
1

Distributed Network Monitoring with Bounded Link
Utilization in IP Networks

Li Li
Center for Networking

Research
Lucent Bell Labs

erranlli@dnrc.bell-labs.com

Marina Thottan
Center for Networking

Research
Lucent Bell Labs

marinat@dnrc.bell-labs.com

Bin Yao
Center for Networking

Research
Lucent Bell Labs

byao@dnrc.bell-labs.com

Sanjoy Paul
Center for Networking

Research
Lucent Bell Labs

sanjoy@dnrc.bell-labs.com

Abstract— Designing optimal measurement infrastructure is a
key step for network management. In this work we address the
problem of optimizing a scalable distributed polling system. The
goal of the optimization is to reduce the cost of deployment of
the measurement infrastructure by identifying a minimum poller
set subject to bandwidth constraints on the individual links. We
show that this problem is NP -hard and propose three different
heuristics to obtain a solution. We evaluate our heuristics on both
hierarchical and flat topologies with different network sizes under
different polling bandwidth constraints. We find that the heuristic
of choosing the poller that can poll the maximum number of un-
polled nodes is the best approach. Our simulation studies show
that the results obtained by our best heuristic is close to the
lower bound obtained using LP relaxation.

I. INTRODUCTION

With the deployment of QoS (Quality of Service) capable
networks, research in network measurement infrastructure is
gaining significance [9][2][12][10]. Accurate network mea-
surement is essential for understanding network behavior and
for providing Quality of Service (QoS) guarantees [5]. Most
commercial network management software use the Simple
Network Management Protocol (SNMP) [16] as the primary
method for data collection. Using SNMP involves running
SNMP agents on network devices and an SNMP manager polls
these devices for management information.

SNMP-based polling systems have an inherent overhead in
terms of processing load on network nodes and network band-
width consumption. This overhead is further exaggerated when
network devices are polled at a high frequency [18]. Such
frequent polling is vital for providing QoS guarantees and fast
failure detection. There is a considerable amount of work being
done to improve the performance of the SNMP protocol by
reducing the CPU load on the network node. For example,
work has been done both to improve SNMP primitives [4] as
well as to design better polling strategies by batching SNMP
requests [6]. On the other hand, not much research has been
done to reduce network bandwidth consumption. Bandwidth is
a revenue generating resource and therefore service providers
are reluctant to allocate large amounts of valuable bandwidth
for network management purposes. Thus bandwidth constraint
for network monitoring is an essential design criteria for any
measurement infrastructure.

In a centralized measurement system (all network nodes are
monitored from a central manager), poll responses have to be

forwarded to a central location in the network. This provides
a network-wide view but creates a potential for bandwidth
bottleneck on links that are close to the central manager.
On the other hand in a distributed measurement system [21],
the polling load is shared among multiple pollers located at
different points in the network. However, using distributed
pollers could increase the cost of network management in
terms of the number of pollers deployed and suffers from the
lack of a network-wide view.

Taking into account the issues of scalability and network-
wide view for large service provider networks, we envision
an ideal measurement architecture to be a hierarchical system.
A hierarchical system implies that there is a central manager
but the resource intensive tasks such as polling are distributed
among a set of polling nodes. Between the central manager
and the polling nodes, there exists a set of aggregating nodes.
The pollers are distributed and each poller is responsible for a
polling domain consisting of a subset of the network nodes. In-
formation gathered from the individual polling nodes are then
aggregated [17] at the aggregators. The condensed information
is then sent to the central manager that provides an overall
view of network behavior. Such a hierarchical architecture
reduces bandwidth overhead while still maintaining a network-
wide view.

In the hierarchical polling-based measurement infrastruc-
ture, the bandwidth overhead is mainly composed of polling
traffic to the network nodes. The amount traffic to the ag-
gregator from the polling nodes, and to the central manager
from the aggregator, is expected to be significantly smaller.
Therefore, by just distributing the polling traffic the overall
impact on network bandwidth can be significantly minimized.
However, using a large number of distributed pollers will
increase the cost of deployment and increase the complexity
of the aggregation process. In this work, we identify a small
subset of the nodes as the distributed poller locations that are
required for a given network topology, with a known polling
load, under a fixed per link bandwidth constraint. Our problem
formulation includes the bandwidth constraint explicitly since
it is extremely critical that the measurement system does not
create a potential for bottleneck links in the network.

Our work focuses on optimizing a measurement system
for a service provider network that supports QoS. The main
contributions of our work are as follows: We first show that

2

the problem of minimizing the number of pollers in a given
network subject to bandwidth constraints is NP hard. We pro-
vide solutions to this problem by using heuristics based on the
polling load and the maximum assignment of pollees. We show
that the results obtained using the heuristic of maximum pollee
assignment with re-shuffling is the most scalable in terms of
both the number of pollers as well as the total bandwidth
consumed by the measurement traffic. Based on empirical
studies, we show that our results are close to the optimal
solution by a factor of 4.5 in terms of the number of pollers
and by a factor of 2 in terms of bandwidth consumed. We
also provide detailed simulation studies for service provider
networks with a hierarchical topology as well as for enterprise
networks. The impact of QoS support on measurement systems
is accounted for by including the bandwidth required for
Multi-Protocol Label Switched (MPLS) tunnel monitoring1.

The paper is organized as follows. In Section(II) we pro-
vide the integer programming formulation for finding the
minimal set of pollers in a given network, as well as the
assignments of individual nodes to the poller set, subject to
bandwidth constraints. We show that this problem is NP-hard.
In Section(III) we propose several heuristics that can provide
reasonably good solutions to this problem and these solutions
are evaluated based on the number of pollers chosen and the
total bandwidth overhead incurred. The results obtained are
also compared with the LP relaxations. Section(IV) provides
simulation studies on both enterprise and service provider
environments. We also evaluate our heuristics under different
capacity constraints on the polling bandwidth.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Our model for the service provider network is an undirected
graph G = (V,E), where V = {v1, v2, ..., vn} is the set of
nodes or routers that must be polled and e = (vi, vj) represents
the edge that connects the nodes vi and vj and e ∈ E, where
E represents the set of edges. Our model assumes that the
graph edges are un-directed since we assume that the SNMP
poll requests and poll responses are approximately equal in
size (number of bytes)2. The graph model spans the entire
service provider network from the aggregating nodes at the
access points to the core nodes. Therefore n = |V | is the total
number of routers in the service provider network (including
the access routers) and m = |E| is the total number of links
in the network but does not include the incoming links at the
access routers.

