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Abstract—As a key approach to securing large networks, (large-scale) suspicious and malicious cyber activide®INS
existing anomaly detection techniques focus primarily on stwork  fajlure graphis a bipartite graph consisting of domain names
traffic data. However, the sheer volume of such data often regers of failed DNS queries and hosts issuing such queries, with

detailed analysis very expensive and reduces the effectiess of . L .
these tools. In this paper, we propose a light-weight anomgl &0 edge between a domain name and a host issuing a (failed)

detection approach based orunproductive DNS traffic, namely, DNS query for the name. Such a graph can be constructed
the failed DNS queries, with a novel tool -DNS failure graphs. A using “unproductive” DNS traffic collected at one or mulépl

DNS failure graph captures the interactions between hostsral  networks (or from any host on the Internet, if such data can
failed domain names. We apply a graph decomposition algofiim o g|jected). The basic intuition behind this notion isttha

based on the tri-nonnegative matrix factorization techniqie to hosts infected by th | bel ina to th
iteratively extract coherent co-clusters (dense subgrap) from NOStS infected by the same malware (e.g., belonging to the

DNS failure graphs. By analyzing the co-clusters in the daji Same botnet) usually query for the same, similar or otherwis
DNS failure graphs from a 3-month DNS trace captured at correlated set of domain names, for instance, to locate the

a large campus network, we find these co-clusters represent aCommand & Control (C&C) servers, malware hosting sites,
variety of anomalous activities, e.g., spamming, trojanspots,  gig1en data storage servers, etc. To evade detection, the do

etc.. In addition, these activities often exhibit distingushable . d by th lici tiviti ft h
subgraph structures. By exploring the temporal properties of main names used by theseé malcious activilies often change

the co-clusters, we show our method can identify new anomas frequently (i.e., in domain-flux[9], [10], [11]); those thdo
that likely correspond to unreported domain-flux bots. not flux frequently often are blacklisted and blocked after

detection. Hence queries for these domain names frequently
result in correlatedfailures, which manifest themselves as a
The Internet Domain Name System (DNS) is a criticalensesubgraph in a DNS failure graph. Such dense subgraphs
infrastructure service used by nearly every Internet appibtn therefore capture the stromgieraction patterndetween a set
for locating various resources (e.g., web servers, mavlessr of hosts and a set of domain names. This observation gives ris
individual endhosts) specified by their (host) domain namée a key research question that we address in this p&zer:
Typically, one endpoint first issues a DNS query to the DN®&e effectively identify, differentiate and separate “staphs”
system to locate the other endpoint before any subsequtrst are likely corresponding to different types of anomsili
data transfer between the two communicating endpoints d@ng., malware activities) based on the interaction patser
commence, be it web downloading, email transfer, instabétween hosts and domain names in a DNS failure graph?
messaging, or a VoIP call placed on the Internet. A DNS To answer this question, we utilize the DNS query data
query failure often signifies that the requested resour@s daollected at several major DNS servers of a large campus
not exist in the system when the query is issued. While sunktwork over a three-month period. Through systematic-anal
a failure may be caused by a mis-typed host name or URL iyis of the “unproductive” DNS traffic contained in this thre
a human user or occasionally due to DNS misconfiguratiomonth DNS query data, we find that while the DNS failure
by human operators [1], a large portion of DNS query failuregraphs (e.g., constructed using failed DNS queries each day
can be attributed to other causes — as pointed out in sevaggdically consist of a large number of isolated (connected)
recent studies [2], [3], [4]. For instance, several antfap components, there often exist one or several “giant” cotatkec
and anti-virus services employ DNS *“overloading” to notiffcomponents involving a large number of hosts and domain
a querying host whether the requested domain name belongsnes. While these giant components are connected, they
to the blacklists they maintain (e.g., of email spam sereers themselves appear to be composed of a number of more
reported attack sites). In particular, as shown in [3], MaMS densely connected subgraphs. In other words, one cannot
query failures (termed “unproductive” DNS traffic) are cadis simply take each isolated component — especially when such a
by “suspicious” and malicious cyber activities, e.g., ffisk component is large and involves a significant number of hosts
web services, trojan malware and botnets [5], [6], [7], [8]. and domain names — as representing and corresponding to a
Inspired by these studies, in this paper we advance the single type of anomaly. We therefore apply a (statisticedpd
tion of DNS failure graphss an effective means for analyzinglecomposition technique, which extends thienonnegative
“unproductive” DNS traffic in asystematiananner and from matrix factorization (tNMF)[12] algorithm, to recursively
a network-wideperspective, and for detecting and identifyinglecompose a DNS failure graph and extract dense (bipartite)
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subgraphs, orco-clusters representing strong and coherenand decomposingnproductiveDNS traffic — much of which
interaction patterns. By analyzing their structural pmbips, are “footprints” left by these exploits — from a network-wid
we classify the resulting co-clusters into three categori¢ a perspective. Clearly, analyzing DNS failure queries al@e
host-star where a few hosts dominate by sending a large nunmsufficient in detecting large-scale exploits; nonethgjeour

ber of DNS queries; 2) BNS-star where a few domain namesDNS failure graph analysis can help winnow down and zero
attract queries from many hosts; 3)bamesh where strong in on likely suspicious activities. Advanced anomaly détec
interaction patterns are observed between a group of hedts and malware analysis techniques using network traffic datta ¢
a group of domain names. Using external data sources suchihes be effectively applied to these suspected maliciotig-ac
domain name blacklists, we find that most of the DNS-staitses. In summary, our work adds a useful and complementary
are caused by instances of trojan malware accessing blocksal to the existing arsenal of techniques for detecting and
domain names. In comparison, the host-stars are primaely tombating large-scale exploits. We believe that it can lElus
artifacts of spamming activities involving queries for @ed as a “first-line” defense in identifying emerging threatatth
domain names of certain email servers. Most interestinghbfe constantly changing and evolving.

