clearly
��� � ��� � ��� �?�$� when � � � �?� since the higher the multiplicity
of � , the higher number of positives it will generate. So � � �
exists since it is monotonically increasing.

Our MVE estimation rule is the following. Given an obser-
vation �M , which is the number of groups matched by the flow �
that is being queried for, we declare that
\[5 � �M � � � � � � �M � .
In other words, given the observation �M , our estimate is the
value of � that, on the average, produces �M positives. We
abused the notation � � � here since � � � is only defined on
the discrete points by the above definition. However, we can
use linear extrapolation to extend both � and � � � to the
continuous domain. In the following, we use the notation
� � � � to represent both the strictly defined discrete functions
and their continuous counterparts.

The following theorem characterizes the function � .
Theorem 2:

�#� ��� � I]
'�
�
�] ^

�

_ � `ba Q
^
��� �TQ)� � �

^
_ F
,
a � � % � ' ��� � � % � I �)' �2,E�dc)� ` ,���� (3)

where c)� ` , � is the value of c that satisfies the equation`
A F
F#� , �

F
F#� �2,#� � � �

����� � F
F#� �2,��dc&� � �

.
Proof: Let

M
be the random variable that denotes the

number of positives obtained on querying the SCBF for � ,
given that � has been inserted into the SCBF � times. By the
definition of � , ��� ��� � 5 � M � . Let e be the random variable that
denotes the number of false positives. Let f be the number of
sampled packets that on the average result in c positives that
do not overlap with any of the e false positives. We claim that
5 � M � e � , f5�

` � � ,E�gc�� ` ,�� , where
`
A II �#' � II �ih�'
j �Bk ������ � II �ih�'
jml � �!k . To see this, we view this as an instance of

the coupon collector’s problem, where we want to collect
M

unique coupons. Now , different coupons (the false positives)
have already been collected, and the question is how many
more coupons on the average do we have to collect to bring
the total number of unique coupons we collect to

M
. It can

be verified that the answer to this question is c�� ` ,�� , using
arguments from the coupon collector’s problem [9]. Therefore,

5 � M � � 5 � 5 � M � e � , f �
` ���

� I]
'
��
�] ^

�
� R8� e � , f �

` � 5 � M � e � , f �
` �

� I]
'�
�
�] ^

��

_ � `�a Q
^
��� � Q#� � �

^ _ F
,
a � � % � ' ��� � � % � I �)' � ,��dc �

In an MRSCBF with multiple filters running in parallel,
MVE can be used by first identifying the most relevant
among the various SCBF (through the mechanism described
in the following subsection) and then running MVE for the
observation from that SCBF.

C. Choosing the most relevant filters in an MRSCBF

Using multiple SCBFs in an MRSCBF with different,
independent sampling probabilities, allows it to account for
items with large multiplicities with a constant relative accu-
racy. But the estimation procedure becomes more complex
for both MLE and MVE. Equation 2 shows how the joint
probability distribution of multiple filters can be calculated
from the probability distribution for individual filters. But the
complexity of this operation is F W where F is the number of
possible outcomes in an individual filter and R is the total
number of filters. This combinatorial explosion in complexity
rules out an implementation of the estimation procedure in this
form.

Fortunately, we can solve this problem by using the observa-
tions from the “most relevant” filters. The key observation here
is that due to the varying sampling probabilities of different
independent SCBF’s in an MRSCBF, for a given multiplicity,
only a few filters have a resolution that is good enough to
estimate that particular multiplicity. All other filters have a
resolution that is either too fine or too coarse to have any
relevance. For example, if an item � has multiplicity of 1000,
then the filter sampling with probability 1 (resolution too fine)
will have all the groups matched by � (i.e.,

M � F), and
thus will not be able to provide any information5 about the
multiplicity of � . On the other hand a filter that samples with
a probability of �� � � � (resolution too coarse) will have

M ���
or 1 most of the time, when looked up for � . Such a value ofM ��� or 1 is so small that it will be dominated by the false
positives. Intuitively, we can see that filters that sample with
probabilities ���� , or ��1� might provide the best estimates. In
our experiments we observed that choosing the filter c 	 with
the “best resolution” and the two filters c 	 � � and c 	 �5� ,
and then using the joint probability distribution for these three
filters using (2) was a sound strategy.