In this work we assume that SNMP managers (pollers) can
be co-located with network nodes. Each node vi generates a
polling traffic of wi bps. This polling traffic is destined to the
poller that has been assigned to this node. The polling load
from each node is a function of the number of physical links
as well as logical links (i.e. MPLS tunnels). Let l(e) and b(e)
represent the actual polling bandwidth used and the amount
of link bandwidth allocated for polling traffic for each of the
edges. Bandwidth constraint is typically a fraction of the total
capacity c(e) on the link.

1Tunnel monitoring is done using MPLS traffic engineering MIB [15]
2Here we do not expect to poll for large tables since in this case there is

a significant increase in the response size relative to the query size

The optimal poller location and pollee assignment problem
minPL can therefore be stated as follows: Given a network
G = (V,E), determine (1) a minimum subset of nodes
S ⊆ V on which to place pollers such that the the bandwidth
constraint on each and every link l(e) ≤ b(e) is satisfied
where b(e), is the maximum bandwidth that can be used for
polling on link e. (2) a mapping λ which maps a pollee to
its poller. That is, for each node vi, if λ(vi) = vj , then node
vi is assigned to the poller placed on node vj . Note that, if
λ(vi) = vi, then node vi is being polled by itself.

In this paper, we assume that the routes between the poller
and the pollee are fixed and symmetric. This assumption is
reasonable since in a typical service provider network the
routing paths are fairly stable. We assume that these routing
paths are known and therefore considered as input to our poller
placement problem.

A. Integer Programming Formulation for minPL

Given our assumption that routes are fixed between any
given poller-pollee pair, the problem formulation presented
above can be casted into an integer programming formulation.

Let n = |V | be the total number of nodes in the network;
The binary variable xij , indicates whether node vi is polled by
node vj , where vi, vj ∈ V . The binary variable δij

e indicates
whether edge e belongs to the path Pij between node vi and
vj . Let wi represent the polling bandwidth required to poll
node vi and be corresponds to the bandwidth constraint on the
edge (physical link) e.

Our objective is:

Minimize

n∑

j=1

yj (1)

subject to
n∑

j=1

xij = 1, for each vi ∈ V (2)

xij ≤ yj , for each vi, vj ∈ V (3)
n∑

i

n∑

j

δij
e wixij ≤ b(e) for each e ∈ E (4)

xij ∈ {0, 1}, for each vi, vj ∈ V (5)

yj ∈ {0, 1}, for each vj ∈ V (6)

The first constraint makes sure that each node vi is assigned
to exactly one poller. The second constraint guarantees that a
node vj must be a poller if some other node vi is assigned
to it. The third constraint ensures that the sum of the polling
bandwidth used by all the poller pollee pairs on each link does
not exceed its allocation.

B. Computational Complexity of the minPL Problem

Theorem 2.1: Computation of the optimal solution to the
minPL problem is NP-hard.

Proof: The minPL problem is proven to be NP-hard via a
reduction from the multi-processor scheduling problem, which
is stated as follows. Given the set of tasks T , the number of

3

available processors m, length L(t) for each task t ∈ T and
a deadline d <

∑
t∈T L(t), find a m-processor schedule that

meets the overall deadline.
Given an instance of the m-processor scheduling problem,

we create an instance of minPL problem. For each task t ∈ T ,
create a pollee node that has a polling demand of L(t). We
use Q to represent these nodes. Now pair-wise connect nodes
in Q with links that have a polling bandwidth allocation of∑

t∈T L(t). Such a construction results in a clique of size |T |.
For each processor in the scheduling problem, create a new
node whose bandwidth demand is

∑
t∈T L(t), and connect

this node to an arbitrary node in Q with a new link that has
d amount of bandwidth allocated for polling traffic. This step
creates m additional nodes represented by P , and m additional
links. Fig. 1 illustrate the minPL instance constructed from
a scheduling problem that has four tasks, two processors, and
deadline d.

Q1 Q2

Q3Q4p1 p2

d d

Fig. 1. Reduction from scheduling problem

Clearly, any node in P can only be polled by itself since
its only link has bandwidth constraint d, which is less than
its own demand,

∑
t∈T L(t). Therefore, the solution to this

minPL instance has at least m pollers. Consequently, if the
minPL problem has exactly m pollers, all nodes in P and only
nodes in P are pollers, with each poller handling no more than
d amount of traffic from its pollees in Q. Since every node in
Q is polled by a node in P , the poller-pollee relation between
nodes in P and Q gives a m-processor schedule that satisfies
the deadline d. On the other hand, suppose that the scheduling
problem has a m-processor schedule, then a m poller solution
can be constructed as follows: for a node q ∈ Q, find the
processor on which the task represented by q is scheduled, let
q be polled by the node p ∈ P that represents that processor.
This completes the proof.

III. HEURISTIC ALGORITHMS FOR MINPL

It is well-known that the Integer Programming formulation
minPL described in Section(II) has an exponential running
time in the worst case. In this section, we propose two sound
heuristic algorithms. We also give a random poller placement
scheme which serves as a base line for the evaluation of
the two main heuristics employed. In addition, we use the
Linear Programming (LP) relaxation as a crude lower bound
to compare with our greedy heuristics.

Table I illustrates our greedy algorithm which consists of
three steps. In the first step our algorithm greedily picks
an additional poller (based on the greedy selection criteria
described in Section III-A) if there are any nodes still present
in the network that does not have a poller assigned to it. In

TABLE I

HEURISTIC GREEDY ALGORITHM FOR minPL

Algorithm GreedyPollerPlacement(G,w, b)
Input: G = (V , E) is the undirected network.

w is the vector of polling load for
each node.
b is the vector of bandwidth constraints
on polling traffic for each edge.
Tu is the routing subgraph used by u to
reach all v ∈ V .

Output: S ⊆ V a set of pollers and λ the
poller-pollee mapping.

