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Abstract

Tracing attack packets to their sources, known as IP
traceback, is an important step to counter distributed
denial-of-service (DDoS) attacks. In this paper, we pro-
pose a novel packet logging based (i.e., hash-based) trace-
back scheme that requires an order of magnitude smaller
processing and storage cost than the hash-based scheme
proposed by Snoeren et al. [29], thereby being able to scal-
able to much higher link speed (e.g., OC-768). The base-
line idea of our approach is to sample and log a small per-
centage (e.g., 3.3%) of packets. The challenge of this low
sampling rate is that much more sophisticated techniques
need to be used for traceback. Our solution is to construct
the attack tree using the correlation between the attack
packets sampled by neighboring routers. The scheme us-
ing naive independent random sampling does not per-
form well due to the low correlation between the packets
sampled by neighboring routers. We invent a sampling
scheme that improves this correlation and the overall ef-
ficiency significantly. Another major contribution of this
work is that we introduce a novel information-theoretic
framework for our traceback scheme to answer impor-
tant questions on system parameter tuning and the fun-
damental trade-off between the resource used for trace-
back and the traceback accuracy. Simulation results based
on real-world network topologies (e.g. Skitter)match very
well with results from the information-theoretic analysis.
The simulation results also demonstrate that our trace-
back scheme can achieve high accuracy, and scale very
well to a large number of attackers (e.g., 5000+).
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1. Introduction

Distributed Denial of Service (DDoS) attacks
against high-profile web sites such as Yahoo, CNN,
Amazon and E*Trade in early 2000 [13] rendered the
services of these web sites unavailable for hours or even
days. New instances of DDoS attacks continue to be re-
ported. For example, a recent DDoS attack against
root DNS servers brought down eight of them in an ef-
fort to paralyze the Internet [20]. It is clear that DDoS
attacks will not stop or scale down until they are prop-
erly addressed.

One possible way to counter DDoS attacks is to trace
the attack sources and punish the perpetrators. How-
ever, current Internet design makes such tracing diffi-
cult in two aspects. First, there is no field in the IP
header that indicates its source except for the IP ad-
dress, which can be easily spoofed by an attacker. Sec-
ond, the Internet is stateless in that it does not keep
track of the path traversed by a packet. Recently, ef-
forts are made to change one or both aspects to allow
for tracing packets to their sources, known as IP Trace-
back. Up to now, two main types of traceback tech-
niques have been proposed in the literature.

1. One is to mark each packet with partial path in-
formation probabilistically [9, 28, 30, 8, 14]. By re-
ceiving a significant number of packets, the victim
can construct the attack paths. This is referred to
as Probabilistic Packet Marking (PPM) scheme.

2. The other is to store packet digests in the form of
Bloom filters [3] at each router [29]. By checking
neighboring routers iteratively with attack pack-
ets, the attack path of a flow can be constructed.
This is referred to as hash-based scheme.

However, both traceback schemes suffer from scal-
ability problems. As we will show in the next section,
PPM schemes cannot scale to large number of attack-
ers as the best scheme proposed can only efficiently



trace fewer than 100 attackers using a 17-bit mark-
ing field (discussed later); Hash-based scheme is not
scalable for high-speed links since recording 100% of
packets, even in the Bloom filter digest form, would in-
cur prohibitively high computational and storage over-
head. The objective of our work is to design a traceback
scheme that is scalable both in terms of the number of at-
tackers and in terms of high link speed.

1.1. Scalability problems of existing ap-
proaches

The advantage of PPM schemes is that they do not
incur any storage overhead at the routers and the com-
putation of marking is usually lightweight. However,
PPM-based schemes work well only when the number
of attackers is small, due partly to the limited number
of bits available for marking in the IP header. A recent
PPM scheme proposed by Goodrich [14] is shown to be
the most scalable one1 among the PPM schemes. How-
ever, with a marking field of 17 bits, it can only scale
up to attack trees containing 100 routers2. A large-scale
DDoS attack can have thousands of attackers and tens
of thousands of routers on the attack paths, making
the PPM schemes unsuitable for traceback.

Hash-based approach, on the other hand, is very ef-
fective for large-scale IP traceback, and needs only a
single packet to trace one attacker [29]. However, since
it computes and stores a Bloom filter digest for ev-
ery packet, its computational and storage overhead is
prohibitive at a router with very high speed links. For
example, assuming a packet size of 1,000 bits, a du-
plex OC-192 link requires 60 million hash operations
to be performed every second, resulting in the use of
SRAM (50ns DRAM is too slow for this) and 44GB
of storage space every hour, with the parameters sug-
gested in [29]. It is important to reduce the computa-
tional, memory and storage overhead of the hash-based
scheme for it to be practical for high-speed Internet.

1.2. New contributions

Our technical contributions are two-fold. First, we
propose a novel packet logging based traceback scheme

1 Song et at.’s scheme [30] allows for traceback to a large number
of attackers. However, it requires the knowledge of the router-
level Internet topology, which may not be practical. For the
traceback to be tamper-resistant, it also requires most of the
Internet routers authenticate to the victim, which can be com-
plicated to deploy and administer.

2 We assume that the “message size” (defined in [14]) is 64 bits
for representing the IP addresses of the current router and the
previous router, and the “collision size” (defined in [14]) is no
more than 2.

that is scalable to high link speeds. The baseline idea
of our approach is to sample a small percentage (e.g.,
3.3%) of packets. We construct the attack tree using
the correlation between the attack packets sampled by
neighboring routers. The scheme with naive indepen-
dent random sampling does not perform well due to the
low correlation between the packets sampled by neigh-
boring routers. We invent a sampling scheme that im-
proves this correlation and the overall efficiency by or-
ders of magnitude. Sampling greatly reduces the com-
putational and storage overhead for packet logging.
For example, with a sampling rate of 3.3% (it can be
smaller), our storage overhead is only 0.4/ ln 2 bits per
packet3, a duplex OC-192 link will require the compu-
tation of 8 million hash functions every second, and the
storage of 5.2GB for one hour’s traffic. This is an order
of magnitude more affordable than the scheme in [29].

Our second major contribution is to introduce a
novel information-theoretic framework for our trace-
back scheme to answer important questions on system
parameter tuning and on the fundamental trade-off be-
tween the resource used for traceback and the trace-
back accuracy. For a given performance constraint,
there is the question of how to tune the traceback
scheme in terms of the number of hash functions and
the sampling rate. This optimization problem is for-
mulated as a channel capacity maximization problem
in information theory. This framework also allows us
to compute the minimum number of attack packets
needed for achieving certain traceback accuracy and
how this number scales to larger number of attackers.

Our proposed scheme is simulated on three sets
of real-world Internet topologies with varying op-
erating parameters. Simulation results demonstrate
that, even when there are a large number of attack-
ers, our traceback scheme can accurately find most
of them using a reasonable number of attack pack-
ets. For example, with a sampling probability of only
3.3%, our traceback scheme can identify 90% of in-
fected routes, using only a total of 175,000 at-
tack packets for traceback (resulting in a query
size of 4.2MB4), even when there are 1,000 attack-
ers.

The rest of the paper is organized as follows. In Sec-
tion 2 we present an overview of the proposed trace-
back scheme and the information-theoretic framework.