We now explain the mechanism used to identify the most
relevant filter (i.e., the filter with the most relevant observation
for a particular item �). As explained above, filters with
very small or very large observations do not provide enough
information about the given item. More formally, we can
talk about the relative incremental inaccuracy of a given
observation. For a filter with F groups,

M
of which are matched

by an item � , it would take about II ��� insertions on the
average to match another unmatched group, and increase the
observation to

M � � . On the other hand we know from the
coupon collector’s problem that the total number of insertions
required to cause the observation

M
is � II � II � � �

D$D�D � II ���%j � � .Thus the relative incremental inaccuracy of this observation

5All we can determine from an observation
4 S 6

is that the multiplicity
of � is too large to be estimated by this filter.

0.001

0.01

0.1

1

10

0 10 20 30 40 50 60

re
la

tiv
e

in
cr

em
en

ta
l i

na
cc

ur
ac

y

θ

#groups=32
#groups=64

Fig. 5. The relative incremental inaccuracy for filters with 32 and 64 groups.
Notice the logscale on the 	 -axis.

is Ih I ��� k
 � I I � II � � �
D$D�D � II ���Cj � � . To identify the most relevant

filter, we calculate the value of relative incremental inaccuracy
of the observations

M ' � � � ' � from each of the R windows and
choose the filter with the smallest inaccuracy. Figure 5 shows a
plot of the relative incremental inaccuracy for different values
of

M
. Note that the 0 -axis is on logscale. We can observe

in both curves, for filters with 32 and 64 groups respectively,
that the inaccuracy is the least when

M
is an intermediate value

between 0 and the total number of groups. Another observation
is that the relative incremental inaccuracy of a filter with 64
groups is better than that of a filter with 32 groups for any
observation

M
.

D. Comparison of MLE and MVE

In statistics, MLE is the provably-optimal decoding pro-
cedure for minimizing estimation error. However, the error
metric in that context is � RB� ���� ���� , i.e., the probability
that the estimate is different from the actual value, given an
observation

M
. In our application, however, � R8� ��� ���� is very

close to 1, since many possible
� �H6 are almost equally likely

to produce the observation
M
, and
YX 5 � M � is only slightly

more likely than many of its neighbors to produce
M

(“peak
of an almost-flat hill”). So we use � R8���G�� � � ��*�	 ��� as our
metric for evaluation. But under this metric, it can be shown
that MLE may not give us optimal performance, and MVE
can actually perform better, as shown in Section V-A. The
decoding table for MVE is also easier to compute than that of
MLE, especially when the number of groups is over 35 (due
to the floating point precision limit).

However, MLE does have an advantage in our context. Ex-
tending MLE for joint estimation from multiple observations is
straightforward (Section IV-A.2). On the other hand, it is hard,
if not impossible, to find a mathematically sound extention of
MVE for multiple observations in our context. So the MLE
decoding for MRSCBF is based on three observations, while
MVE is only based on the one observation, chosen through
the mechanism described in Section IV-C. We will revisit this
in Section V-A.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1-
δ

F

ε=1
ε=0.5

ε=0.25
ε=0.2

(a) Theoretical accuracy of MVE using 32 groups.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1-
δ

F

ε=1
ε=0.5

ε=0.25
ε=0.2

(b) Theoretical accuracy of MVE using 64 groups.

Fig. 6. Probability that the estimate �R is within a factor of
(� ��� +

of the actual frequency
R

for various values of
�
.

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1-
δ

F

ε=1

ε=0.5

ε=0.25

ε=0.2

Fig. 7. Probability that the estimate �R is within a factor of
(� ��� +

of the
actual frequency

R
for various values of

�
. MLE using 32 groups.

V. EVALUATION

In this section we present an evaluation of MRSCBF using
the metrics of accuracy and storage complexity. Section V-
A evaluates the theoretical accuracy of MRSCBF through
analytical calculations only. We then present an evaluation
of MRSCBF using real Internet traces in Section V-B. The
chief achievement of MRSCBF is accurate estimation of flow
sizes as depicted in Figures 8(a) and 8(b) and discussed in
Section V-B.2.