1. set A = V and S = ∅;
2. while A �= ∅ do
3. u = GetNextPoller(G, λ, w, b);
4. S = S ∪ {u};
5. B = MaxPollee(G, Tu, λ, u, w, b);
6. A = A − B − {u};
7. ShuffleAndReduce(G, S, λ, u, w, b);

the second step, after a poller is picked, the algorithm tries to
assign the maximum number of un-polled nodes to the poller
without violating bandwidth constraints (we refer to this sub-
problem as the maxPollee problem)3. In the third step, the
algorithm tries to reassign the pollees of other pollers to the
new poller, if the overall bandwidth usage can be reduced
when compared to the previous assignment. Care is taken
to ensure that bandwidth constraints are not violated. This
procedure is referred to as ShuffleAndReduce. The details of
these steps are outlined in the next three subsections.

A. Heuristics for the Greedy Selection of Pollers: Get-
NextPoller

Our proposed greedy heuristics tackle the problem of pick-
ing the next poller, i.e. procedure GetNextPoller in Table I.
We present 3 different heuristics to solve this problem.

Poller Selection Based on Polling Load: HmaxLoad Our
first heuristic is to choose additional pollers4 based on polling
load. We refer to this heuristic as HmaxLoad. It sorts the
polling demand wi of each node vi ∈ V − S in decreasing
order. Then it picks a node with the highest polling demand.
This greedy heuristic is based on the intuition that, by choosing
pollers based on their own polling load we can minimize
the impact on the bandwidth constraints on the individual
links of the network. The difference in polling load for the
different nodes in the network is due to the degree of the
node as well as the nature of the information being polled. For
example in the case of an MPLS network, if the information
pertaining to the MPLS tunnels are only polled at the source
and destination nodes then this will cause the edge nodes to
have a significantly higher polling bandwidth than the core
nodes.

Poller Selection Based on maximum number of Pollees:
HmaxPollee Our second heuristic is to choose an additional
poller u from the set V −S such that u can poll the maximum
number of additional pollers without violating bandwidth

3Note that step 5 is not needed for our HmaxPollee heuristic discussed in
Section III-A

4The first poller is also chosen using the polling load criteria, (i.e.) in the
algorithm we start with S = ∅

4

constraints. We refer to this heuristic as HmaxPollee. The
intuition is that, if we assign as many pollees as possible to
each poller, we can minimize the number of pollers required.
Note that this heuristic requires first solving the MaxPollee
problem which we discuss in Section(III-B). The MaxPollee
problem finds the maximum number of un-polled nodes that
can be assigned to a given poller without violating the imposed
bandwidth constraints.

Random Picking of Pollers: HRandom The third heuristic
is to pick a poller from V − S randomly. This heuristic
serves as a base-line comparison for the other greedy heuristics
proposed earlier.

B. Computing the Set of Pollees for a Poller: MaxPollee

Once we select a poller, we need to determine the set of
pollees to be assigned to that poller. Ideally, we would like to
assign maximum number of un-polled nodes to a new poller.
Here an un-polled node refers to those nodes that are not
yet assigned to a poller. This problem is referred to as the
MaxPollee problem: Given a poller u, we would like to find
the maximum set of pollees that can be polled by u without
violating the bandwidth constraint.

Let Gu = (V,Eu) be the graph where Eu includes edges
on the route from v to u, for each v ∈ V − {u}. The general
problem where Gu is not a tree is NP-hard (see Appendix for
the reduction from the Maximum Independent Set problem).
Fortunately the problem can be solved optimally if Gu is a
tree. Therefore we assume that the network graph forms a tree.
This assumption is reasonable since the shortest path routes in
a network form a tree. Table II shows the algorithm to solve
this RestrictedMaxPollee problem. The algorithm first sorts

TABLE II

OPTIMAL ALGORITHM FOR RESTRICTED MAXPOLLEE PROBLEM

Algorithm RestrictedMaxPollee(G,Tu, λ, u, w, b)
Input: G = (V , E) is the undirected network.

u is the poller.
Tu is the tree containing the unique
path from each un-polled node.
v ∈ V − {s} to s.

Output: J ⊆ V the maximum set of pollees
that can be polled by u.

1. set J = ∅
2. sort un-polled nodes in increasing demand

w and their level in the tree
3. consider each node v in increasing rank
4. if (canAssign(Tu, u, v, w, b))
5. J = J ∪ {v}
6. return J

the nodes in increasing order based on demand and their level
in the tree, i.e. if demands are the same for any two nodes,
then the node with smaller level appears first in the ordering
scheme. If the level is also the same, then node with the
smaller identifier appears first. Then each node is considered
in increasing rank of the ordering scheme. If a pollee v can be
assigned to poller s without violating the bandwidth constraint
on each link, then v is included in the solution set J .

Theorem 3.1: The RestrictedMaxPollee problem can be
solved optimally in O(n2) time.

Proof: Assume that nodes are ordered in increasing demand
and level. Ties are broken by node identifier. π(vi) gives the
rank of node vi in this ordering. Let the poller set given by
RestrictedMaxPollee be J . Let us order the nodes in J by
their rank as follows: v′

1,v′
2, · · · , v′

k where k = |J |. Denote
this ordering as OJ . We consider the optimal solution which
consumes minimum bandwidth. If there are more than one
such optimal solutions, we consider the one with minimum
total rank. If there are still ties, we consider the optimal
solution which shares the largest prefix with OJ . Lets denote
the optimal solution chosen in this process J∗. Let the ordering
OJ∗ be v∗

1 ,v∗
2 , · · · , v∗

t where t = |OJ∗ |. Assume that the
pollees are picked one at a time in this ordering. Suppose
they start differing at the i-th node in OJ , (i.e.) v∗

j = v′
j ,

∀j < i. It must be the case that π(v′
i) < π(v∗

i) otherwise
RestrictedMaxPollee must have picked v∗

i instead of v′
i.

Since v′
i does not appear in J∗, there must exist at least one

bottleneck link from v′
i to the poller s. Lets consider the bottle

neck link e that is the first to became bottleneck for v′
i and it is

happened when the optimal algorithm assigns v∗
f to the poller.

It must be the case that π(v∗
f) > π(v∗

i) since the optimal
algorithm pick pollees in their increasing rank. Since e is a
bottleneck, no node v∗

j such that π(v∗
j) > π(v∗

f) belongs to
the subtree rooted at the endpoint of e that is further away
from the root s (note that w(v∗

j) ≥ w(v∗
f)). Replacing v∗

f with
v′

i in OJ∗ , we obtain an optimal solution whose total rank is
less than J∗. Again this contradicts our assumption.