3 Each Bloom filter digest uses 12 hash functions. The reason
why we use 12 will be clear in Section 4. The term ln 2 is due
to the Bloom filter space-efficiency trade-off and will be ex-
plained in Section 3.1.3.

4 Only the invariant parts of IPheader(16bytes) andfirst 8 bytes
of the payload will be used for traceback as in [29].



In Section 3, we articulate the challenges raised by sam-
pling, and describe the components of our scheme in de-
tail. In Section 4, the proposed scheme is analyzed us-
ing a novel information-theoretic framework. The per-
formance is evaluated in Section 5 through simulation
studies. Section 6 surveys the related work and Sec-
tion 7 concludes the paper.

2. Overview

2.1. Our solution for large-scale traceback

In this paper we propose a new traceback scheme
that is scalable both to a large number of attackers and
to high link speed. Like [29], our scheme requires Inter-
net routers to record Bloom filter digests of packets go-
ing through them. However, unlike [29], which records
100% of packets, our scheme only samples a small per-
centage of them (say 3.3%) and stores the digests of
the sampled packets. With such a sampling rate, the
storage and computational cost becomes much smaller,
allowing the link speed to scale to OC-192 speed or
higher rates. For example, our scheme can scale to OC-
768 speed (simplex) using only DRAM, when sampling
3.3% of the traffic.

The trade-off of sampling is that it makes the trace-
back process much more difficult, especially with a low
sampling rate such as 3.3%. In particular, it is no longer
possible to trace one attacker with only one packet.
This is because, due to sampling, the probability that
two neighboring routers on the attack path both sam-
ple this packet is very small. This makes the one-packet
traceback operation hard to proceed.

In our scheme, the victim uses a set Lv of at-
tack packets it has received as “material evidence” to
trace and construct the attack tree, consisting of at-
tack paths from attackers to the victim. The attack
tree starts with the victim as the root and the only
leaf. It grows when a leaf node determines that one or
more of its neighbors are highly likely to be on an at-
tack path (called “infected” hereafter). Such a likeli-
hood is assessed by performing the following test. Sup-
pose R1 is a leaf node that is already considered as
being infected (called “convicted”). R1 would like to
check whether one of its neighbors R2 is likely to be
on an attack path. We define “what R1 has seen” as
the packets among Lv that match the Bloom filter di-
gests stored at R1. Our test is to check whether “what
R1 has seen” has non-negligible correlation with “what
R2 has seen”, as determined by a threshold decoding
rule. If the answer is yes, R2 will be convicted; Other-
wise, R2 will be exonerated. If R2 is convicted, R2 will
further test its neighbors recursively using this proce-

dure. Designing the aforementioned threshold decod-
ing rule is nontrivial, and careful game-theoretic study
is needed to make sure that the rule is loophole-free to
the attackers.

Clearly, the higher the correlation between the at-
tack packets sampled by neighboring infected routers
is, the more accurate our traceback scheme is. Given
other parameters such as sampling rate and the num-
ber of attack packets gathered by the victim (i.e., |Lv|)
being fixed, it is critical to improve the correlation fac-
tor, the percentage of the attack packets sampled by
R2 (upstream) matched by the attack packets sampled
by R1 (downstream). A naive sampling scheme is that
each router independently samples a certain percent-
age (say 3.3%) of packets. However, in this case the
correlation factor of two routers is just 3.3%. In other
words, what R1 has sampled only matches 3.3% of what
R2 has sampled. While consistent sampling techniques
such as trajectory sampling [10] has the potential to im-
prove this factor to nearly 100%, it will not work for
an adversarial environment, as we will discuss in Sec-
tion 3.1.1. We propose a novel technique that improves
this correlation factor significantly, using only one bit
in the IP header for communications between neighbor-
ing routers to coordinate the sampling. This scheme is
shown to be robust against attackers’ tampering. Us-
ing this technique, our scheme requires much smaller
number of attack packets for traceback, and achieves
better traceback accuracy than independent sampling.

2.2. Information-theoretic framework of
our traceback scheme

The design of the scheme leads to a very interest-
ing optimization problem. We assume that the aver-
age number of bits devoted for each packet is a fixed
constant s, due to the computational and storage con-
straints of a router. In other words, on the average
for each packet we compute s hash functions. Then
the number of hash functions our scheme computes for
each sampled packet is inversely proportional to the
percentage of packets that is sampled. For example, if
the resource constraint is that 0.4 hash computations
are performed for each packet, one possible combina-
tion is that the router samples 5% of the packets and
the number of hash functions is 8 (5%×8 = 0.4). With
the same resource constraint, an alternative combina-
tion is to sample 2.5% of the packets, but the num-
ber of hash functions is 16. Which one is better? In-
tuitively, higher sampling rate increases the aforemen-
tioned correlation between the packets sampled by two
routers, making traceback easier. However, the num-
ber of hash functions would have to be proportionally



smaller, which results in a higher false positive rate in
Bloom filter. This adds noise to the aforementioned
traceback process and reduces the accuracy. Clearly
there is an inherent trade-off between these two pa-
rameters, but where is the “sweet spot” (i.e., optimal
parameter setting)? We show that this question can be
answered by applying information theory. Our simula-
tion results show that the information-theoretic frame-
work indeed guides us to find the optimal parameter
setting.

Our information-theoretic framework also allows
us to answer another important question concerning
the trade-off between the amount of evidence the vic-
tim has to gather (the number of attack packets) and
the traceback accuracy. In particular, information the-
ory allows us to derive a lower bound on the number
of packets the victim must obtain to achieve a cer-
tain level of traceback accuracy. A bonus from study-
ing these lower bounds is that it sheds light on
how this number scales to larger number of attack-
ers.

3. Detailed Design

Our scheme consists of two algorithms. One is a sam-
pling algorithm that is running at the Internet routers
to sample and record the Bloom filter digests of the
packets going through them. The other is a traceback
algorithm that is initiated by the victim to trace the at-
tackers using the digests stored at these routers, upon
the detection of a DDoS attack. In Sections 3.1 and 3.2,
we describe the sampling algorithm and the traceback
algorithm in detail.

3.1. Sampling

3.1.1. A design challenge. Our proposed scheme
significantly reduces the processing and storage re-
quirements by sampling. However, sampling makes
traceback more difficult. In particular, it is now al-
most impossible to trace one attacker with only one
packet as in [29]. This is because, with a low sampling
percentage, the first router on the attack path that
will sample a particular attack packet is on the aver-
age many hops away. Intuitively, with a sampling rate
of p, the victim needs to receive at least O( 1

p
) pack-

ets to be able to trace one attacker, since each router
on the path needs to store at least one attack packet. It
turns out that to design a sampling algorithm that al-
lows for accurate traceback of one attacker with this
minimum number of attack packets (i.e., O( 1

p
)) is non-

trivial.