A. Theoretical accuracy of Estimation

The accuracy of estimation by MRSCBF is a function of the
various design parameters, including the number of filters R ,
the number of groups �LF ' � , the sampling rate �LQ ' � (resolution),
and the number of hash functions � ! ' � , used in each SCBF

, , , � � 768������� R . The accuracy of the estimation can be
characterized by the probability of the estimated value �� being
within the interval ����� � 	�� �� ������	�� ��� , where

�
is the real

value. It can also be characterized by the mean of relative
error (5

� ���� � ���� �). Both these quantities can be computed
from Equation 1.

Figure 7 shows the plot of ���K��	 � for different values of
�

,
where �4�
	�� � R8�����G� 	7� � * �� * ���E�;	�� ��� . The parameters
used for the MRSCBF are R+��� SCBFs, F � ? 6 groups in
each SCBF, sampling probabilities of � �� �� � �D$D�D� ������� for
the R SCBFs and ! � ? hash functions per group in the first
SCBF, !.��� for the second and ! ��� for the rest. Each curve
corresponds to a specific level of relative error tolerance (i.e.
a specific choice of), and represents the probability that the
estimated value is within this factor of the actual value. For
example, the curve for 	.�� � 6�� shows that around 85% of
the time, the estimate is within 25% of the actual value.

Figures 6(a) and 6(b) show similar curves for MVE in filters
with 32 and 64 groups respectively. The figures for MVE have
been drawn using computations from Theorem 1 (also useful
for MVE) and the MVE decoding rule. For the same number
of groups (F = 32), we observe that MVE (Figure 6(a)) has
very similar accuracy as MLE (Figure 7). However, curves
with MLE are much more smooth than those with MVE for
the following reason. In MLE, we use the joint observations
from three filters for estimation (discussed in Section IV), and
this evens out the variations that occur in different windows.
However, such a joint estimation procedure does not exist for
MVE, and variations in the “most relevant” filter (determined
through the mechanism discussed in Section IV-C) reflect
directly in Figure 6(a). We have plotted accuracy curves (not
shown here due to lack of space) for MLE using a single “most
relevant” filter, and the curves are just as “noisy” as the MVE
curves in Figure 6(a), thus supporting our interpretation here.

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

E
st

im
at

ed
 fl

ow
 le

ng
th

 (
pa

ck
et

s)

Original flow length (packets)

estimated
original

(a) Original vs. estimated flow size. Note that both axes are on
logscale.

1

10

100

1000

10000

100000

0.001 0.01 0.1 1 10 100

F
lo

w
 le

ng
th

 (
pa

ck
et

s)

Normalized rank of flows

original
estimated

(b) Distribution of the original and estimated flow size.

Fig. 8. Estimation with MRSCBF using MLE.

We also observe that the accuracy of filters with 32 groups
(Figure 6(a)) is lower compared to that of the filter with 64
groups (Figure 6(b)), thus indicating the gain in accuracy with
an increase in the number of groups per filter. However this
gain comes at the cost of increased storage complexity as the
“code” for different flows is spread over a larger “space”. We
could not compute the accuracy of MLE with filters containing
64 groups of hash functions, because standard floating point
libraries will not work for computations involved in Theorem
1 when the window size grows beyond 35 (the computation of
MLE decoding table clearly requires the computation of the
formula in Theorem 1). We expect to see a similar gain in
accuracy with MLE on increasing the number of groups, and
plan to verify this using high precision floating point library in
the future. In separate calculations for both MLE (32 groups)
and MVE (32 and 64 groups), we observed that the mean of
relative error (5

� ���� � ���� �) is less than 0.15, implying that on
the average, the error in estimation is no more than 15%.

B. Packet header trace measurements

To evaluate the performance of MRSCBF on real-world
Internet traffic, we use a set of three packet header traces
obtained from a tier-1 ISP backbone. These traces were
collected by a Gigascope probe [11] on a high speed link
leaving a data center in April, 2003. Among them two were
gathered on weekdays and one on a weekend. Each of the
packet header traces lasts few hours and consists of 588 � 632
million packet headers and carries 280 � 329 GB traffic. The
number of unique IP addresses observed in each trace is
around 10 million.