The sorting takes O(nlogn). Each node is considered once
in the iteration and the function canAssign needs only to
check whether there is bandwidth available from v to s.
Therefore, the running time is O(hn) for this step where h
is the height of the tree. Therefore, the total running time is
O(n2).

C. Reducing Bandwidth Consumption: ShuffleAndReduce

TABLE III

PROCEDURE FOR SHUFFLEANDREDUCE

procedure ShuffleAndReduce(G, S, λ, u, w, b)
1. sort all the pollees in set V − S in

decreasing demand.
2. for each v ∈ V − S
3. if (ReduceBandWidth(G, v, u, w, b))
4. λ(v) = u;

5. for each s ∈ S
6. if (NumPollees(s)==0 and

CanAssign(Tu, u, s, w, b))
7. λ(s) = u;
8. S = S − s;

The algorithm tries to shuffle the pollees that have been
assigned to previously chosen pollers, provided that reassign-
ing a pollee v to a poller u reduces the bandwidth usage
and does not violate any bandwidth constraints. This step is
illustrated in Line 1-4 of Table-III and we refer to this step
as PolleeShuffle. This step is necessary to reduce the overall
bandwidth consumption since pollees may have been assigned
to previously chosen pollers that are further away than the
current poller. To overcome the inefficiencies in bandwidth

5

usage it is necessary to have the pollee shuffle mechanism.
Note that, one might augment PolleeShuffle with additional
mechanisms to reduce the number of pollers in the process.
For example, if all the pollees of a given poller s have been
reassigned, then one can try to reassign the poller s to the
current poller u and remove s if the reassignment complies
with bandwidth constraints. One can also do ShuffleAndReduce
separately for each existing pollers s and its pollees. This
increases the chance that a poller gets removed during the
ShuffleAndReduce process. There are many other variations
that can be used for shuffling, we tested the afore-mentioned
augmentation in lines 5-8 in Table-III.

D. Computing Lower Bound from LP Relaxations

Our primary goal is to minimize the set of pollers for a
given network topology. We would like to know how the
solution computed by our heuristic algorithms differ from the
optimal. Since we cannot compute the optimal solution to the
Integer Programming formulation of the minPL, we would
like to compare our solution with some lower bound. We
choose to use the solution from the LP relaxation of the integer
programming formulation in Section II-A as the lower bound.
Specifically, the LP relaxation gives the lower bound on the
number of pollers required for a given topology.

To obtain the lower bound on the bandwidth consumption
we make the assumption that the number of pollers is given.
We would like to compare the total bandwidth consumed by
our solution to the minimum possible bandwidth consumption
assuming a fixed number of pollers. This problem (referred to
as the OptimalPolleeAssignment problem) is also NP-hard via
a reduction from the BinPacking problem(see Appendix for
proof). The lower bound on bandwidth consumption in this
case is obtained by solving the LP relaxation for the following
integer programming problem:

Minimize
∑

e∈E

n∑

i

n∑

j

δij
e wixij (7)

subject to

n∑

j=1

xij = 1, for each vi ∈ V (8)

xij ≤ yj , for each vi, vj ∈ V (9)
n∑

i

n∑

j

δij
e wixij ≤ b(e) for each e ∈ E (10)

n∑

j=1

yj ≤ k (11)

xij ∈ {0, 1}, for each vi, vj ∈ V (12)

yj ∈ {0, 1}, for each vj ∈ V (13)

where k is the number of pollers given by the heuristic
algorithm we choose to compare.

E. Time Complexity of the proposed algorithms

The procedure GetNextPoller is implemented differently
for different heuristic algorithms. For the HmaxLoad algo-
rithm, we sort the nodes in decreasing load once. Therefore
this step takes O(nlogn). For the HmaxPollee algorithm, the
procedure GetNextPoller needs to find the node which can
poll maximum additional unassigned nodes. This step requires
invoking the maxPollee algorithm n times. Therefore the order
is O(n3) since the maxPollee algorithm has an order of n2.
For the HRandom algorithm, it takes O(1) to randomly pick a
node.

The procedure MaxPollee takes O(n2) for the pollee
assignment since it makes use of the RestrictedMaxPollee
algorithm. The algorithm goes through k iterations where k
is the number of pollers chosen. The RestrictedMaxPollee
is used by the HMaxLoad and HRandom heuristics. The
HMaxPollee heuristic does not require another RestrictedMax-
Pollee algorithm since the choice of the poller was already
determined using the RestrictedMaxPollee algorithm.

The ShuffleAndReduce step has a complexity of O(nlogn)
with k iterations. Taking into account all three steps, the
total running time for our proposed algorithm under each of
the heuristic schemes are as follows: O(kn2) for HmaxLoad,
O(kn3) for HmaxPollee and O(kn2) for HRandom. The
HmaxPollee heuristic has the highest running time.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of the vari-
ous heuristic algorithms on several different topologies and
parameter settings. For simplicity, we make the reasonable
assumption of shortest path routing. The focus of our work
is to optimize the measurement infrastructure for service
provider networks. However in the interest of discussing the
performance of the algorithm we also present results for
enterprise networks.

A. Simulation Setup

Since the service provider network is inherently hierar-
chical with metro and core networks, we chose to generate
hierarchical network topologies. We use the Tier topology
generator [8] for service provider networks. In the service
provider network there are three types of links: (1) intra-
core link; (2) intra-metro link; and (3) metro-to-core link. In
our simulation we have three scenarios with different capacity
allocation schemes as shown in Table-IV. These schemes are
reasonable approximations of today’s provider networks. For
each bandwidth tier we evaluate our algorithms at network
sizes of 200, 400 and 800 nodes.

Link Type
1 2 3

Tier 3 OC48 OC3 OC12
Tier 2 OC48 OC12 OC12
Tier 1 OC192 OC48 OC48

TABLE IV

BANDWIDTH ASSIGNMENT SCHEMES FOR SERVICE PROVIDER NETWORKS

6

For enterprise networks we assume a flat topology and all
the links are assumed to have the capacity of fast Ethernet. We
generate the flat network topology using the GT-ITM topology
generator[22]. The network graph used in this study is the
Waxman model [20].