A naive sampling scheme is that each router inde-
pendently samples packets with the probability p. How-
ever, this approach does not work well since it would re-
quire a minimum of O( 1

p2 ) attack packets5 to trace one
attacker. Recall from Section 2.1 that if a convicted
router R1 wants to check whether one of its neigh-
bors R2 is infected, the scheme checks whether the set
of packets “R1 has seen” has non-negligible correla-
tion with the set of packets “R2 has seen”. It takes at
least O( 1

p2 ) packets for these two sets to have an over-
lap of one or more packets. The key problem of this
naive scheme is that the correlation factor between the
packets sampled by neighboring routers is only p, i.e.,
“what R1 has sampled” only matches p (percentage)
of “what R2 has sampled”. We propose a novel sam-
pling scheme that improves this correlation factor to
over 50% with the same sampling rate p at every router,
therefore reaching the O( 1

p
) asymptotic lower bound.

We will describe this scheme in the next section.
One may say that there is a scheme that achieves

the correlation factor of 100%, by asking all routers
on the same path to sample the same set of pack-
ets (known as trajectory sampling [10]). However, tech-
niques to achieve such consistent sampling will not
work in this adversarial environment since an attacker
can easily generate packets that evade being sampled.
We explored along this direction and found that it is ex-
tremely challenging to design noncryptographic6 tech-
niques to achieve consistent sampling in this adversar-
ial environment. Our scheme, on the other hand, is ro-
bust against the tampering by the attackers, without
resorting to cryptographic techniques.

3.1.2. One-bit Random Marking and Sam-
pling (ORMS). Independent random sampling
method does not work well since the correlation fac-
tor between the packets sampled by neighboring
routers is only p, the sampling rate. In this sec-
tion, we present our sampling scheme that signifi-
cantly improves this correlation factor. The key idea
of our scheme is that, besides sampling the pack-
ets, a router also marks the sampled packets so that
the next router on the path, seeing the mark, can co-
ordinate its sampling with the previous router to im-
prove the correlation factor. We use a marking field of
only one bit for this coordination. This bit can be eas-
ily fit into many possible locations in the IP header
(e.g., IP fragmentation field 7 ).

5 Note that O( 1
p2

) can be orders of magnitude larger than O( 1
p
)

when p is small.

6 This is possible with cryptographic techniques. However, it
may involve key distribution and management on hundreds
of thousands of Internet routers.



Our ORMS scheme is presented in Figure 1. This al-
gorithm is executed at every interface of the participat-
ing routers. If an arriving packet has the bit marked,
the bit will be unmarked and the packet will be stored
in Bloom filter digest form. However, if the percent-
age of packets (denoted as r) that are marked among
the arriving packets is over p

2
, it must have been tam-

pered by an attacker (explained next). Our scheme will
only sample and store the marked packets with prob-
ability p

2r
. This is the meaning of “subject to a cap of

p
2
” in line 4 of Figure 1. If an arriving packet is not

marked, it will be stored and marked with probabil-
ity p

2−p
(where p

2−p
comes from will become clear after

next paragraph). A router will also measure the per-
centage of packets coming from itself that is marked. If
this percentage is larger or smaller than p

2
, the router

will adjust it to p
2

by marking and unmarking some bits
(lines 9 & 10 in Figure 1). This can be achieved using
traditional rate-control techniques in networking such
as leaky bucket [32].

Consider the path from a remote host to the vic-
tim. We will show that the following two invariants
hold in the approximate sense, when only the first
hop (a router) from the host have other hosts at-
tached to it and all later hops (routers) are neighbor-
ing with other participating routers only. The first in-
variant is that approximately p

2
of the packets from

a router will be marked. Note that a router on the
first hop from the attacker will mark p

2
of the pack-

ets (lines 9 & 10 in Figure 1). This argument certainly
works for every router, but we would like to show that
once the system is “jump-started” to “stationarity”,
these two lines almost (subject to a small error ε) do
not need to be executed at later routers. To see this,
note that at later routers, approximately (1 − p

2
) of

the arriving packets are not marked, and among those
p

2−p
(1− p

2
) = p

2−p
· 2−p

2
= p

2
will be marked. Therefore,

once the system is jump-started to stationarity (with
p
2

marked), it remains stationary. The second invari-
ant is that each router, except for the first hop (which
may sample less than p), will sample approximately
p of the packets. This is because a router will sam-
ple all the packets marked by the upstream neighbors
(p
2
), and sample another p

2
of packets that are marked

by itself. Finally, it is not hard to verify that, no mat-
ter how an attacker manipulates the marking field, the
first router on the attacker’s path will sample at least
p
2

and at most p of the packets coming from the at-
tacker.

7 The IP fragmentation field has been reused in the PPM-based
IP traceback schemes. The “backward compatibility” issues
has been discussed in [28].

Sampling procedure at router R

(given sampling rate p):
1. for each packet w

2. if (w.mark = 1) then
3. write 0 into w.mark;
4. store the digest of w, subject to a cap of p

2
;

5. else
6. with probability p

2−p

7. store the digest of w;
8. write 1 into w.mark;
9. if (marking percentage is not p

2
) then

10. tune it to p

2
;

/* make the process “stationary” */

Figure 1: One-bit random marking and sampling
(ORMS) scheme

Now we quantitatively analyze the benefit of our
one-bit marking technique. We claim that the expected
correlation factor between two neighboring routers R1

(downstream) and R2 (upstream) is 1

2−p
, when R2 is

not on the first hop from the attacker. This is because
R1 has sampled all p

2
percentage of packets R2 has

marked, and among another p
2

percentage of packets
that R2 has sampled but unmarked, R1 samples p

2−p

of them. The total is p
2
(1+ p

2−p
), which is p

2−p
. The cor-

relation factor is p
2−p

(sampled by both) divided by p

(sampled by R2), which is 1

2−p
. Note that 1

2−p
is larger

than 50% because 0 < p < 1. This represents orders of
magnitude improvement compared to independent ran-
dom sampling, when p is small (say < 5%).

Finally, we would like to show that the 1

2−p
correla-

tion factor of our scheme is resistant to tampering by
attackers. In other words, an attacker cannot manipu-
late this factor by marking or unmarking the packets
they send. This is because our ORMS scheme is obliv-
ious: the first router that receives the marked pack-
ets from an attacker will unmark them and the out-
put packets from the router have exactly p

2
of them

marked (i.e., jump-start to stationarity). Later on, as
discussed before, the correlation between neighboring
routers will always be 1

2−p
.

3.1.3. Packet digesting. Like [29], we use a space-
efficient data structure known as Bloom filter [3] to
record packet digests. A Bloom filter representing a set
of packets S = {x1, x2, · · · , xn} of size n is described
by an array A of m bits, initialized to 0. A Bloom fil-
ter uses k independent hash functions h1, h2, · · · , hk

with range {1, · · · ,m}. During insertion, given a packet
x to be inserted into a set S, the bits A[hi(x)], i =
1, 2, · · · , k, are set to 1. To query for a packet y, i.e.,
to check if y is in S, we check the values of the bits
A[hi(y)], i = 1, 2, · · · , k. The answer to the query is



yes if all these bits are 1, and no otherwise.

A Bloom filter guarantees not to have any false neg-
ative, i.e., returning “no” even though the set actually
contains the packet. However, it may contain false posi-
tives, i.e., returning “yes” while the packet is not in the
set. The capacity factor, denoted as c, of a Bloom filter
is defined as the ratio of m to n. In this paper, we as-
sume the Bloom filter at each router is paged to disk
before c decreases to k/ ln 2. Then according to [3], the
false positive rate of the Bloom filter is no more than
2−k. In Sections 4 and 5, the false positive rate of the
Bloom filter is always assumed to be 2−k for analy-
sis and performance evaluation purposes.