many bi-mesh structures are found to be associated with boThe remainder of the paper is organized as follows. We
activities, where the hosts infected by the same bots queryirat discuss the related work in Section Il. In Section Il w
list of domain names that are likely those of C&C servergnalyze the failed DNS queries and introduce the notion of
malware hosting sites, and other suspicious resources.  DNS failure graphs. We then propose a co-clustering algorit

We further characterize and distinguish the suspicious gef decomposing DNS failure graphs into strongly connected
tivities associated with these co-clusters by exploringirth SUbgraphs in Section IV. Section V presents the classifieati
temporal properties and tracking their evolution over tive ~and interpretation of these dense subgraphs and their tainpo
find that a majority of the co-clusters are associated withPioperties are studied in Section VI. Finally, Section VII
stable set of domain names, suggesting that the infectad hg@ncludes the paper.
in each co-cluster likely belong to a botnet with a list ofdvar I
coded domain names for querying C&C and other servers. In ) _ _ _ )
contrast, we also find that several co-clusters are assdciat AS mentioned earlier, our work is motivated by prior work
with a set of domain names that flux over time. Analyzing the®ch as [2] which first points out using DNS queries for
patterns of domain names involved, the rate they are gertsrafietecting bots, [3] which employs a supervised machinetear
and corroborating them with existing studies, we identifiyrf Nd Method to classify different attacks using a combiratio
of them belonging to several known domain-flux bots. Thgf DNS query failures and network traffic data collected for
remaining ones have similar random-looking, but yet digtinindividual hosts, and [4] which provides a systematic asialy
domain name patterns; further, their domain name flux rat@ad .classmcauon of DNS traffic. Building upon these earlie
differ considerably from those of the known domain-flux botS$tudies, our work puts forth a novel and effective methogyplo
These observations lead us to believe that they are plgusifif network-wide analysiof unproductive DNS traffic via

associated with domain-flux bots that are yet to be reportddf\S failure graph decomposition, and demonstrates how the
and hence require further scrutiny. method can be used to identify and differentiate suspicious

o ) o activities usingcorrelation between hosts and the failed DNS
Summary and Contributions. The main contributions of geries For instance, our analysis uncovers groups of hosts
the paper are three-fold: i) we advance the notion of DNgith correlated DNS query failures that differ from known
failure graphs for network-wide analysis of “unproductivegomain-flux bots and are plausibly part of domain-flux or
DNS traffic; i) we propose an extension of the tNMF graplmijar botnets that are yet to be reported. Compared with [2
decomposition method and demonstrate how it can be appltgﬂ our method explores explicitly the correlation of &l
to extract dense subgraphs or co-clusters, which represgiis queries (with small traffic volume) for detecting netior
strong and coherent _i_nteraction patterns between hosts admalies. Unlike [3], our method employs an unsupervised
domain names; and iii) we develop novel methods t0 Sygiachine learning approach and thus does not require tgginin
tematically analyze, classify and track the structural atieer  §5t5 with expensive manual labels. Similar to our work, [13]

properties of the extracted co-clusters and their evalubeer | ses co-occurrence relation among DNS queries to extend
time, and by corroborating with other data sources, deduggck domain name lists.

that the extracted co-clusters capture correlated DN8ré&sl |, addition to the study of unproductive DNS traffic

that are generally associated with same or similar types @fre s a rich literature regarding anomaly detection by
anomalies such as malware or botnet activities. monitoring “unwanted” traffic. Pang et. al. [14] study the
Unlike many existing anomaly detection techniques whidhaffic towards unallocated IP blocks (dark space). Similar
focus primarily on network traffic data — the sheer volumapproach has been applied for “trapping” unproductivditraf
of such data often renders detailed analysis very expensigng honeynet [15]. Jin et. al. [16] characterize and dlass
and reduces the effectiveness of these tools (e.g., too mamg traffic towards temporally unassigned IP addresses(gra
false positives or negatives), our work provides an effectispace). Similar to these existing works, we demonstrate in
means to identify and detect large-scale exploits by aimalyz this paper that unproductive DNS traffic can also be used
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TABLE I: Categories of failed DNS queries.

Type Pct (%) | Examples Description

DNS Overloading 32.37 | anti-spam/anti-virus applications spamcop.net, surbl.org

Server errors 28.01 | unresolvable domain names in a server fafnerpkcmsaw00.bankofamerica.com
Misconfigurations 7.87 | recursive DNS resolver www.example.com.example.com
Typos 2.26 | misspelling of domain names googloe.com, encyclopiedea.net
Known Threats 2.08 | blocked trojan/worm g43gwef.com, antispyware2008xp.comn
P2P 0.75 | failures in P2P related applications 66bt.cn, zingking.com