In our simulations, we assume that each interface or MPLS
tunnel requires a polling bandwidth of 4kbps/sec. The number
of MPLS tunnels per node is randomly chosen from the range
of [1,1000]. To the best of our knowledge these parameters are
typical of service provider environments. Since we expect the
number of MPLS tunnels to be large, for scalability reasons
we assume that the tunnels are only monitored at the source
and destination nodes. We choose not to poll core nodes for
MPLS specific information. For the enterprise network, the
number of MPLS tunnels per node is randomly chosen from
the range of [1,500].

For each tier of service provider networks we generate 5
topologies. In the case of enterprise networks we generated
different network topologies by varying the parameter β for
a fixed α. The varying β gives topologies with degree of
connectivity ranging from 3 to 8. Each link allocates a certain
fraction of their bandwidth for polling traffic based on the
capacity constraint imposed for the link. This fraction is the
same for all links in our simulation. We call this parameter
LINKF. The results presented are averaged over the different
topologies.

The goal of our simulation study is to see the power of
the heuristics to compute a “good” solution that can be used
in practice to design network measurement infrastructure. Our
performance metrics are (1) total number of pollers required,
and (2) fraction of total bandwidth consumed for polling.

B. Performance Comparison Among Greedy Heuristic Algo-
rithms

Link Fraction Number of Nodes
for Polling 200 400

HmaxLoad 5% (15±3, 0.91%) (32±7, 0.85%)
10% (7±3, 1.50%) (16±2, 1.38%)

HmaxPollee 5% (6±2, 0.94%) (15±4, 0.97%)
10% (2±1, 1.45%) (6±2, 1.33%)

Random 5% (13±2, 0.84%) (29±2, 0.89%)
10% (6±1, 1.33%) (13±4, 1.35%)

TABLE V

PERFORMANCE OF HEURISTIC ALGORITHMS FOR TIER 2 SERVICE

PROVIDER NETWORKS. EACH TUPLE IS (NUMBER OF POLLERS REQUIRED

WITH VARIANCE, FRACTION OF TOTAL BANDWIDTH USED.)

Table-V compares the performance of the HmaxLoad,
HmaxPollee and HRandom algorithms. Each tuple in the
Table V represents the average number of pollers used with the
variance term and the fraction of bandwidth used for polling.
From Table V, we see that in the Tier 2 service provider
architecture, the HmaxLoad performs worse than HRandom.
HmaxPollee performs much better than the other two heuristics
in terms of the number of pollees required with some increase
in polling bandwidth. When LINKF = 5%, HmaxPollee needs

only 6 pollers whereas HmaxLoad and HRandom needs 9
and 7 additional pollers respectively. When LINKF = 10%,
HmaxPollee needs just 2 pollers whereas HmaxLoad and
HRandom needs 5 and 4 additional pollers. Note that in each
case there is a clear tradeoff between the number of pollers
and the bandwidth consumed. Although HmaxPollee requires
fewer number of pollers, it consumes more bandwidth than the
other two heuristics. The performance of the HmaxPollee with
respect to the HRandom heuristic remains the same regardless
of the capacity constraint. This implies that in order to reduce
the number of pollers required, choosing a poller based on the
ability to poll maximum number of nodes is the best scheme
(note that HmaxPollee and HRandom differ only at this step
of picking the poller). However, the reduction in the number
of pollers comes at the cost of bandwidth consumed.

We also observe that as expected by increasing the capacity
reserved (LINKF parameter) for polling we can always reduce
the number of pollers regardless of the heuristics used. This
further highlights the importance of the bandwidth constraint
in the formulation of this problem.

Link Fraction Number of Nodes
200 400

shuffle 5% (6±2, 0.94%) (15±4, 0.97%)
10% (2±1, 1.45%) (6±2, 1.33%)

no shuffle 5% (7±5, 1.21%) (20±9, 1.32%)
10% (2±1, 1.55%) (6±3, 1.76%)

TABLE VI

EFFECT OF POLLEE SHUFFLE USING HMAXPOLLEE

Effect of ShuffleAndReduce: In our study we found that
the procedure ShuffleAndReduce (shown in Table III) is
very effective. Table VI illustrates this using HmaxPollee as
an example. Note that the effect of the pollee shuffle is
primarily aimed at reducing the bandwidth consumed. Without
ShuffleAndReduce, bandwidth usage would be 29% more in
the 200 node networks when LINKF = 5%. Also as shown
in Table VI for 400 node networks without shuffling we need
5 more pollers when LINKF = 5%; In addition, bandwidth
usage would increase by 36%. ShuffleAndReduce reduces the
number of pollers because it clusters the pollees around the
closest poller. This results in reduced bandwidth consumption
at each step, which in turn reduces the total number of pollers
needed.

Link Fraction Number of Nodes
200 400

HmaxLoad 5% (42±8, 0.66%) (89±13, 0.59%)
10% (23±5, 1.25%) (53±7, 1.13%)

HmaxPollee 5% (27±3, 0.89%) (65±10, 0.75%)
10% (12±5, 1.53%) (29±7, 1.36%)

Random 5% (44±4, 0.73%) (101±10, 0.69%)
10% (22±5, 1.22%) (51±9, 1.31%)

TABLE VII

PERFORMANCE OF HEURISTIC ALGORITHMS FOR TIER 3 SERVICE

PROVIDER NETWORKS.

Effect of Link Capacity: From Table VII and Table VIII,

7

Link Fraction Number of Nodes
200 400

HmaxLoad 5% (3±1, 0.41%) (7±1, 0.56%)
10% (2±0, 0.43%) (4±2, 0.62%)

HmaxPollee 5% (1±0, 0.40%) (1±0, 0.49%)
10% (1±0, 0.40%) (1±0, 0.54%)

Random 5% (3±1, 0.42%) (6±1, 0.49%)
10% (2±1, 0.46%) (3±0, 0.58%)

TABLE VIII

PERFORMANCE OF HEURISTIC ALGORITHMS FOR TIER 1 SERVICE

PROVIDER NETWORKS

we see that the number of pollers needed is inversely pro-
portional to the network capacity. In tier 1 where network
capacities are less than in tier 3 we require more pollers.
However as expected as the number of pollers increases the
bandwidth consumed decreases as well. This result further
justifies our distributed polling architecture when compared to
a centralized system. Furthermore, the HmaxPollee algorithm
still performs the best among the three heuristics.

The trend on the number of pollers as a function of network
size is shown in Figure 2. We see that HmaxPollee scales better
than the other two algorithms. The graph for LINKF=5%
shows that there is almost no distinction between HmaxLoad
and HRandom suggesting that greedily picking the next poller
based purely on polling load is not a good heuristic. It is only
as good as randomly picking the next poller.