Note that same as in [29], we use the first 24 invari-
ant bytes of an IP packet as the hash input. These 24
bytes include the invariant portion of the IP header (16
bytes) and the first 8 bytes of the payload. In the rest
of the paper, when we refer to a packet, we always re-
fer to its first 24 invariant bytes.

3.2. Traceback processing

When the victim detects a DDoS attack, it will trig-
ger a traceback procedure. The victim will first collect
a decent number of attack packets, which is not diffi-
cult during a DDoS attack. Then it will use these pack-
ets to track down the attackers. We denote the set of
packets that is used for traceback as Lv, described in
Section 1.2. The size of Lv is typically between 1MB
and 10MB depending on the number of attackers and
the traceback accuracy desired.

The traceback procedure starts with the victim
checking all its immediate neighbors. For any router
S which is one hop away from the victim, the victim
will first query the corresponding (right date and time)
Bloom filter at S with the whole set Lv. The router S is
added to the attack tree if at least one match is found.
If S is convicted, the set of packets in Lv that match
the Bloom filter of S will be assembled into a set LS .
Each neighbor R of S will then be queried by LS (not
Lv!), if R has not yet been convicted. Again, if at least
one match is found, S convicts R and sends Lv to R;
Otherwise, nothing needs to be done to R by S. If R is
convicted, R will assemble LR, which is the set of pack-
ets in Lv that match the Bloom filter at R. The set LR

will then be used by R to query its neighbors. This pro-
cess is repeated recursively until it cannot proceed.

We now discuss the subtleties involved in our trace-
back processing. In the above algorithm, a router is
convicted if the Bloom filter returns “yes” for at least
one packet. It is important to use “1” as the detec-
tion threshold. Otherwise, an attacker can send identi-
cal packets to avoid detection. This loophole exists be-

cause the Bloom filter we use does not count the num-
ber of occurrences of a packet8. This loophole is closed
under our “one-packet decoding rule”. It can be easily
verified that an attacker has no incentive to send iden-
tical packets anymore from a game-theoretic point of
view, since this will only increase its probability of be-
ing detected.

Note that our scheme uses LR to match the Bloom
filter at the neighbors of R once R is convicted. A care-
ful reader may wonder why we do not simply use Lv to
query each router. Recall that, Bloom filter can have
a false positive probability of 2−k where k is the num-
ber of hash functions used. We will show that a typi-
cal k value is 12. When k = 12 (with a false positive
probability 2−12) and |Lv| >> 5, 000, more than one
false positive will occur with high probability. This will
result in almost all Internet routers being convicted.
Since |LR| is much smaller than |Lv|, the number of
false positives caused by LR is also much smaller.

4. An information-theoretic framework

In this section we present our information-theoretic
framework that serves as the theoretical foundation of
our traceback scheme. We first present the problems
that are answered by this framework in Section 4.1.
After briefly introducing the relevant information the-
ory concepts and theorems in Section 4.2, we show how
they are applied to our context in Section 4.3.

4.1. Why do we need a theoretical founda-
tion?

Our information-theoretic framework answers the
following two questions concerning parameter tuning
and the minimum number of attack packets needed for
accurate traceback, respectively.

4.1.1. Parameter tuning. We have discussed in
Section 2.2 that given a resource constraint, the num-
ber of hash functions in each Bloom filter is inversely
proportional to the sampling probability. Clearly there
is an optimal trade-off between these two parameters.
Information theory will help us find the “sweet spot”.

4.1.2. Tradeoff between traceback overhead
and accuracy. The information-theoretic frame-
work also allows us to answer the following question:

8 One can also use counting Bloom filter [11] or Spectrum Bloom
filter [6] to record the number of occurrences of a packet. De-
tection rules based on multiple packets can be designed ac-
cordingly.However, these schemesaremuchmore complicated.
Also the game-theoretic analysis associated with using the
higher threshold is extremely complex.



“What is the minimum number of attack pack-
ets that the victim has to gather in order to achieve
a traceback error rate of no more than ε?”. This in-
formation is important because it exhibits the funda-
mental trade-off between the number of attack packets
the victim needs to use for traceback, and the ac-
curacy to be achieved. Our solution to this question
also answers a related question: “ How does this num-
ber (of attack packets) scale with respect to certain
system parameters such as the number of attack-
ers?” For example, if the number of attackers grows
from 1,000 to 2,000, how many more attack pack-
ets does the victim have to use to achieve the same
accuracy?

4.2. Information theory background

In this section, we summarize the information theory
concepts and theorems that will be used in our later ex-
ploration. We first review the concepts of entropy and
conditional entropy. Then we introduce Fano’s inequal-
ity [7], which will be used to answer the question raised
in Section 4.1.2.

4.2.1. Entropy and conditional entropy.

Definition 4.1 The entropy of a discrete random vari-
able X is defined as

H(X)
def
= −

∑

x∈X

Pr[X = x] log2 Pr[X = x] (1)

where X is the set of values that X can take. The en-
tropy of a random variable X measures the uncertainty
of X, in the unit of bits.

Definition 4.2 The conditional entropy of a random
variable X conditioned on another random variable Y
is defined as

H(X|Y )
def
= −

∑

x∈X

∑

y∈Y

(Pr[X = x, Y = y]

· log2 Pr[X = x|Y = y]) (2)

where Y is the set of values that Y can take. The con-
cept of conditional entropy arises when we are inter-
ested in estimating the value of X, which cannot be ob-
served directly, using the observation of a related ran-
dom variable Y . The conditional entropy H(X|Y ) mea-
sures how much uncertainty remains for X given our
observation of Y .

4.2.2. Fano’s inequality. In our analysis, we would
like to estimate the value of X based on the observa-
tion of Y . The conditional entropy H(X|Y ) measures
how much uncertainty remains for X given our obser-
vation of Y . Intuitively, the smaller this conditional en-
tropy value is, the more accurate the estimation that

can be made is. This intuition is captured by Fano’s in-
equality [7].

Suppose, given an observation of Y , our estimation
of X is X̂. We denote pe as the probability that this
estimation is incorrect, i.e., pe = Pr[X̂ 6= X]. Fano’s
inequality states the following.

H(pe) + pe log2(|X | − 1) ≥ H(X|Y ) (3)

Here, H(pe) is “overloaded” to stand for the entropy
of the indicator random variable 1{X̂ 6=X}. By (1),

H(pe) = −pe log2 pe − (1− pe) log2(1− pe). In (3), |X |
is the number of different values that X can take. If we
are estimating a random variable that will only take
2 possible values (i.e., |X | = 2), Fano’s inequality be-
comes the following simplified form:

H(pe) ≥ H(X|Y ) (4)

Note that, without loss of generality, we can assume
that pe is no more than 0.5 (if a binary estimation pro-
cedure A produces wrong result more than half of the
time, we can simply use A). So Fano’s inequality and
the fact that H is strictly increasing from 0 to 0.5, im-
plies that if we would like the estimation of X (binary-
valued) to have an estimation error no more than pe,
the conditional entropy H(X|Y ) has to be no more
than H(pe).