Unknown 27.33 | unknown failures vuuewgkt.com, dehpydjsi.cn

to effectively detecting network anomalies, especiallynied dataset contains DNS requests and responses from all hosts
behaviors. within the campus network for locating resources outside th
Our work is also related to botnet detection. There hawampus network. The data is in the format of packet traces
been quite a few studies focusing on p2p botnets [5] awdllected using TCP dump. For DNS requests, we have the
spam botnets [6], [7], [8]. These works either manually éhje information of (anonymized) hosts who initiate the quednd
bots into the botnets or use spamming behaviors to group btits target domain names. For DNS responses, we have access
from the same botnet. For instance, Holz et al [5] examinés resolved IP addresses and associated response codes (if
the details of the Storm Worm botnets. They proposes tvemy). We focus olype ADNS requests only, which queries for
approaches to mitigate the botnets. The first is caflelipse the IPv4 address(es) associated with a domain name. We refer
attack, a special form of thgybil attack. The goal is to separateto the DNS queries for which the DNS responses contain a
a part of the P2P network from the rest. The second approaeBponse code other than “NOERRORfailed DNS queries
is called polluting attack, whose goal is to “overwrite” theeach day approximately 2 million DNS queries are captured,
content previously published under a certain key. These at-which around300K are failed DNS queries.
tacks are specific to P2P botnets, and they do not applyﬁs
general botnet detection techniques. Many spamming ®tnet R i ]
detection methods [6], [7], [8] make use of similar spamming We first investigate the p_Iau§|bIe causes for such a Iarge
behaviors to detect and classify bots from different batnefiumber of failed DNS queries in the network by examining
However, these measurements are more expensive and [R&geMs in the failed DNS queries as well as utilizing other
to obtain compared to the DNS traffic. Moreover, our methdtta sources. Table | shows a sample classification of tlwfa!
by passively monitoring failed DNS queries is a more |igh1DNS.quer|es on 01_/05/2009. We observe that a large portion
weight approach than the existing methods, given the mugh failed DNS queries are due to the so-called “overloaded
lower volume of the DNS traffic. traffic” [4], where several anti-spam and anti-virus seegic
There have been studies focusing on individual botnetgPloy DNS to notify a querying host whether the requested
which maintain connections between the bots and the c&t9main name belongs to the blacklists they maintain (e.g.,
servers using techniques like domain-flux [9], [11], [10Pf emayl spam servers or reporteq att_ack sites). We observe
or fast-flux [17], [18]. These works rely on capturing pothat this type of failed DNS queries mvoIv_es only a small
instances and identify bot signature or the domain narfi@mber (fewer than 20) of hosts, mostly email servers fomspa
generation (DGA) algorithms via reverse engineering. Ehefltéring purpose. Server error is the second major cortiibu
methods are in general very expensive and require strong pltP the failed DNS queries. Such failed DNS queries are cau;ed
knowledge on the specific botnets. Hence, unlike our worP}’ one or a few domain names related to a popular web service

Analysis of Failed DNS Queries

these methods do not generalize. that are temporarily unresolvable. DNS misconfiguratiarchs
as a query fowww.example.com.example.c(uch “recursive
I1l. DNS TRAFFIC AND FAILURE GRAPHS domain names” are likely due to Windows default DNS suffix

In this section, we advance the notion BINS failure configured at client machines) account for 7.87% of all the
graphs which capture the patterns that hosts query for nofailed DNS queries, while DNS typos, which are likely caused
existing domain names. We first briefly describe the datasétg users mistyping a few alphabetics of the desired domain
used in this paper. We then provide an overview analysismes, account for 2.26%.
of failed DNS queries in term of their plausible causes and For the remaining failed DNS queries, we look up the target
formally define DNS failure graphs. At the end of the sectiomlomain names in each failed query in a number of auxil-
we present an analysis of the properties of DNS failuiary data sources, including various blacklists [19], si#gu
graphs and demonstrate the community structures (or dendebs [20], botnet related domain nhames obtained via reverse
connected subgraphs) in DNS failure graphs. engineering [21], and information obtained by googling the
Datasets.Our study utilizes the DNS data collected at a largeternet [22]. If a target domain name is used by a worm/troja
university campus network over a 3-month period (from Jaand blacklisted, we attribute the failed DNS querykasown
2009 to Mar. 2009). The network contains aro@dd¢ hosts, Threats We find that 2.08% of the failed DNS queries belong
with IP addresses assigned either statically (e.g., lahinas, to this category. Another 0.75% of the failed DNS queries
web or mail servers) or dynamically (e.g., hosts on residentcan be attributed to hosts participating in p2p activitesthe
dormitory networks or wireless LANSs). The collected DNSarget domain names are associated with p2p applicatiahs an



services found on-line. Finally, we cannot properly atttéh potentially suspicious activities, we perform this cléagstep
the causes for the remaining 27.33% of the failed DN®ainly to reduce the amount of data used in the DNS failure
gueries using various on-line sources mentioned above, ajrdph analysis. The cleansing procedure is fairly consee/a
thus classify them at/nknown We manually inspect thesein the sense that we only filter failed DNS queries that
Unknowndomain names and find that most of these targetedn be confidently attributed teormal network activities. In
domain names contain random-looking strings with distin€act, as will be evident in our DNS failure graph analysis
patterns. As we shall see later in Section VI, most of thetater, most failed DNS queries due to normal activities are
are likely associated with suspicious activities, e.greported well separated from suspicious ones. Hence this cleansing
domain-flux botnet activities. procedure in general does not affect the effectiveness of ou
DNS failure graph analysis technique.