0

10

20

30

40

50

60

70

200 300 400 500 600 700 800

A
ve

ra
ge

 N
um

be
r

of
 P

ol
le

rs

Number of Nodes in the Network

HmaxLoad
HmaxPollee

Random

(a) LINKF=5%

0

5

10

15

20

25

30

35

200 300 400 500 600 700 800

A
ve

ra
ge

 N
um

be
r

of
 P

ol
le

rs

Number of Nodes in the Network

HmaxLoad
HmaxPollee

Random

(b) LINKF=10%

Fig. 2. Minimum number of Pollers as a function of Network Size

Application to Enterprise Networks: From Table-IX we

Link Fraction Number of Nodes
100 200

HmaxLoad 5% (10±4, 1.38%) (9±2, 0.74%)
10% (5±1, 1.82%) (4±1, 0.81%)

HmaxPollee 5% (6±1, 1.63%) (5±0, 0.79%)
10% (3±1, 1.72%) (3±0, 0.82%)

Random 5% (12±1, 1.49%) 10±2, 0.78%)
10% (5±1, 1.87%) (5±1, 0.84%)

TABLE IX

PERFORMANCE OF HEURISTIC ALGORITHMS FOR ENTERPRISE

NETWORKS (100 NODES: WAXMAN α = .2, β = 0.15).

see that the performance of the MaxPollee heuristic is the best
among the three algorithms. The impact of the average degree
of connectivity on the performance of the MaxPollee heuristic
is presented in Table-X. The average degree of connectivity
varies from 3.5 to 8 as β varies from 0.08 to 0.2 for a fixed α
of 0.2. Note that the performance of the HMaxPollee heuristic
improves as the degree of connectivity increases.

C. Comparison with LP Relaxations

Ideally we would like to see how far our solutions are from
the optimal solution. We are unable to obtain optimal solution
for any reasonable sized network since our integer program-
ming solver [1] could not compute the optimal solutions even
for a small network of just 50 nodes. Therefore we use the
LP relaxation of our problem to compute a crude lower bound
on the optimal solution. The LP solution can be computed in
reasonable time for relatively large networks using ALPO [19].
Since HmaxPollee performs the best among the three greedy
heuristics, we only need to compare HmaxPollee with the LP
lower bound. We only present the results on the topology
that gives the worst approximation ratio. The approximation
ratio is defined as the ratio between the number of pollers
given by HMaxPollee and the best possible estimate of the
lower bound. A tie is broken by using the largest fraction of
bandwidth usage. Table-XI presents the comparison between
our results and those obtained using the LP bound. Note that,
the second item in the tuple for LP bound is the fraction
of bandwidth used given that the number of pollers used
is the same as HmaxPollee in the respective cases (not the
fraction of bandwidth consumed for the LP relaxation of
minPL problem.).

Link Fraction Number of Nodes
200 400

HmaxPollee 5% (7, 0.70%) (18, 0.91%)
10% (2, 1.62%) (7, 1.43%)

LP bound 5% (2, 0.52%) (-, -)
10% (1, 1.24%) (-, -)

TABLE XI

COMPARISON OF HMAXPOLLEE WITH LP LOWER BOUND: TIER 2

SERVICE PROVIDER NETWORKS

For the 200 node tier 2 network5, the lower bound on
the number of pollers is 2 when LINkF = 5% and 1 when

5Our LP solver cannot solve the 400 node case in reasonable time.

8

Link Fraction β
0.08 0.1 0.15 0.18 0.2

HmaxPollee 5% (9, 1.72%) (8, 1.35%) (5, 0.73%) (5, 0.58%) (4, 0.57%)
10% (4, 2.03%) (3, 1.52%) (3, 0.75%) (2, 0.62%) (2, 0.56%)

TABLE X

PERFORMANCE OF HmaxPollee FOR ENTERPRISE NETWORKS (200 NODES: WAXMAN α = .2).

LINKF=10%. Given the number of pollers to be 7 and 2
for LINKF = 5% and 10%, the lower bound on the fraction
of bandwidth used is 0.52% and 1.24% which is very close
to the bandwidth fraction (0.7% and 1.62%) required for
HmaxPollee.

Link Fraction Number of Nodes
100 (β = 0.15) 200 (β = 0.08)

HmaxPollee 5% (6, 1.79%) (9, 1.72%)
10% (4, 1.65%) (4, 2.03%)

LP bound 5% (1, 1.02%) (1, 0.99%)
10% (1, 1.24%) (1, 1.38%)

TABLE XII

COMPARISON OF HMAXPOLLEE WITH LP LOWER BOUND: ENTERPRISE

NETWORKS

The LP lower bound for enterprise networks is shown in
Table XII. The relative difference between HmaxPollee and LP
lower bound is similar to that in the case of service provider
networks. From the Table we see that the LP solution has
1 poller while the HmaxPollee solution has 6 pollers. Note
that the optimal number of pollers needed is at least two. The
reason is that RestrictedMaxPollee gives the optimal solution
if only one poller is needed. Since the solution obtained from
the LP relaxation is 1 and the optimal is at least 2 in this
problem instance, we can say that the integrality gap of the
minPL problem is at least 2. Integrality gap is defined as the
ratio of the optimal solution to the solution obtained using LP
relaxation[14]. Based on the low bound on integrality gap and
empirical data in Table XI and XII, we see that our results are
close to the optimal solution by a factor of 4.5 in terms of the
number of pollers and by a factor of 2 in terms of bandwidth
consumed.

V. RELATED WORK

The problem formulation presented in this paper is unique
when compared to prior work done in the area of network
measurements. In [3], the authors solve the problem of iden-
tifying the optimal set of nodes that must be monitored for
measuring bandwidth utilization on the network. This problem
is approximated by a minimum vertex cover formulation. In
the same work they also address the question of identifying
the optimal set of probes for latency measurements. They
show that this problem can be formulated as a facility location
problem. In both cases there is an assumption that there is only
a single poller in a given network. In our work, we require that
the network has distributed pollers. This assumption allows for
more fine-grained monitoring on all the nodes.