4.3. Applications to our problems

4.3.1. Modeling. As described in Section 3.2, when
a (convicted) router R1 would like to check whether one
of its neighbors R2 is infected, it queries the Bloom fil-
ter at R2 with LR1

. Here LR1
is the set of packets that

match the Bloom filter at R1 among the set of pack-
ets used for traceback (i.e., Lv).

We first define some notations:

• Np: the number of attack packets used by the vic-
tim for traceback.

• d1: the percentage of the attack packets that travel
through R1.

• d2: the percentage of the attack packets that travel
through R2.

In the following, we introduce step by step the ran-
dom variables involved in the analysis. By conven-
tion, Binom(N ,P) represents the binomial distribu-
tion with constant parameters N and P, where N is
the number of trials and P is the “success” probabil-
ity. In some places below, we abuse the Binom nota-
tion slightly to put a random variable in the place of
N , which will be made mathematically rigorous next.



Let X be a random variable. The rigorous mathemati-
cal definition for a random variable Y to have the dis-
tribution Binom(X,P) is that, the conditional distri-
bution of Y given that X = x is Binom(x,P), and this
holds for all values of x that X will take. This abuse
is not counterintuitive, and makes our reasoning much
more succinct.

• Let Xt1 be the number of attack packets sam-
pled by R1. It has the probability distribution
Binom(Npd1, p).

• Let Xf1
be the number of false positives when Lv

is queried against the Bloom filter at R1. Its prob-
ability distribution is Binom(Np−Xt1 , f). Here f
is the false positive rate of the Bloom filter.

• Let Xt2 be the number of attack packets sam-
pled by R2. Its probability distribution is
Binom(Npd2, p).

• Let Yt be the number of true positives (real
matches instead of Bloom filter false positives)
when the Bloom filter at R2 is queried with LR1

.
Its probability distribution is Binom(Xt2 ,

1

2−p
).

The parameter 1

2−p
comes from the fact that

the correlation factor between the packets sam-
pled by neighboring routers is 1

2−p
in our ORMS

scheme.

• Let Yf be the number of false positives when the
Bloom filter at R2 is queried with LR1

. Its proba-
bility distribution is Binom(Xt1 + Xf1

− Yt, f).

During the traceback process, we are able to observe
the values of the following two random variables:

• Xt1 + Xf1
: the total number of packets in the

packet set LR1
.

• Yt + Yf : the number of positives when the Bloom
filter at R2 is queried with LR1

.

We are interested in estimating the value of the follow-
ing random variable Z, which indicates whether R2 has
stored at least one attack packet in the set of the at-
tack packets used by the victim for traceback.

Z =

{

1 if Xt2 > 0
0 otherwise

By information theory, the accuracy of estimating Z
from observing Xt1 +Xf1

and Yt+Yf is measured by the
conditional entropy H(Z|Xt1 + Xf1

, Yt + Yf ). The ac-
tual formula of H(Z|Xt1 + Xf1

, Yt + Yf ) in terms of
system parameters Np, d1, d2, and k is very involved.
The details on how to calculate the conditional en-
tropy can be found in Appendix A. We have written a
program to compute H(Z|Xt1 + Xf1

, Yt + Yf ) given a

set of parameters. Its results are used to plot the fig-
ures related to H(Z|Xt1 + Xf1

, Yt + Yf ) in the rest
of the paper. In computing H(Z|Xt1 + Xf1

, Yt + Yf ),
we assume d1 = d2. This is because, given a typical
router-level Internet topology, when we trace routers
several hops away from the victim, with good prob-
ability R2 is the only upstream neighbor of R1 that
is infected (i.e., no more “branching” upstream). So
d1 = d2 = d captures the “common case”. We also as-
sume pr[Z = 1] = pr[Z = 1] = 1/2, that is, we assume
no prior knowledge about Z.

4.3.2. Parameter tuning. As we discussed before,
our resource constraint is kp ≤ s. Here s is the num-
ber of bits of computation (i.e., the number of hash-
ing operations) devoted to each packet on the average,
k is the number of hash functions in each Bloom fil-
ter, and p is the sampling probability. Clearly, the best
performance happens on the curve kp = s. Since s is
treated as a constant, only one parameter k needs to
be tuned (p = s/k). It remains to be found out which
k value will allow us to determine with best accuracy
whether R2 has been infected.

By information theory, our knowledge about Z from
observing Xt1 +Xf1

and Yt +Yf is maximized when the
conditional entropy H(Z|Xt1 + Xf1

, Yt + Yf ) is mini-
mized. In other words, we would like to compute

k∗ = argmin
k

H(Z|Xt1 + Xf1
, Yt + Yf ) (5)

subject to the constraint kp = s as discussed before.
In general, the value of H(Z|Xt1 +Xf1

, Yt +Yf ) not
only depends on the parameter k we would like to tune,
but also depends on other parameters such as d2 (we
assume d1 = d2). We can view the value of d2 (say
d2 = d) as a targeted level of concentration. In other
words, when k = k∗, our system is most accurate in es-
timating the value of Z for those potential R2’s that
have the concentration d. One may wonder if we tar-
get a certain concentration, but a different concentra-
tion happens during an attack, our k∗ may not be opti-
mal. However, our computation results show that if we
target a low concentration such as 1

5000
, which approx-

imately corresponds to 5,000 attackers attacking with
the same intensity, our k∗ is optimal or close to optimal
for other higher concentrations as well. In other words,
the optimality of k is not sensitive to the concentra-
tion value we are targeting. Therefore, we can choose a
k for our scheme to work well even if we do not know
the accurate information of d1, d2. All we need is the
range of d1, d2.

We illustrate these results in Figure 2. Each curve
in Figure 2(c) shows how the value of H(Z|Xt1 +
Xf1

, Yt + Yf ) varies with different k values, given a
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Figure 2: Conditional entropy with respect to the number of hash functions used in a Bloom filter for s = 0.4 with
different concentrations

certain Np value (number of attack packets used for
traceback). The three curves in this figure corresponds
to Np = 250, 000, 375,000, 500,000 respectively. Here
the resource constraint is s = 0.4. The targeted con-
centration d is 1

5000
. We can clearly see that the opti-

mal k value is not sensitive to the parameter Np. Given
d = 1

5000
, Figure 2(c) shows that k = 12 or 13 results

in the lowest value for H(Z|Xt1 + Xf1
, Yt + Yf ).

Figures 2(a) and 2(b) show how the value of
H(Z|Xt1 + Xf1

, Yt + Yf ) varies with different k val-
ues, when d is set to 1

1000
and 1

2000
, respectively. From

these two figures, we see that k = 12 is very close to op-
timal for higher concentrations 1

1000
and 1

2000
. This

demonstrates that the optimal value of k is not
very sensitive to the value of d. Therefore, in Sec-
tion 5, our scheme will adopt k = 12 when its resource
constraint is s = 0.4. Simulation results show that
k = 12 indeed allows our scheme to achieve the op-
timal performance. In other words, the information
theory indeed prescribes the optimal parameter set-
ting for our scheme.