We now formally defineDNS failure graphs Given an

So far, we identify potential threats in “unproductive’observation period” (in our experiments, we always choose
DNS traffic by matching the target domain names in faile@@ = 1 day to maximize the amount of correlations observed
DNS queries against data sources of known security threatad eliminate the effect of IP address churns [23]), A&t
However, such a method is rather time-consuming, whose dénote the set of hosts (IP addresses) making at least one
fectiveness hinges highly on the availability of usefulezrtal failed DNS query, andD be the set of (unique) domain
data sources. By its very nature, this method cannot be usetines in the failed queries. BNS failure graphis a bipartite
to detectemergingthreats that are yet to be discovered angraphG := {H x D,£}, where an edge = (h,d) exists
reported. As shown in Table |, a significant portion (27%)etween a hosh € H and a domain name < D, i.e.,
of failed DNS queries cannot be attributedkoownthreats. (h,d) € &, if and only if hosth makes at least one failed
The large majority of these failed DNS queries contain demabDNS query for d during the observation time period.
names that are suspicious looking and are unlikely to reptesGiven this definition, we construct daily DNS failure graphs
“legitimate” resources on the Internet, we have little mf@- (i.e., 7 = 1 day) using our datasets. We observe that in
tion regarding them. Hence we are interested irnatomatic general there are roughly 2,000 hosts connecting to around
method for identifying suspicious activities behind thésited 3,000 failed domain names each day. Each daily DNS failure
DNS queries. This motivates us to develop NS failure graph is often composed of 1000 or méselatedcomponents
graph analysistechnique presented in this paper. Our bas{gubgraphs): each component is fully connected, but trere i
idea is that suspicious activities are often reflected amgtr no edge connecting any two (connected) components (ie., th
correlations between hosts and failed domain names. Thissémponents are isolated from each other). Despite the large
because hosts infected by the same malware or participatingiumber of isolated components — a large majority of them are
the same activity tend to access similar non-existing domaimall, there exist a few components that are significantiyela
names and hence generate same failed DNS queries. Ushian the others. We measure the size of each component in
a (bi-partite) DNS failure graph to capture the interactiorterms of the percentage of hosts covered by the component out
between hosts and domain names, a strong correlation betwefall hosts. Fig. 1 shows the sizes of the largest components
hosts and the DNS query failures is reflected directly by @ver a two-week period (from 01/05/2009 to 01/18/2009),
densely connected subgraph in the corresponding DNS dailgvhere the solid curve in the figure represents the size of
graph. Thus the problem of identifying suspicious actgti the largest components in the daily DNS failure graphs; for
can be casted as the problem of extracting strongly conttect®mparison, the dotted curve represents the size of thedarg
subgraph components from the DNS failure graph. component in theumulativeDNS failure graphs constructed

Before we perform the DNS failure graph analysis, wby varying T from 1 day up to the entire two weeks. We
first “cleanse” the failed DNS queries by filtering the onesee that the size of the largest component in the daily DNS
that are attributable to “normal” network activities suck afailure graphs ranges from 14% to 37%. As the observation
DNS overloading, server errors and misconfigurations. WeriodT expands from 1 day up to the entire two weeks, more
note that we have developed a heuristic cleansing procedhosts (77% in the entire two weeks) are included in the ldrges
to automatically filter these “normal” DNS query failuresarF component; the big jump in the curve is caused by two large
example, we filter overloaded DNS query failures by matchir@mponents (in two different days) connected by a singlé. hos
the responders of these queries against a list of known antiDespite their large sizes, these connected components are
spam/anti-malware sites, and adopt a similar approach gsnprised of many loosely connected (e.g., via a few edges)
proposed in [2] for filtering failed DNS queries due to servesubgraphs, each of which is more densely connected. We
errors. Due to space limitation, we do not provide the dethil use the largest component in the daily DNS failure graph
heuristics used here. Note that we do not automatically filten 01/05/2009 to illustrate this point by visualizing it nigi
failed DNS queries involving p2p activities, partly becaus
they are hard to filter automatically. More importantly, mman we remark that in this paper we consider the DNS failure gsafgh

2p applications or services are sometimes abused by nealwe unweighted, representing the absence/presence ofa@nc®mNS query.
P<p app y However, our method can be readily extended to weighted Daffictgraphs,

a?tiVitieS; sor_ne .Of _them appegr suspicious _On thefir OV_V\R)here the weight of an edgé, d) can be used to represent, e.g., the number
Since our objective is to use failed DNS queries to identifyf failed queries from hosk for d.

B. DNS Failure Graphs and Properties
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Fig. 1: Size of the largest DNS failureFig. 2: The largest DNS failure sub-Fig. 3: Block structures after row and
subgraph over time. graph from 01/05/2009. column rotations.

Graphviz [24], as shown in Fig. 2, where the blue nodes adécomposition technique developed in [12], and is capable
red nodes represent hosts and domain names, respectively (F identify coherent co-clusters with irregular shapes. An
clarity of visualization, we have randomly removed 60% abverview of the algorithm is shown in Alg. 1. In the following
nodes with degree 1 in Fig. 2). Clearly, this largest corgrbctwe explain each step in detail.
component contains several dense subgraphs that areyooiel
connected via a few edges. These dense graphs imply that ther
exist strongcorrelated behavior§“community structures” in ~ Given a DNS failure graplg, as the first step in Alg. 1,
social network analysis jargons) among the hosts in thedg extract all the isolated components frémThough most
dense subgraphs: the strong correlations manifest in tieel fa Of the components are fairly simple and small, there exist
domain names they query; in other words, there streng Several large connected components which are comprised
interaction patternghat connect the set of hosts and the s&f l00sely connected dense subgraphs, and thus are further
of domain names they collectively query. decomposable. In the next step, we iteratiyely decompaﬂe ea
To further illustrate these “community structures,” we-reg these large components using the tri-nonnegative matrix
resent the same graph in Fig. 2 using its adjacency matf¢torization (tNMF) algorithm, which has been succesgful
A = [ay]. The rows and columns ofl represent the hosts@pplied to decompose (applicatiomjaffic activity graphs

(H) and the domain namesD}, respectively; entrys;; = 1 (TAGS) in [12]. In the following, we provide a brief overview
if edge (h;,d;) € E, anda;; = 0 otherwise. We rotate of the tNMF algorithm in the context of decomposing DNS

the rows and columns il to best reflect the “community failure graphs.
structures” in the graph. We plot the rotatddn Fig. 3, where
dots represent those non-zero entriesdinThe “community
structures” (dense subgraphs) in the graph are now visible & INput: A DNS failure grapty; _