We developed a software implementation of MRSCBF with
both MLE and MVE estimation mechanisms. Throughout the
rest of this section, we use the results obtained from processing
packet header traces using this implementation. The operation
of MRSCBF is independent of the definition of “flow”. We

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

P
[r

el
at

iv
e

er
r

<
 e

] (
C

D
F

)

e

<-- all flows
flows >=3 --->

<-- flows >=5
flows >=10 -->

flows >=100 -->

all flows
flows >=2
flows >=3
flows >=5

flows >=10
flows >=100

Fig. 9. Accuracy of estimation using MLE. CDF of relative error for flows
of various size.

evaluate its performance using five popular notions of what
constitutes a flow identifier: (i) source IP; (ii) destination IP;
(iii) (source IP, destination IP); (iv) (destination IP, destination
port); (v) (source IP, source port, destination IP, destination
port). We observed similar trends using all five alternatives,
and use (source IP, source port, destination IP, destination port)
as the flow identifier in the rest of this section to illustrate the
measurement results. The figures drawn in this section are all
from a trace-segment of about 2 million packets taken from
one of the packet header traces obtained on April 17, 2003.
Other traces produced virtually identical results.

1) Storage Complexity: With both MLE and MVE, we
observed that MRSCBF is able to process6 over 2 million

6The insertion algorithm of MRSCBF is independent of the estimation
mechanism.

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

E
st

im
at

ed
 fl

ow
 le

ng
th

 (
pa

ck
et

s)

Original flow length (packets)

estimated
original

(a) Original vs. estimated flow size. Note that both axes are on
logscale.

1

10

100

1000

10000

100000

0.001 0.01 0.1 1 10 100

F
lo

w
 le

ng
th

 (
pa

ck
et

s)

Normalized rank of flows

original
estimated

(b) Distribution of the original and estimated flow size.

Fig. 10. Estimation with MRSCBF using MVE with 32 groups.

packets before 50% of the bits in a bit-array of size 1MB are
set to 1. At this point the array is paged to disk and a new array
is initialized and used. If we scale this observation to a fully
loaded 10 Gigabit link, with an average packet-size of 1000
bits [12], MRSCBF will need to page 5 MB (uncompressed
data) to the disk every second. On the other hand, storing a
trace of all packet-headers would take 40 times more space.
Note that our estimate of 5 MB of data per second is arrived
at with conservative assumptions of very small packets (1000
bits) and 100% link utilization. The average utilization of high
capacity links is usually below 50% [13] and the average
packetsize is 2 to 6 times higher [14] than our assumption of
1000 bits. Thus we believe that while the worst case storage
requirement for MRSCBF is 5 MB per second, the average
requirement is quite likely to be an order of magnitude smaller.

2) Maximum Likelihood Estimation: Figure 8(a) shows the
scatter diagram of flow size estimated using MLE (0 axis) vs.
actual flow size (� axis) in terms of the number of packets in
the flow. The fact that all the points are concentrated within a
narrow band of fixed width along the 0.� � line indicates that
our estimates are consistently within a constant factor of the
actual multiplicity. Figure 8(b) shows the distribution of the
original and estimated flow volume (both of them are sorted by
the number of packets in a flow). We found that MLE gives a
near-perfect flow size distribution, indicated by the overlap of
the two curves in this figure. This is very useful in applications
such as network anomaly detection.

Figure 9 shows the cumulative distribution of relative error.
Different curves in this figure correspond to flows that are
larger than a particular size. We observe that about 30% of
the time MLE estimates the correct flow-size exactly. We also
observe that the relative accuracy of MLE is significantly
better if we consider only the flows with actual size 10 or
more. The reasons for this are twofold. First, we use only
3 hash functions in each group in the first SCBF (with

sampling probability 1) to improve the overall computational
complexity, and thus incur more false positives in the first
filter, leading to poor accuracy for small flows. Second, MLE
only returns integer estimates which magnifies the relative
error at small absolute values. MLE is not unbiased and tends
to slightly over-estimate flow size. During estimation using
MLE, the MRSCBF over-estimated the total number of packets
by about 3%. Similar observations hold on all three packet
header traces.