4.3.3. Application of Fano’s inequality. In this
section, we will show how Fano’s inequality can be
used to compute the minimum number of attack pack-
ets needed for achieving a certain traceback accuracy
and how this number scales to larger number of attack-
ers. According to Fano’s inequality for the estimation
of a binary-valued random variable (formula (4)), we
have

H(pe) ≥ H(Z|Xt1 + Xf1
, Yt + Yf ). (6)

where pe = Pr[Ẑ 6= Z] is the probability that our
estimation Ẑ is different from the actual value of
Z. Therefore, given a desired traceback error rate ε,
the number of attack packets has to be larger than
Nmin, where Nmin is the minimum Np that makes
H(Z|Xt1 + Xf1

, Yt + Yf ) no more than H(ε).
Figure 3 shows the fundamental trade-off between

the traceback error pe and Nmin. In this figure, s is set
to 0.4 and k is set to the aforementioned optimal value
12. The three curves in this figure correspond to the
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Figure 3: The trade-off between the estimation error pe

and Nmin, given s = 0.4 and k = 12.

setting d = 1

1000
, 1

2000
, and 1

5000
respectively. For ex-

ample, when there are 1,000 attackers attacking with
the same intensity, to be able to achieve the estima-
tion error rate of 0.1, the victim needs to receive and
use at least 80,000 attack packets. All curves go down-
ward, matching the intuition that larger number of at-
tack packets are needed for traceback when smaller es-
timation error rate is desired.

Figure 3 also shows how Nmin scales with the num-
ber of attackers. We can see that Nmin grows almost
linearly with the number of attackers for all desired
estimation accuracies. For example, when the desired
pe is 0.1, we need 80,000, 166,000, 450,000 packets for
scenarios which have 1,000, 2,000, and 5,000 attack-
ers with the same intensity, respectively.

5. Performance Evaluation

We have conducted extensive simulation on three
real-world network topologies to evaluate the perfor-
mance of the proposed scheme, using a simulation tool
we have developed. The goal of our simulation is two-
fold. First, we are interested in knowing how well our
information-theoretic results match with our simula-
tion results. We show that they agree with each other
very well. Second, we would like to investigate the per-
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Figure 4: Simulation results supporting the theoretical analysis (error level by varying k)

FNR(False Negative Ratio): the ratio of the
Performance number of missed routers in the constructed

attack tree to the number of infected routers
FPR(False Positive Ratio): the ratio of the

Metrics number of incorrectly convicted routers to the
number of convicted routers in the constructed
attack tree
Na: the number of attackers

Control Np: the number of attack packets used for
traceback
p: the sampling rate at an intermediate router

Parameters k: the number of hash functions in a Bloom filter
s: resource constraint (=k × p)

Table 1: Performance Metrics and Control Parameters

formance of our traceback scheme. We show that our
scheme can achieve high traceback accuracy even when
there are a large number of attackers, and only requires
the victim to collect and use a moderate number of at-
tack packets.

5.1. Simulation set-up: topologies and met-
rics

The following three real-world network topologies
are used in our simulation study.

• Skitter data I – collected from a CAIDA-owned host
(a-root.skitter.caida.org) on 11/28/2001 as a part of
the Skitter project [1]. This data contains the tracer-
oute data from this server to 192,900 destinations.

• Skitter data II – collected from another CAIDA
host (e-root.skitter.caida.org) on 11/27/2001, contain-
ing routes to 158,181 destinations.

• Bell-lab’s dataset – collected from a Bell-labs
host [5], containing routes to 86,813 destinations. We
merged six route sets originated from the same host
into one and trimmed incomplete paths.

All three topologies are routes from a single origin
to many destinations in the Internet. In our simula-
tion, we assume that this origin is the victim and the

attackers are randomly distributed among the destina-
tion hosts 9.

Table 1 shows the performance metrics and control
parameters used in our simulation. Due to sampling,
some routers that are on the attack path may not be
detected. We call these routers false negatives. The false
negative ratio (FNR) of an attack tree constructed by
the traceback scheme is defined as the ratio of the num-
ber of false negatives to the number of actual infected
routers during the attack10. Because Bloom filters are
used to store packet digests, the traceback system may
identify routers that are not actually on attack paths.
We call these routers false positives. The false positive
ratio (FPR) of an attack tree constructed by the trace-
back scheme is defined as the ratio of the number of
false positives to the total number of routers in the at-
tack tree. It is ideal for the traceback scheme to be able
to trace most of the attackers (i.e., low FNR), using a
moderate number of attack packets. It is in general
not necessary for FNR to be zero (i.e., find all attack-
ers) since identifying and removing most of the attack-
ers are effective enough for restoring the services being
attacked. Incomplete or approximate attack path infor-
mation is valuable because the efficacy of complemen-
tary measures such as packet filtering improves as they
are applied further from the victim and closer to the at-
tack sources [28]. This is why we count routers instead
of routes in these performance metrics.

Among the control parameters, Na denotes the num-
ber of attackers, and Np represents the number of at-
tack packets that are used for traceback. The larger Np

is, the higher the traceback overhead is. Recall that p
denotes the sampling rate, k denotes the number of

9 In real situation, this assumptionof randomdistributioncanbe
wrong because many hosts in same vulnerable network can be
compromised simultaneously. However, clustering of attackers
only helps our scheme because it increases the correlation be-
tween routers in attack path.

10 Recall that a router on the attack path of an attacker is called
“infected”.
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0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600 700 800

E
rr

or
 le

ve
l (

FN
R

+F
PR

)

number of attack packets Np (x1000)

(a) Skitter I topology

1000 attackers
2000 attackers
5000 attackers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600 700 800

E
rr

or
 le

ve
l (

FN
R

+F
PR

)

number of attack packets Np (x1000)

(b) Skitter II topology

1000 attackers
2000 attackers
5000 attackers

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 100 200 300 400 500 600 700 800

E
rr

or
 le

ve
l (

FN
R

+F
PR

)

number of attack packets Np (x1000)

(c) Bell-lab’s topology

1000 attackers
2000 attackers
5000 attackers

Figure 6: Simulation results supporting the theoretical analysis (error level by varying Np)

hash functions used for each Bloom filter, and s = kp
is the computational complexity per packet. We assume
every router uses the same values of s and p for evalu-
ation purpose. For the purpose of simulations, we also
assume all the intermediate routers do the marking and
store the packet digests.

5.2. Verification of theoretical analysis

In Section 4, we have developed an information-
theoretic framework for optimal parameter tuning. In
particular, we predict that when the resource con-
straint is s = 0.4, the traceback accuracy is maximized
when k = 11 or 12 if there are 1,000 attackers with
same intensity. We conduct simulations on all topolo-
gies to verify the accuracy of our model, and the results
are shown in Figures 4(a,b,c). Here the number of at-
tackers Na is 1,000. We use the sum of FNR and FPR
to represent the overall error level of the simulation re-
sults, since the entropy concept reflects both FNR and
FPR11. The three curves correspond to using 50,000,
75,000 and 100,000 attack packets for traceback, re-
spectively. These figures show that the optimal value

11 The error pe does not correspond exactly toFNR+FPR,but is
close to FNR + FPR when both numbers are reasonably small.

of k parameter in our simulation is either 11 or 12,
matching our theoretical prediction perfectly. For ex-
ample, when we use 12 hash functions in a Bloom filter
and use 100,000 attack packets for traceback on Skit-
ter I topology, we can get 0.308 and 0.027 as FNR and
FPR respectively. It means that we can correctly iden-
tify around 70% of infected routers in attack tree with
only 2.7% of false positive. Note that this result is ob-
tained using very low resource constraint s = 0.4 which
makes the sampling rate as low as 3.3%.