“blocks” in A. Further, we see that there are several typegj %Et:g]cglgsp?nnrgc;gd subgrapl:= U;Gs;

of “community” or “block” structures: some contain a small ;. Run tNME to decomposé; into k x I co-clusters:

number of hosts but a large number of domain names, other Filter noise inG; by removing co-clusters with low densities;
contain a large number of hosts but a smaller number o Merge dense co-clusters;

domain names, and yet other contain both relatively largé Output all coherent co-clusters;

numbers of hosts and domain names. These different intet: end for

action patterns between the hosts and domain names suggest )

that the hosts involved are likely engaging in differentdén ~ Given @ DNS failure graply (or rather, a large connected
of suspicious activities. These visual analyses suggasthie COMPonent inG ) representing the interaction patternssof
largest connected component can be furtheromposeihto NOSts andn. domain names (For simplicity, we abuse the
dense subgraphs, which more likely correspond to corlaf®0tation by usingg to represent a subgraph instead of the
behaviors. These dense subgraphs are connected by a fgginal DNS failure graph). Letl,, ., be the corresponding
weak links or random edges which are shown as the ligh@iacency matrix oG. The tNMF algorithm approximately

area in Fig. 3. Due to the existence of these weak link&ctorizes A, into threelow-rank nonnegativematrices,
we cannot simple treat each subgraph as a single activitynxk: Hixi, and C,x; so as to minimize the following
Instead, we need to extract these dense graph component® gctive function/, subject to the orthogonality constraints

Co-clustering using tNMF

Algorithm 1 Decomposing DNS failure graphs

“communities” to separate different activities. on R andC:
i J(R,H,C) = ||A— RHC"|3
V. DECOMPOSINGDNS FAILURE GRAPHS REO,CZO,H;({}}%QA”R:I,CTC:I (7, H,C) =l 7

In this section, we present an algorithm for automaticallywhere|| - || is the Frobenius norm, anid ! << min(m,n).
decomposing, and extracting dense subgraphs from, DX8 algorithms is developed in [25] to solve this optimizatio
failure graphs. This algorithm extends tNMF-based gragdroblem by iteratively updating?, C and H.
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In the context of our study, the decomposition results of the With such choices of andl, we apply the tNMF algorithm
tNMF algorithm can be interpreted as follows. The matricae decompose a given DNS failure graph. We compute the
R andC divide the rows and columns into host groups and densities for all the subgraph#,,’s thus extracted, and
[ domain name groups, whet®.,, p = 1,---,k, andC,,, rank them in a decreasing order. We then use the change in
qg=1,---,1, serve respectively as the “membership indicatothe densities of subgraphs thus ranked to differentiatesalen
functions of the row groups and column groups. Assumingsaibgraphs from non-dense subgraphs, i.e., those thatstonsi
hard co-clustering setting [12], we assign each host/domainainly of a few random, noisy edges. We use the graph in
name to only one row/column group with the largest entry iRig. 2 as an example to illustrate how this is done, where we
RIC (random assignment is used to break ties). We dendateply the tNMF method withk = [ = 15. After ranking the
the new row and column membership indicator matrices subgraphs based on their densities, Fig. 4 shows the change
the hard co-clustering setting ésand C, respectively. in density of these subgraphs, wheraxis shows the relative

One row groupp and one column group together form change(y; —yi+1)/yi+1 Of the (non-zero) density. We observe
a subgraph or a co-cluster i& (we use subgraph and co-that the most significant change occurs between the 12th and
cluster interchangeably hereafter), and its density isprged  the 13th subgraphs, and after the densities are much smaller
as follows: after that.

5T AC After the noisy, non-dense subgraphs are removed, we can
- M, <p<k 1<qg<l, (1) check to see whether some of the dense subgraphs can be

[Rpll1 - [1Cq- |1 merged to form more coherent co-clusters (with potentially

where|| - ||, is the Z;-norm. The co-clusters with high,, irregular shapes). We merge two subgraphs if _they sharereith
. ; a common host group or a common domain name group.
(density) values correspond to dense subgraphs, whilenée o :

) . Hence the co-clusters are formed by adjacent dense areas
with low H,, values can be viewed as a loosely connecteaaE : ; ; . .

. . . displayed in the density matrik/. Fig. 5 shows the merging
subgraphs with a small number of random links (or nois g ] .

o . . esults for the graph in Fig. 2: although after removing the
edges). By filtering these weak connections or noisy edges,

we can then extract the dense subgraphs from the DNS faillie>" non-dense subgraphs, we have obtained a total of 12

raph (or each of its large connected components) dense subgraphs; these 12 dense subgraphs essentially form
grap 9 P ' 6 coherent co-clusters (after merging)— the numbers in Fig.

identify these 6 coherent co-clusters. Comparing to theroth
four co-clusters, co-cluster 1 and 3 do not have a typical box
The parameterst and [ are two key parameters thatshape, thus they cannot be obtained with classical coetingt
determine the number of row groups and column groupsigorithms (e.g., the standard tNMF algorithm in [12], whic
and therefore the total number of resultant CO-ClUStermNaa|Ways produces box-(or rectangu|ar) Shaped Co-C|usters)
approaches such as trial-&-error, model selection throughuntil now, we can extract all the dense subgraphs (com-
statistical testing, and so forth, can be applied for silgct munities) from DNS failure graphs. In the next section, we
appropriate values fok and (. In this paper, we start with analyze these subgraphs in detail and show that they atg like

larger (likely than the “true”) values fok and! (i.e., we first corresponding to different anomalous activities in theveek.
over-estimatek and!/)?, which yieldsfiner-grainedsubgraphs

or co-clusters. We then apply @herentco-cluster selection
process to merge these finer-fined subgraphs into more coAfter decomposition, the DNS failure graphs break into
herent subgraphs or co-clusters (with potentially “irdegu multiple coherent co-clusters (dense subgraphs). In #xds s
shapes). A similar approach has been applied in [26], whitibn, we provide a detailed analysis of the co-clustersaetéd
shows that such an approach is more effective in obtainifigm our 3-month DNS trace.

more coherent co-clusters than attempting to directly fived t
“true” values ofk and!.

pq -

B. Obtaining Coherent Co-clusters

V. ANALYSIS OF CO-CLUSTERS

A. Categorizing Co-clusters

We categorize different co-cluster structures based on
2In our experiments, we choose= | = [min(m, n)/30]. whether there are a few dominant hosts or a few dominant



TABLE II: Categorization of identified co-clusters.