3) Mean Value Estimation: We ran MRSCBF with MVE
on the same sets of packet header traces. We evaluated filters
with 32 and 64 groups keeping the remaining parameters same
as before. We observed that like MLE, MVE also achieves a
constant relative error tolerance and produces a near-perfect
distribution of flow sizes. Figures 10(a) and 10(b) illustrate
these results. It can be seen that these figures are virtually
identical to Figures 8(a) and 8(b) presenting similar results for
MLE. However, unlike MLE, MVE is close to unbiased, and
over-estimated the total number of packets by only about 0.3%.
This is 10 times less than what we observed from MLE. In our
experiments, we observe that increasing the number of groups
in MVE will improve the accuracy of estimation for larger
flows, which again matches our expectations from Section V-
A and is consistent with our results on relative incremental
inaccuracy in Section IV-C.

Figure 11 shows the cumulative distribution of the relative
error of flow size distribution using a filter of 32 groups. The
slight bias in the curves for MLE in Figure 9 compared to the
roughly symmetric nature of the curves in Figure 11 is another
manifestation of the bias of MLE towards over-estimation.

VI. RELATED WORK

Burton Bloom [5] designed the Bloom filter as a space-
efficient data structure for answering set-membership queries
with a certain probability of false-positives that can be made

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-1 -0.5 0 0.5 1

P
[r

el
at

iv
e

er
r

<
 ε

] (
C

D
F

)

ε

<-- all flows

flows >=3 --->

<------- flows >=5

flows >=10 -->

flows >=100 --->all flows
flows >=3
flows >=5

flows >=10
flows >=100

Fig. 11. The cumulative distribution of relative error in flow size estimation
using MVE with 32 groups.

arbitrarily small. Bloom filters have found application in
numerous areas of Computer Science, most notably in database
applications, and more recently, in networking. A thorough
survey of Network Applications of Bloom Filters is presented
in [15].

Previous attempts at using Bloom filters to answer multiset
queries have produced a number of variations of counting
Bloom filter [16]. In its most basic form, a counting Bloom
filter has a counter associated with each bit in the array. When
an element � is inserted in a counting Bloom filter with !
hash functions "�� $D�D�D� "�% , each of the ! counters associated
with the bits "#� � �)� $D�D$DE ")%8� �#� are incremented by one. Un-
fortunately, due to collisions in hashing, quantitative estimates
based on counters might be a long way off the correct value
of the frequency of occurrence of any element in counting
Bloom filters. Approaches like conservative update [1] have
been proposed to counter this problem to some extent. Such
heuristics fail to provide any bounds on the estimation error
and do not yield to analysis. Counting Bloom filters are
not suitable from the implementation perspective either. They
require a large number of counters, each of them capable of
counting up to the largest possible multiplicity, thus wasting
both space and computation cycles. Attempts to improve the
space efficiency of counting Bloom filters have resulted in
the proposal of variable size counters [7]. Unfortunately, the
mechanism required to implement variable size counters is
complex, and unlikely to match the rate of a high speed link.

Estan and Varghese present algorithms in [1] that can
identify and monitor a small number of elephants with a small
amount of fast memory. The approach in [1] is to use a fast
mechanism to identify packets belonging to large flows and
then maintain per-flow state for such packets only. While this
work successfully addresses the problem of tracking the largest
few flows, monitoring just a few large flows precludes a range
of applications that would be served better with approximate
monitoring of all flows.

VII. CONCLUSIONS

Per-flow traffic accounting is important in a number of
network applications. However, current solutions such as
maintaining per-flow state or random sampling are either not
scalable or not accurate. We propose a novel data structure
called Space Code Bloom Filter that performs approximate yet
reasonably accurate per-flow accounting without maintaining
per-flow state. It is very amenable to pipelined hardware
implementation since its logic is simple and it is a write-only
data structure (blind streaming). We develop two procedures
for estimating the flow volume from observations of SCBF
based on the principles of Maximum Likelihood Estimation
(MLE) and Mean Value Estimation (MVE) respectively. Our
analysis shows that our estimation procedure will guarantee
constant relative error with high probability. Experiments with
a software implementation of SCBF and both estimation
algorithms on traffic traces from a Tier-1 ISP backbone agree
very well with our theoretical analysis.

REFERENCES

[1] C. Estan and G. Varghese, “New Directions in Traffic Measurement and
Accounting,” in Proc. ACM SIGCOMM, Aug. 2002.