We also simulate, given a fixed k value, how the
error rate varies with different s values, and the re-
sults are shown in Figures 5(a,b,c). Here the number
of attackers Na is set to 2,000 and the number of at-
tack packets used for traceback is 200,000. The nine
curves in each figure represent the error rates when k
is set to 8, 9, · · · , and 16, respectively. Among differ-
ent k values, our traceback scheme performs best with
k = 12 when the resource constraint s is no more than
0.6. For example, when k = 12 and s = 0.6, we get
0.009 and 0.061 as FNR and FPR respectively. When
there are more resources (i.e., s > 0.6), our traceback
scheme performs better with larger k values. The in-
terpretation of this is that our “one-packet decoding
rule” generates more false positives when larger s al-
lows for higher sampling rate and hence larger |LR1

|
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(number of attack packets that match the Bloom filter
at R1). Since FNR at this point is already low, the in-
crease on the FPR will wipe out the gain we have on
FNR. In other words, at this point, the larger |LR1

| be-
comes a liability rather than an asset. Therefore, when
s > 0.6, our scheme achieves lower (FNR + FPR),
when k is increased to reduce the false positive rate of
the Bloom filter and the size of LR1

.

We also would like to compare the minimum number
of packets needed to achieve a certain level of traceback
accuracy with the theoretical lower bound we have es-
tablished in Section 4.3.3. This can be achieved by com-
paring the curves in Figures 6(a,b,c) and curves in Fig-
ure 3 (in Section 4.3.3). The parameter settings used
in all figures are the same. All three curves in each fig-
ure of Figures 6(a,b,c) are higher than curves in Fig-
ure 3. In other words, the required number of pack-
ets to achieve a certain error rate in the simulation
is higher than the number from the theoretical analy-
sis. This is expected for the following reason. The er-
ror pe in the theoretical context is different from (FNR
+ FPR). In the theoretical context, the error pe cor-
responds to the decoding error when R1 is correctly
convicted and only R2 is in question. In the (FNR +
FNR) measure, however, even R1 may not have been
correctly convicted. Therefore, (FNR + FPR) values
are always higher than pe values under the same at-
tack scenario. Note that curves in Figures 6(a,b,c) cor-

responding to 1,000 and 2,000 attackers go up when a
large number of attack packets are used for traceback.
Our explanation is that when Np becomes larger, there
are more false positives due to the “one-packet decod-
ing rule”. In this case, the decrease in FNR is moder-
ate and outweighed by the increase in FPR.

5.3. Performance of our scheme

We would like to investigate how our traceback
scheme performs in terms of FPR and FNR with re-
spect to different number of attackers and different
number of attack packets used for traceback. Fig-
ures 7(a,b,c) show the FNR of our scheme against the
number of attack packets Np used for traceback, un-
der the three aforementioned Internet topologies. Sim-
ilarly, Figures 8(a,b,c) show the FPR values. In all six
figures, we assume s = 0.4 (devote 0.4 bits of compu-
tation to each packet). We set k to 12 bits and p to
3.3% (12 × 3.3% = 0.4), which correspond to the opti-
mal parameter setting prescribed by the information-
theoretic framework in Section 4.3.2. The three curves
in each figure correspond to 1,000, 2,000 and 5,000 at-
tackers, respectively.

For all curves in Figures 7(a,b,c), we observe that
as the number of attack packets used for traceback Np

increases, FNR value decreases sharply, which corre-
sponds to more and more infected routers being iden-



tified. On the other hand, the FPR value in Fig-
ures 8(a,b,c) increases very slowly and is always rea-
sonable. The increase of FPR is caused by our “one-
packet decoding rule”. In general, the lower FNR we
get from larger Np significantly outweighs the slightly
higher FPR.

We also observe that our scheme can achieve very
high traceback accuracy with a reasonable number of
attack packets. For example in Figure 7(a), under the
attack from 1,000 attackers, about 175,000 attack pack-
ets would be enough to track more than 90% of the
infected routers, resulting in only 4.4% FPR. In this
case, the average number of packets per attacker is
175. As the number of attackers increases, the number
of packets to achieve the same accuracy also increases.
However, normalized over the number of attackers, this
number actually decreases. For example, to track 90%
of the infected routers when there are 2,000 or 5,000
attackers, we need 325,000 or 725,000 packets, respec-
tively. The normalized numbers in these two cases are
160 and 145, respectively. The reason is that, the more
attackers there are, the easier it is to identify the in-
fected routers located not too far from the victim.

6. Related Work

Recent large-scale DDoS attacks have drawn consid-
erable attention [13]. The broad research efforts on de-
fending DDoS attacks can be classified into three cat-
egories.

1. Attack detection and classification. Many tech-
niques have been proposed to detect ongoing DDoS
attacks, which can be classified into either signature-
based (e.g., [27]) or statistics-based (e.g., [33]). As
we have mentioned, these attack detection techniques
are needed to trigger our traceback procedure. Hus-
sain et al. [15] propose a framework to classify DoS at-
tacks into single source or multiple sources. This clas-
sification information can help the victim to better re-
spond to the attacks.

2. Attack response mechanisms. Two classes of so-
lutions have been proposed to address the problem.
One class is the IP traceback schemes [4, 9, 28, 30,
8, 29, 14, 2] that we have discussed in detail in Sec-
tion 1, including this work. In addition to proposing
some PPM-based IP traceback schemes, Adler [2] stud-
ied the fundamental tradeoffs between the number of
packets needed for traceback and the bits available for
performing packet marking, in the PPM context. In
this paper, we studied a similar tradeoff question in
the context of logging-based IP traceback (i.e., hash-
based) and sampling. The techniques used in [2] to de-
rive these two tradeoffs are very different. While tech-

niques in [2] come mostly from theoretical computer
science, ours come mostly from information theory. Fi-
nally, we find it extremely hard to study this tradeoff
question when the network allows both PPM and log-
ging, since the question can be cast as a network infor-
mation theory (mostly unsolved [7]) problem.