ID | Root cause Pct.(%) | Detalils Bi-mesh | Host-star | DNS-star
1 | Trojan (Backdoor) 28.1 Variants of Dropper, Pakes!sd6, Rustock.E, Tidserv, Wieki| 63.2% 26.3% 10.5%
Ertfor.A, Kraken, FakeAlert.a, Anti-Virus2008, Crypt.tatc.

2 | Spamming 25.2 Hosts querying for non-existing mail servers. 29.9% 70.1% 0

3 | Domain-flux botnets| 13.3 Conficker A/B, Torpig. 66.1% 33.9% 0

4 | Peer-to-peer 5.2 Hosts querying for non-existing p2p servers. 100% 0 0

5 | Unknown 28.1 Domain names not found in the data sources. 72.2% 20.1% 7.7%

Total 100

(a) Host-star (spamming) (b) Bi-mesh (bot: Conficker A) (c) Bi-mesh (trojan: Srizbi) (d) DNS-star (spyware: Webhancer)

Fig. 7: Example of DNS failure subgraph structures.

domain names in the co-cluster. More specifically,Agt.,, most likely an instance of spamming activities. We show in
denote the adjacency matrix corresponding to a particulig. 7[b] a bi-mesh structure caused by a set of domain-flux
co-cluster consistingn hosts andn domain names. Let bots (Conficker A [9]). As we shall see in Section VI, this is

pio = >;ai/Y ;0 andpy = 37 a5/, sa;; be because these bots access the domain name list from the same
the marginal probabilities of the rows and the column§GA algorithm. Another example of the bi-mesh structure is
respectively. We define thelominant host ratio(dhr) as shown in Fig. 7[c], which corresponds to the activity of the
dhr = —(>, pi.logp;.)/logm, which varies between O trojan Srizbi [27]. An example of the DNS-star structure is
and 1. Adhr close to 0 implies there are a few dominandisplayed in Fig. 7[d], corresponding to 7 hosts querying fo
hosts that connect to far more domain names than otlenon-existing domain nameebhancer.comwhich is related
hosts in the same co-cluster; whiledar close to 1 means to a reported spyware activity [28].

all the hosts query approximately equal number of domain

names. Similarly, we define thdominant DNS ratiqddr) as B. Interpreting Co-clusters

ddr := —(3_,p.jlogp.;)/logn to identify dominant domain
names. We say a co-cluster has a (likelpkt-starstructure if
dhr < 6 andddr > 1—4¢. In comparison, a (likelyPNS-star
structure is defined ifthr > 1 — 6 andddr < 0. If dhr > ¢
andddr > 6, we call such a structure l@i-mesh

Given the three types of co-cluster structures (or intéyact
patterns) between hosts and domain names, we next study the
root causes of these different co-cluster structures. Boh e
co-cluster, we first extract all the associated domain names
We then match these domain names against all the external

In Fig. 6, we show the distributions af.r andddr of all  data sources we have. For a matched domain name, we label
the co-clusters extracted from the daily DNS failure graiphs jt with the root cause specified by the data source. We then
our dataset. We note that when a co-cluster is too small, Wssign the co-cluster with the most dominant root cause. In
usually do not have enough evidence to interpret the meanimgble I, we summarize all the co-clusters extracted from
of that co-cluster. Meanwhile, the three structures are laiss  the daily DNS failure graphs using our dataset. Each row
meaningful for small co-clusters. Therefore, we filter tlee ¢ describes a specific category of co-clusters classified by th
clusters which contain less than 5 nodes (hosts plus domgiat cause. The second column shows the root cause of the
names). Though the remaining co-clusters account for ordy-cluster. The third column indicates the proportion o th
8% of all the CO-ClUSterS, they cover more than 42% hosts aag.dusters be|0nging to that Category over all the obskcee
53% domain names. From the strong bi-modal shapes of beflisters. We provide examples or explanation of each catego
dhr and ddr distributions in Fig. 6, we choosé = 0.1 to jn column 4. We further identify the percentages of co-@tst
separate the three types of structures. in each category that are bi-meshes, host-stars and DXS-sta

We illustrate examples of the three different subgraphcstru(column 5-7).
tures in Fig. 7[a-d], where blue boxes and red circles regmmes From Table I, we observe thdtojan (backdoor) is the
hosts and domain names, respectively. A link means a hasbst common root cause of the co-clusters, which accounts
has queried for the corresponding domain name. The hast-gta 28.1% of the co-clusters in total. These detected trojan
structure in Fig. 7[a] is due to a host querying for many norirstances maintain a (usually hard-coded) list of domames
existing domain names containing keywords like mail, mg, etof the C&C servers where they can upload sniffed privacy



information and download commands or updates. The domdirat we cannot identify their root causes based on the domain
names are associated with the C&C servers either througgimes. 72% of these co-clusters are bi-meshes, which we sus-
standard DNS registrar or using fast-flux mechanism [17¢ Tlpect are possibly caused by unreported anomalous adivitie
domain names hardly change after the trojans are releaskslwe shall see in Section VI, we find a number of them may
Therefore, such domain names can be easily blocked aarrespond to the activities of unreported domain-flux bots