Similar to our approach, the work done by Jamin et. al [11],
has a distributed system flavor. This work addresses the prob-
lem of optimal placement of measurement instrumentation.
The objective of this problem is very similar to our minimum
pollers problem however, the two formulations differ in the
constraints imposed. In Jamin’s work they propose two graph
theoretic approaches to determine the number and placement
of the measurement instrumentation. Both of these methods
require a priori knowledge of network topology. In the first
approach they solve an instrumentation location problem that
is constrained by a maximal center to node distance. This
problem is solved using k-hierarchically well-separated trees.
In the second approach they assume that the number of
measurement centers is given and one needs to decide their
location such that the maximum distance between the node and
the center is minimized. This problem is solved by mapping to
a minimum k-center problem. Liotta [13] also formulated the
problem of computing agent locations as a minimum k-center
and minimum k-median problem. He proposed several novel
approximate solutions to reduce the computational overhead
of existing solutions [7]. Our problem formulation is different
since it poses a constraint on the measurement bandwidth on
any given link regardless of the distance between the poller
and the pollees. Thus the first approach proposed in [11] does
not apply to our case. Furthermore, since the goal of our
problem is to minimize the number of pollers required in a
given network topology, the second approach which assumes
that the number of measurement centers is known is also not
suitable.

VI. DISCUSSION

The primary motivation for our work is based on the
assumption that in order to design good measurement in-
frastructure it is necessary to have a scalable system at a
reduced cost of deployment. With this view we proposed
a hierarchical measurement architecture. The key feature of
this architecture was to distribute the resource intensive tasks
across the network. One such task is the polling of individual
nodes. The number and choice of these pollers has a significant
impact on the cost of the measurement infrastructure. The cost
is due to both the deployment of the instrumentation as well
as the bandwidth consumed by the measurement traffic. Our
study shows that it is possible to design such an infrastructure
and attain significant reduction in bandwidth overhead as well
as in the cost of deployment of the pollers.

Based on our simulation studies we see that the total number
of pollers for a given network topology can be reduced using
the MaxPollee assignment scheme. The MaxPollee assignment

9

scheme aggressively chooses the next poller with the intent
of assigning all of the remaining nodes to the new poller.
However, the reduction in the number of pollers comes at
the cost of the bandwidth consumed. We also observe that
by increasing the capacity reserved (LINKF parameter) for
polling we can always reduce the number of pollers regardless
of the heuristics used. This further highlights the importance
of the bandwidth constraint in the formulation of this problem.
One other factor that affects the performance of the maxPollee
algorithm is the degree of connectivity in the network. We
observed that for enterprise network with high degree of
connectivity fewer pollers were required as compared to the
service provider network.

Our results show that both in the case of the service provider
network as well as the enterprise network we are able to
identify a poller set and a corresponding assignment scheme
without violating any bandwidth constraints. Only in 6% of
the cases was it necessary to use more than 90% of the
allocated bandwidth. We believe that we were able to attain
such efficient use of bandwidth due to the ShuffleAndReduce
that was performed for every new additional poller chosen.
Without the explicit consideration of bandwidth issues it is
highly likely that we could create bandwidth bottlenecks due
to network measurements.

The distributed poller location scheme presented here can be
used in the design phase of a network management system. For
a network of about 200 nodes we can obtain the poller set and
the assignment scheme in just a few minutes. Thus with little
effort the network operations center can identify the placement
of their measurement instrumentation. When choosing pollers
we assume that the pollers have sufficient power to handle the
polling load for the assigned pollees.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have addressed the problem of optimizing
the distributed polling system with respect to the number of
pollers as well as the overall bandwidth consumption due to
network measurements. To the best of our knowledge this
work is the first formulation that includes per-link bandwidth
constraints as part of optimizing instrumentation location. Fur-
thermore by including the bandwidth constraint, our problem
formulation has wider applicability to areas such as identifying
optimal server locations.

Of the different heuristics that were used, the maximum
pollee assignment scheme performed the best in terms of the
minimum number of pollers required as well as scalability
with respect to network size. Interestingly, there was almost no
distinction between the heuristics of choosing pollers based on
the polling load and a random pick. We believe that the polling
load bias among the nodes has to be significantly higher for
load based criteria to be effective. There is on-going work to
explore this issue in more detail.

Our future work is to increase the scope of our problem
formulation by accounting for delay constraints. Currently
we assume that routes are fixed between any given pair of
nodes. In an MPLS enabled network, one can choose different
routes between any given pair of nodes by setting up Label

Switched Paths (LSP) between them. Therefore, we hope to
use this to our advantage by including the computation of the
best routes between poller-pollee pairs as part of the pollee
assignment scheme. In addition, we would also like to model
the computational power by limiting the number of pollees
that can be assigned to a poller.

REFERENCES

[1] Michel Berkelaar. lp solve 3.0 software.
ftp://ftp.es.ele.tue.nl/pub/lp solve/.

[2] J. C. Bolot. End to end packet delay and loss behavior in the Internet.
In Proc. of ACM SIGCOMM, pages 289–298, 1993.

[3] Y. Breitbart, C. Y. Chan, M. Garofalakis, R. Rastogi, and A. Silberschatz.
Efficiently monitoring bandwidth and latency in IP networks. In
Proc. IEEE Infocom, pages 933–942, 2001.

[4] D. Breitgand, D. Raz, and Y. Shavitt. SNMP GetPrev: An efficient way
to access data in large MIB tables. IEEE Journal of Selected Areas in
Communication, 20(4):656–667, 2002.

[5] R. Caceres, N. G. Duffield, A. Feldmann, J. Friedmann, A. Greenberg,
R. Greer, T. Johnson, C. Kalmanek, B. Krishnamurthy, D. Lavelle, P. P.
Mishra, K. K. Ramakrishnan, J. Rexford, F. True, and J. E. van der
Merwe. Measurement and analysis of IP network usage and behavior.
IEEE Communications Magazine, pages 144–151, May 2000.

[6] M. Cheikhrouhou and J. Labetoulle. An efficient polling layer for
SNMP. In Proc. of the IFIP/IEEE Network Operations and Management
Symposium, pages 477–490, 2000.

[7] M. S. Daskin. Network and Discrete Location: Models, Algorithms and
Applications. John Wiley and Sons, Inc., New York, 1995.

[8] M. Doar. A better model for generating test networks. In Proc. of IEEE
Globecom, pages 86–93, November 1999.