The second class is the techniques to prevent DDoS
attacks and/or to mitigate the effect of such attacks
while they are raging on [19, 17, 36, 34, 31, 35, 12, 25,
18, 21, 24, 22]. In one of our prior work [31], we present
a technique that can effectively filter out the majority
of DDoS traffic, thus improving the overall throughput
of the legitimate traffic. Another prior work of ours [34]
proposes a practical DDoS defense system that can pro-
tect the availability of web services during severe DDoS
attacks. These two pieces of work fall into the second
class. SOS [18] uses overlay techniques with selective
re-routing to prevent large flooding attacks. Mitigation
mechanisms proactively filter attack packets at strate-
gic places in the network. For example, Ferguson [12]
proposes to deploy ingress filtering in routers to de-
tect and drop packets sent using spoofed IP addresses
which do not belong to the stub network. Park et al. [25]
propose to install packet filters at the borders of au-
tonomous systems to filter packets traveling between
them. Yarr et al. [35] propose to encode the paths tra-
versed by the packets and filter out the attack traffic ac-
cording to the path identifier. Jin et al. [16] propose to
use the TTL values to detect and filter out spoofed IP
packets. Schemes in both [19] and [36] use router throt-
tles to allocate the victim bandwidth equally ([19]) or
in a min-max fashion ([36]) among perimeter routers.
All these schemes aim at filtering out attack traffic or
throttling its volume, thereby making legitimate traf-
fic easier to go through.

3. Understanding DoS attack prevalence and at-
tack dynamics. Moore et al. used “backscatter anal-
ysis” to gauge the level of Internet DoS activity [23].
They studied the intensity and duration of the DoS at-
tacks and observed a small number of long attacks con-
stituting a significant fraction of the overall attack vol-
ume. Paxson [26] analyzed the reflector attacks that
conventional PPM schemes can not work against. He
then proposed a solution called Reflective Probabilis-
tic Packet Marking Scheme (RPPM).

7. Conclusion

In this paper, we have presented a new approach
to IP traceback based on logging sampled packet di-
gests. In this approach, the sampling rate can be low
enough for the scheme to scale to very high link speed
(e.g., OC-768). To achieve high traceback accuracy de-



spite the low sampling rate, we introduce ORMS, a
novel sampling technique. It significantly increases the
correlation between the packets sampled by neighbor-
ing routers, thereby enabling our traceback scheme to
achieve very high traceback accuracy and efficiency.
ORMS is also shown to be resistant to the tamper-
ing by the attackers. We analyze the proposed scheme
based on a novel information-theoretic framework. This
framework allows us to compute the parameters with
which our system achieves the optimal performance. It
also allows us to answer important questions concern-
ing the trade-off between the amount of evidence the
victim uses for traceback (the number of attack pack-
ets) and the traceback accuracy. Our simulation results
show that the proposed scheme performs very well with
a reasonable number of attack packets as “evidence”,
even when there are thousands of attackers and the
sampling rate is as low as 3.3%.
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Appendix

A. Computing H(Z|Xt1 + Xf1 , Yt + Yf )

The number of attack packets Xt1 sampled by router
R1 is a binomial random variable with probability
mass function Pr[Xt1 = k] =

(

Npd1

k

)

pk(1 − p)Npd1−k.
The number of false positives Xf1

when Lv is queried
against the Bloom filter at router R1 is also a bino-
mial random variable, with the following probability
mass function:

Pr[Xf1
= k] =

Npd1
∑

i=0

Pr[Xt1 = i]
(Np − i

k

)

fk(1 − f)Np−i−k.

Let X = Xt1 +Xf1
and Y = Yt +Yf . The probability

mass function of X is given as follows:

Pr[X = k] =

min (k,Npd1)
∑

i=0

Pr[Xt1 = i]Pr[Xf1
= k − i].

The probability mass function of the pair of random
variables (X,Y ) conditioned on Z = 1 is given as fol-
lows:

Pr[X = j, Y = i|Z = 1]
= Pr[X = j|Z = 1]Pr[Y = i|X = j, Z = 1]

The probability mass function of Pr[Y = i|X =
j, Z = 1] is given as follows:

Pr[Yt+Yf = i|X = j, Z = 1] =

min(i,Npd2)
∑

k=0

Pr[Yt = k|X = j, Z = 1]·

Pr[Yf = i − k|X = j, Yt = k, Z = 1]

where Pr[Yf = i − k|X = j, Yt = k, Z = 1] =
(

j−k
i−k

)

f i−k(1 − f)j−i.

Now all we need is to compute Pr[Yt = k|X =
j, Z = 1]. Its computation is a little involved. We
will show how to compute it step by step. The ran-
dom variable X (i.e., Xt1 + Xf1

) and Yt satisfies
Xt1 = Yt + W1 + W2 where, W1 and W2 have prob-
ability distributions Binom(Npd2−Xt2 , p/(2−p)) and
(Npd1 − Npd2, p) respectively. Intuitively, the attack
packets sampled by R1 consist of three parts: (1) Yt,
number of attack packets that R2 has sampled; (2)
W1, number of attack packets sampled from the set
of attack packets that are not sampled by R2; (3)
W2, number of attack packets sampled from attack
packets coming from neighbors other than R2. We as-
sume d1 = d2 as explained in Section 4.3.1. Since
Pr[Yt = k|X = j, Z = 1] =

∑j

l=0
Pr[Xf1

= l|Z =
1]Pr[Yt = k|Xt1 = j − l,Xf1

= l, Z = 1], all we need to
calculate is Pr[Yt = k|Xt1 = j − l,Xf1

= l, Z = 1]. It is
given as follows:

Pr[Yt = k|Xt1 = j − l, Xf1
= l, Z = 1]

=

Npd2
∑

g=k

Pr[Xt2 = g|Z = 1] ·

Pr[Yt = k, W1 = j − l − k|Xt1 = j − l, Xf1
= l, Xt2 = g, Z = 1]

=

Npd2
∑

g=k

Pr[Xt2 = g|Z = 1] ·

Pr[Yt = k|Xt2 = g, Z = 1]Pr[W1 = j − l − k|Xt2 = g, Z = 1]

=

Npd2
∑

g=k

(Npd2

g

)

pg(1 − p)(Npd2−g) ·
(g

k

)

(
1

2 − p
)k(

1 − p

2 − p
)(g−k) ·

(Npd2 − g

j − l − k

)

(p/(2 − p))j−l−k(1 − p/(2 − p))Npd2−g−j+l+k

Once we have computed Pr[X = i, Y = j|Z = 1],
then according to formula (2) in Section 4.2 the condi-
tional entropy can be calculated as follows:

H(Z|X, Y )

= −
∑

(X,Y )

Pr[X = i, Y = j, Z = 1] log2

Pr[X = i, Y = j, Z = 1]

Pr[X = i, Y = j]

−
∑

(X,Y )

Pr[X = i, Y = j, Z = 0] log2

Pr[X = i, Y = j, Z = 0]

Pr[X = i, Y = j]

where

Pr[X = i, Y = j|Z = 0] = Pr[X = i|Z = 0]Pr[Y = j|X = i, Z = 0]

= Pr[X = i]
(i

j

)

fj(1 − f)i−j

and

Pr[X = i, Y = j] = Pr[Z = 0]Pr[X = i, Y = j|Z = 0]
+Pr[Z = 1]Pr[X = i, Y = j|Z = 1]

= Pr[Xt2 = 0]Pr[X = i, Y = j|Z = 0]
+Pr[Xt2 > 0]Pr[X = i, Y = j|Z = 1].

Finally, note that Pr[X = i, Y = j, Z = a] =
Pr[X = i, Y = j|Z = a]Pr[Z = a] for a = 0, 1, and
Pr[Z = 0] = Pr[Z = 1] = 1/2 as assumed in Sec. 4.3.1.