[2] “http://www.caida.org.”
[3] M. Charikar, K. Chen, and Farach-Colton, “Finding frequent items in

data streams,” in ICALP. Lecture Notes in Computer Science, Springer-
Verlag, Heidelberg, Germany, 2002, pp. 693–703.

[4] R. M. Karp, S. Shenker, and C. H. Papadimitriou, “A simple algorithm
for finding frequent elements in streams and bags,” ACM Transactions
on Database Systems (TODS), vol. 28, pp. 51–55, 2003.

[5] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” CACM, vol. 13, no. 7, pp. 422–426, 1970.

[6] N. Alon, Y. Matias, and M. Szegedy, “The space complexity of approxi-
mating the frequency moments,” in Proceedings of the ACM Symposium
on Theory of Computing, 1996.

[7] S. Cohen and Y. Matias, “Spectral bloom filters,” in Proc. ACM
SIGMOD Conference on Management of Data, 2003.

[8] E. Demaine, J. Munro, and A. Lopez-Ortiz, “Frequency estimation of
internet packet streams with limited space,” in European Symposium on
Algorithms (ESA). Lecture Notes in Computer Science, Springer-Verlag,
Heidelberg, Germany, 2002.

[9] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge
University Press, 1995, pp. 57–63.

[10] P. J. Bickel and K. A. Doksum, Mathematical Statistics, Basic Ideas
and Selected Topics. Prentice Hall, 2001.

[11] C. Cranor, T. Johnson, and O. Spatscheck, “Gigascope: a stream database
for network applications,” in Proceedings of SIGMOD 2003, Jun 2003.

[12] C. Partridge, P. P. Carvey, E. Burgess, I. Castineyra, T. Clarke,
L. Graham, M. Hathaway, P. Herman, A. King, S. Kohalmi, T. Ma,
J. Mcallen, T. Mendez, W. C. Milliken, R. Pettyjohn, J. Rokosz,
J. Seeger, M. Sollins, S. Storch, B. Tober, and G. D. Troxel, “A 50-
gb/s ip router,” IEEE/ACM Transactions on Networking (TON), vol. 6,
no. 3, pp. 237–248, 1998.

[13] S. Iyer, S. Bhattacharyya, N. Taft, and C. Diot, “An approach to alleviate
link overload as observed on an IP backbone,” in Proceedings of IEEE
Infocom, San Francisco, Mar. 2003.

[14] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell,
T. Seely, and C. Diot, “Packet-level traffic measurement from the sprint
IP backbone,” IEEE Network Magazine, Nov. 2003.

[15] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: A Survey,” in Fortieth Annual Allerton Conference on Com-
munication, Control, and Computing, 2002.

[16] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: A scalable
wide-area Web cache sharing protocol,” IEEE/ACM Transactions on
Networking, vol. 8, no. 3, pp. 281–293, 2000.

APPENDIX

We first describe how a single Bloom filter with multiple
groups of hash functions (i.e. a SCBF) can be queried to obtain
an estimate of the number of insertions in the Bloom filter.
We then extend this result to address the possibility of false
positives and the impact of sampling before insertion. Finally,
we combines these results to complete the proof of Theorem
1.

A. MLE of a SCBF

Le f be the random variable representing the number
of elements inserted in the SCBF. All the events defined
henceforth are conditioned on the event f �

`
. Define7 �

as the event that a particular set of groups of hash functions� � ��� � � � �D$D�D � � � are matched. Let
M � � � � . Event A

happens if and only if events B and C happen, where event B
is the event that each of the

`
elements chooses one group from�

when the element is inserted into the SCBF, and C is the
event that all groups of hash function in

�
are chosen. Then

� RB� � � � � R8� ����� � � � R8� � � � � � R8� � � where � R8��� � � � � I �
^
.

Define �8' � as the event that for each of the
`

insertions,
the group

� ' � was never chosen given that all the
`

insertions
chose one of the

M
groups in

�
. We claim that � � � ' � � �� � � �

�
	
^

for any ,�� , � � � ' � � � '�� � � � � � ��	
^

for any ,���� , �
and so on. Now, the probability � R8� � � � � is the same as the
probability that none of the events � ' happens, i.e. � R8� � � � � �
� RB� � l '�
 � ��' � . Therefore, we haveHJI)K � U S 3m4 6�7 � HJI��� E�

� � � �
��

(4)

By the principle of inclusion and exclusion, we obtain the
following lemma.