[9] P. Francis, S. Jamin, V. Paxson, L. Zhang, D. F. Gryniewicz, and Y. Jin.
An architecture for global Internet host distance estimation service. In
Proc. of IEEE Infocom, pages 210–217, 1999.

[10] Van Jacobson. pathchar - a tool to infer characteristics of internet paths,
ftp://ftp.ee.lbl.gov/pathchar.

[11] S. Jamin, C. Jin, Y. Jin, D. Raz anf Y. Shavitt, and L. Zhang. On the
placement of Internet instrumentation. In Proc. of IEEE Infocom, pages
295–304, 2000.

[12] K. Lai and M. Baker. Measuring bandwidth. In Proc. of IEEE Infocom,
pages 235–245, 1999.

[13] A. Liotta. Towards flexible and scalable distributed monitoring with
mobile agents. PhD Thesis, University College London, London, UK,
August 2001.

[14] M. Pal, E. Tardos, and T. Wexler. Facility Location with Nonuniform
Hard Capacities. In Proc. of IEEE Symposium on Foundations of
Computer Science, pages 329–338, 2001.

[15] C. Srinivasan, A. Viswanathan, and T. D. Nadeau. MPLS traffic
engineering MIB. Internet Draft, July 2002.

[16] W. Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison
Wesley Longman, Inc, 3 edition, 1999.

[17] W. Theilmann and K. Rothermel. Dynamic distance maps of the Internet.
In Proc. of IEEE Infocom, pages 275–284, 2000.

[18] M. Thottan and C. Ji. Using network fault prediction to enable IP traffic
management. Journal of Network and Systems Management, 9(3):327–
346, 2001.

[19] R. J. Vanderbei. ALPO: Another linear program optimizer. ORSA J.
Computing, 5(2):134–146, 1993.

[20] B.M. Waxman. Routing of multipoint connections. IEEE Journal of
Selected Areas in Communication, 6(9):1617–1622, 1988.

[21] Y. Yemini, G. Goldschmidt, and S. Yemini. Network management
by delegation. In Proc. of IFIP/IEEE International Symposium on
Integrated Network Management, pages 95–107, 1991.

[22] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to model an
internetwork. In Proc. of IEEE Infocom, pages 594–602, 1996.

APPENDIX

A. The Generalized maxPollee Problem is NP-hard

Theorem 1.1: Given a graph G = (V,E) and a distinct
poller node s ∈ V . Each node v has a demand w(v). Each
edge e ∈ E has a capacity b(e). For each node v ∈ V − {s},
a unique path Pvs specifies the route from v to s. Each edge

10

along Pvs consumes w(v) amount of resources if v’s polling
demand is shipped to s. Finding the maximum set of nodes J
such that their polling demands can be shipped to s along the
fixed paths without violating the capacity constraint on each
edge is NP-hard.

Proof: We reduce the Maximum Independent Set problem to
the maxPollee problem. An independent set in a graph G =
(V,E) is a subset V ′ ⊆ V such that, for all u, v ∈ V ′, the edge
(u, v) is not in E. The Maximum Independent Set problem
asks that, for a given graph G = (V,E), find an independent
set V ′ such that for any other independent set V ′′ of G, |V ′| ≥
|V ′′|.

Given a Maximum Independent Set problem, we construct
an instance of the maxPollee problem using the following
steps. (1) For each node vi, create di − 1 additional nodes
where di is the node degree of vi. Lets number these di

nodes as v0
i , v

1
i , · · · , v

di−1
i where v0

i in the new graph G− =
(V −, E−) corresponds to node vi in G. (2) For each node
vi ∈ G, order the nodes that share an edge with it. Rank(i, j)
gives the rank of node vj according to vi’s ordering. For each
edge (vi, vj) ∈ E, connect node v

Rank(i,j)
i to v

Rank(j,i)
j . (3)

For each node vi ∈ G, construct paths Pi from v0
i to node

s such that Pi must contain edge (vRank(i,j)
i , v

Rank(j,i)
j) for

each node vj ∈ G which shares an edge with vi in G. (4)
Assign demand 1 to each node v0

i and assign demand ∞ to
each node vk

i where k > 0. Set b(e) = 1 for each edge in E−.
Note that this construction satisfies the following property:

for each node v0
i ∈ G− which corresponds to a node vi ∈

G; its path Pi to s uses all the links corresponding to those
incident on vi ∈ G. Therefore, if vi is chosen in the solution
set, then none of the nodes who share a link with vi in G
can be chosen in the solution set. Therefore, the solution set
to the maxPollee problem corresponds to a solution set in the
Independent set problem. Therefore, if we can determine the
maximum pollee set, then we can determine the maximum
independent set.

B. The Optimal Pollee Assignment Problem is NP-hard

Theorem 1.2: Given a graph G = (V,E) and a distinct
poller set S ∈ V . Each node v has a demand w(v). Each
edge e ∈ E has a capacity b(e). For each node v ∈ V − S
and s ∈ S, a unique path Pvs specifies the route from v to s.
Each edge along Pvs consumes w(v) amount of resources if
v’s demand is chosen to ship to s. It is NP-hard to determine
the best λ such that for each node vi ∈ V −S, λ(vi) gives the
poller it is assigned to, and the total bandwidth consumption
is minimal subject to the capacity constraint on each link.

Proof: We reduce the bin packing problem to our Pollee
Assignment problem. Given a finite set U of items, a size
t(u) ∈ Z+ for each u ∈ U , a positive integer bin capacity B,
and a positive integer K. The bin packing problem asks for a
partition of U into disjoint sets U1, U2, · · · , UK such that the
sum of the sizes of the items in each Ui is B or less.

Given an instance of bin packing problem, we create an
instance of our Pollee Assignment problem: for each bin i,
create a poller si and an extra node vi; Assign zero demand
to si and vi. Connect si and vi with an edge of capacity B.
For each items u ∈ U , create a pollee u with demand t(u)
and connect u and each node vi with an edge of capacity ∞.

Clearly, if Pollee Assignment problem has solution with less
than KB total bandwidth consumption, then items in U can
be partitioned into K disjoint sets with the size constraint. On
the other hand, if the bin packing problem can be partitioned
into K disjoint set, a corresponding optimal Pollee Assignment
solution can be constructed by assigning a pollee to the poller
that represent the bins it is assigned to. Therefore, our Pollee
Assignment problem is NP-hard.