removed from the registrar once the trojan malware is detectHow are these dense subgraphs connected®ecause the
The failed DNS queries are caused by trojans querying tBghgraphs represent heterogeneous suspicious actigities
domain names that are already blocked or deleted from thence ideally they are isolated subgraphs in a DNS failure
DNS registrar. In general, these trojan instances containggph. However, by studying the removed weak links, we find
limited number of domain names, and hence the co-clustggt under several circumstances they will be connected to
in this category often exhibit bi-mesh (63.2%) or host-stdsrm large subgraphs. One possible reason is that a host may
(26.3%) structures. We note that although these trojan ie infected by multiple malwares. For example, in Fig. 2,
stances are detached from the C&C servers, they still rem@j find two hosts that are multiple infected, one of them
as a threat since the specific exploits are not fixed on thgsejnfected by both Conficker B and Horse, and the other
hosts, therefore they are vulnerable to future attacks. is infected by Horse and Torpig. Another possible reason is
The second major root cause (25.2%) is the spammifi¢ht hosts infected by different malwares may share some
activities. Hosts involved in such activities periodigadjuery other common behaviors. For example, we observe that P2P
for a large number of non-existing mail servers, therelpglated DNS failures are likely to appear together with pthe
showing dominant host-star structures. Most of these magifections, such as confickerB, Horse, Win32/Polip. As habt
servers belong to large ISP networks and somehow have thgiample, hosts infected by different trojans may query the
domain names changed. We suspect the hosts are infe@gghe (non-existing) mail servers for spamming purpose. In
by certain worms or bots, which use a list of common madddition, a few edges are caused by hosts changing their
servers. During certain time periods, these worms/botsrbec dynamic IP addresses within the observation period.
active and query for the mail server addresses to propagate
spams. We also observe 29.9% of the co-clusters are bi-  VI. EVOLUTION OF DNS FAILURE GRAPHS
meshes, possibly due to different hosts equipped with tiiesa  |n this section, we explore the temporal properties of the
email server list. No DNS-star is found in this category.  DNS failure graphs. We first propose a best-effort linking
The third category is caused by domain-flux botnets. The bgiyorithm to correlate co-clusters identified from daily SN
master of a domain-flux botnet uses a domain name generatigifure graphs on various days. We then differentiate sajlgs
algorithm (DGA) to periodically create a new domain namexperiencing significant changes over time from the stable
list for the C&C servers and select a few of them to registeines. At the end of the section, we show that many of the
To avoid conflict with the existing registered domain namegynamic subgraphs are likely unreported domain-flux bots.
the domain names from the DGA algorithm often consist of
random-looking strings with either variable or fixed lergth A- Tracking Co-cluster Changes
Every bot belonging to the same botnet is equipped with theFor a particular co-cluster, either hosts or domain names
same DGA to continually generate domain name list of threay change over time due to dynamic address allocation or
C&C servers. A bot tries to connect to the domain names ihe domain name generation schemes used by bots. In order
the list to reach the C&C servers. Since most domain namestrack the changes of co-clusters over time, we employ a
on the list are not registered, such bot activity often letads best-effort approach which takes both factors into account
a large number of (correlated) DNS query failures. For someGiven a particular co-cluste®; ; from day¢, let H;, and
of the domain-flux botnets, the DGA algorithms have beep; , be the sets of hosts and the domain names associated with
successfully reverse engineered [9], [11], [10]. We emplay, ;, respectively. We use thdaccard Similarity Coefficient
these reverse-engineered DGA algorithms to precompute (06C¥ to measure the similarity betwee@¥;, and every
domain name list and use it to identify co-clusters caused bybgraphs?, ;1 from the following day { + 1) to find the
domain-flux bots. With this method, we find that in total 13.3%est match in terms of both the hosts and the domain names.
of all the co-clusters are due to domain-flux bots. Because tin particular, we callG; ;1 the best match of7; ; if
same bot instances utilize the same DGA algorithm, theyédienc
show strong correlation. As a result, 86% of the co-clusters = 479MaL; max(JSC(Hi e Hje1) JSC(Dies Djea))

are pi-meshes, with anther 14% are host-stars when only WM max(JSC(Hir, Hjis1), JSC(Diy, Djri1)) > 6. Fig. 8

bot instance from a particular domain-flux botnet is obseérvegnows the distribution of the JSCs for the best matches be-
P2P activities contribute to 5.2% of all the co-clusterse Thyyeen the subgraphs on 01/05/2009 and those on 01/06/2009.

correlated DNS query failures happen when more than OPRe to the bimodal shape, we chooge= 0.6 as the cut-

hosts look up for the same p2p servers that no longer exisf threshold in our experiments, i.e., a co-cluster has est b

All of the identified p2p activities are bi-meshes, accep$i®  match if the maximum JSC value is less than 0.6. In this way,
same domain names, such &gbt.cnandzingking.cometc.

The last category consists of 28.1% of all the co-clustersFor two setsA and B, the JSC is defined dsi N B|/|AU B|.



we can track the _changes of a particular subgrgph by finding TABLE Ill: Domain name patterns.
its best matches in the subsequent days recursively. CandidateA CandidateB CandidateC

We use a simple criterion to differentiate stable co-clsste gkytmopiicffqticom ggmit\)ﬂl:ﬁ-com aufutmg(ljJtua-com

. . ymtyupvty.ne S .com | ncamnsdtxa.com

and dyna.mlc ones based on the change of the dor_nam names. | fontaia cc xbhsxdgk.com | hihxeezzsd.com
We consider a co-cluster to be unstable over time if the tbllutksgqg.com svvwdddw.com | Ipgrmgiwln.com
maximum JSC between the domain name sets appearing at the S %andidagl?Dh —
- : guyyruldrbrbgyfxdtnb.com, digrhudtjiajuopbagwg.com
fIrSt_qay and any of the SUbsequem days is less thath i1 hqgcwbspyvdpmhrejvhdi.com, wvkafndfedfoxkcdlimw.com
addition, we only focus on the co-clusters that last for more

than one week. For co-clusters with a shorter life, we need i , )
more observations to study their changes are apparently random strings of a variable length (canelida
' A) or a fixed length B of length 8,C' of length 10 andD of

length 20). This indicates that these domain names areylikel
generated by machines (using certain algorithms) other tha
by human beings.