Lemma 1: The probability that the set
�

groups
of hash functions is chosen given

`
insertions of

an item is given by: � � � � � � � � ��� ��� ����� � � � � ��� ���� � *� � I � � ��� I��� � * �!�!�O* �"� � � ��� � � ���� � � � ��#� �%$
B. Impact of false positives

We have assumed that false positives are negligible in the
proof of Lemma 1. In the following we incorporate the effect
of false positives into our equation. Suppose the fraction of “1”
in the array that holds all the SCBFs is � . Then the probability
of false positive in one of the virtual Bloom filters with ! ' hash
functions in each group is � %!& . The proof of lemma 1 can now
be suitably modified to reflect the possibility of false positives.

Lemma 2 (Decoding with false positives): Let � be a
Space-code Bloom filter such that elements of a multiset of
size � are inserted using one of F groups of ! hash functions.
Let � be the fraction of ‘1’s in the SCBF. The probability that
the set

�
groups of hash functions returns positive given

`
insertions of an item is given by:

7Strictly speaking, we should call this event
� (& +

because it is conditioned
upon the event ' S &

. In the interest of simplicity, we use
�

in the place
of
� (& +

everywhere except equation 9 where this conditioning needs to be
made explicit.

HJI)K � U S (�*��� + ����� 3�4 6 7 � ��0 1" 2 49 � � �� 0 (�i��� + ��� 0; �5� 4 � 9� � 3�4 �=�4 7 � > 4 � 9? � 3�4 � ?4 7 �� 8C8B8 > (�D� + ��� 0 4 � 94 � 9 � 3 9 4 7 �,EGF
(5)

Proof: By elementary probability theory, we getHJILK � U S ��0 1" HJILK � P (AS 9 U HJI)K (S 9 U (6)

where, e �*) represents the event that there are) false
positives out of

M
virtual Bloom filters. From the above

discussion on false positives, we know that the probability
of a false positive is � % . Using this, we get the probability of) false positives out of

M
positives:HJILK (S 9 U S 49 � C� �� 0 (���:�)+ ��� 0 (7)

Suppose the set of virtual Bloom filters that cause false
positives are associated with the groups of hash functions� � � , � � � , ...,

� �,+ . Suppose the remaining
M �-) groups of

hash functions are
��. � , �/. � , D�D$D , �/.�0 � + . � R8� � � e �) � is the

probability that the
`

packets have been inserted using at least
all the remaining

M �1) groups. Note that “false positive” is
a misnomer here — it only means that each of these filters
returns positive (when queried) even without insertions of
these

`
packets. So it is possible that some of the

`
packets

chose one or more of the
� � & when they are inserted.

We conditioned all probability on the fact that all
`

packets
used one of the

M
groups. Let � ' be the event that the groups

of hash functions
� . & , ,��-� 768$D�D�D# M �2) are never used. It

is easy to see that, � RB� � ' � � � � � �� �
^
, � R8� � '43 � l � �5� � � �� �

^
,D�D$D

, � R8� � � 3 ��� 3 D�D�D 3 � � �65 � � � 5 � �
^
.

� RB� � � e �) � is the probability that, there are no
positives other than the

M
positives and each of the q

insertions chooses one of the
M

groups of hash func-
tions in

�
. Therefore, We have � R8� � � e �) � = ���+�� % � h I ��� k � � I �
^
� R

� � � � � � � D�D$D � � � �75 � . By the principle of
inclusion and exclusion, we getHJI)K � P (AS 9 U S (���:�)+ ����� 3�4 6�7 � 8 ; ���g 4 � 9� � 354 �=�4 7 �

> 4 � 9? � 354 � ?4 7 � � 8B8!8 > (�D� + ��� 0 4 � 94 � 9 � 3 9 4 7 �,E (8)

Substituting the terms in equation 6 using equations 7 and
8 completes the proof.

After incorporating the effect of sampling in the decoding
mechanism we obtain the following equation:HJILK M P RTS $)U S ���! 1" HJILK � (& + U $ & � ' � (��� ',+ - � � �!/ (9)

See footnote 7 for clarification on �&�
`
� . Substituting equa-

tion 5 into equation 9 completes the proof of Theorem 1.