We next study the cycles of domain name changes of the
4 candidates. Fig. 9[a] shows different lengths of cycles of
these 4 candidates, where thexis represent the number of
days (relative to the time when the bot instances begin to be
observed) and thg-axis stands for the cumulative number of
unigue domain names appearing over time. We observe that

1000

8001
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Count

4001

200}

° Q2 imumSac of tha B st masis ! except for the candidate B which has a cycle length of 1 week,
all the others have a cycle length of 1 day. In comparison, we
Fig. 8: Maximum JSC. show the cycles of the three known bots in Fig. 9[b]. All the

There are totally 20 co-clusters that last for more than ttl1ree known bots have a cycle Iength of 1 day.
At the end of the two-week period, the total humber of

week, where 12 of them are stable co-clusters. Not surpris-, d ) b dq7 h didate al .
ingly, these stable co-clusters are caused by correlapgahtr U"'dU€ domain hames observedrior each candidate aiso vares
nificantly compared with the known bots. For example,

malware activities, which access the same set of domainslarﬁl@ i bot v h 42 uni d . fter 2 K
all the time. However, we identify 8 co-clusters that are enor orpig bots only have 4z unique domain names afler = Weexs

dynamic (i.e., with significant domain name changes). We ne(>§ r;ewtdoma(\;_r:j rlaméz:; generatefrl] by igeK DGZA perkday)r.] In
study and interpret these dynamic co-clusters. contrast, candldate \as more than In < weeks, where
around 3K new domain names are observed per day. To
B. Analyzing Dynamic Co-clusters further differentiate whether 4 candidates are the vgsiarﬁt
h | ith sianif d _ h the known bots, we compare the hosts associated with each of
For the 8 co-clusters with significant domain name changgge, | fact, there is no IP address shared by the candidates

using the reverse-engineered DGA algorithm, we find thﬁhd the known bot instances, suggesting these candidaes ar
four co-clusters are related to three types of domain-flus:bo

lausibly unreported domain-flux bots.
Conficker A, Conficker B and Torpig (the Conficker B botg Sy Brep n-Hiux

. Unlike the large number of failed domain names, the
form two separate co-clusters, due to one particular daynwhe . . ;
) . registered domain names and the successful queries are of
no bot instance sends out DNS queries). In fact, these 4 CO*

clusters cover all the domain-flux bots belonging to theseeth special interest to us, because they provide hints on the IP
X a&idresses of the C&C servers as well as the botmasters (who
botnets without any false alarm. In other words, our methg

can identify these three types of bots with 100% accuracr:eg'Stered these QOmaln nam_es). For all _thes_e 4 candigaes,
tract the associated domain names with similar patte®s (

pulrely gé/_tt_-:‘xplotrrl]ng the c_or_relat:lon n IIDNtS failure ?rgplhso'l identified in Table 1ll) fromboth successful and failed DNS
nl?n:l n!’;tlr?;,co eerrgrsng:;mcﬂ theco-r?kl;lsoerr']s dﬂ;ai i:me%sueries We find there is no successful domain name query for
u W v e u W ! %a?didateA C and D, possibly due to the short observation

These co-clusters demonstrate similar patterns as thosetirg|e period and the small sample size. We do observe 1

the reported domain-flux bots. We next provide a de“"_“‘?B address returned for candidat® which is registered 7
analysis of these co-clusters to show that they are aISty“k%lays before the first access toward this address. However,

corresponding to unreported domain-flux bots. since the host may be infected by multiple malwares, we

We start by examining at the patterns In the domain NAMERed further evidence to verify that this address is indeed a
Table 11l shows some examples of domain names from the,

. . C&C server address for a domain-flux botnet. An interesting
4 candldatgs. Candlda.té uses.com .netor .cc .for the top observation for candidatB is that a few of the failed domain
level domain name while the. other three candidates only Cmes are indeed registered. For examphixzatff.conand
.com The second level domain names from these 4 Cand'daéﬁﬁannvwv.corrare registered on 01/06/2009. However, the
4We note that the threshold 0.1 is set to address the casesrafinidiux hosts are observed to access them Only on 01/01/2009' which
bots with different domain name generation cycles. results in failed DNS queries. We suspect that this may be
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Fig. 9: Identifying cycles of domain name changes.

caused by either the synchronization problem between thg
registration process and the DGA algorithm, or the DGA ma){S]
generate domain names that may repeat in future.

In summary, even though the use of DGA algorithms td4]
generate domain name lists and query accordingly is a corFS-]
mon characterization of domain-flux bots, the query pastern
in term of number of domain names and frequency may
vary for different kinds of domain-flux bots. Existing stedi [©]
detect domain-flux bots by identifying a significant incre@s
DNS query failures [3]. Such methods may miss the domain7]
flux bots with less intensive activities, such as the Torpi
bots [10], which only generate 3 domain names per da
Reverse engineering based methods (e.g., [9], [11]) have[g
much higher accuracy, but are more expensive. In contrj[%,J
by correlating DNS activities among hosts, our method can
detect domain-flux accurately without the need to access to
extra traffic information or knowledge about individual ot H%]

8]

VIl. CONCLUSION

In this paper, we proposed an approach for identifying antf!
classifying network anomalies based on unproductive DNy
traffic. We advanced the notion of DNS failure graphs to
capture the interaction between hosts and failed domairesa 12}
We then applied a statistical tri-nonnegative matrix facto
ization technique for extracting coherent co-clustersngge
subgraphs) from DNS failure graphs. Analysis on a 3-montH’
DNS trace captured at a large campus network indicatgd)
most of such co-clusters correspond to a variety of network
anomalies which often exhibit different subgraph struesur 19
Temporal analysis on these co-clusters identified 8 perstist2q]
co-clusters representing groups of hosts collectivelyrgjtmr [21]
different sets of domain names over time. Four of them belo
to known domain-flux bots; while the remaining four co-
clusters are plausibly due to unreported domain-flux bots. [23]
[24]
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