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Abstract

The emerging Multi-Protocol Label Switching (MPLS)
networks enable network service providers to route band-
width guaranteed paths between customer sites [3, 2, 8, 5].
This basic Label Switched Path (LSP) routing is often en-
hanced using restoration routing which sets up alternate
LSPs to guarantee uninterrupted connectivity in case net-
work links or nodes along primary path fail. In this paper,
we address the problem of distributed routing of restoration
paths, which can be defined as follows: given a request for a
bandwidth guaranteed LSP between two nodes, find a pri-
mary LSP and a set of backup LSPs that protect the links
along the primary LSP. A routing algorithm that computes
these paths must optimize the restoration latency and the
amount of bandwidth used.

In this paper, we introduce the concept of “backtrack-
ing” to bound the restoration latency. We consider three
different cases characterized by a parameter called back-
tracking distance D: (1) no backtracking (D = 0), (2) lim-
ited backtracking (D = k), and (3) unlimited backtracking
(D = 1). We use a link cost model that captures band-
width sharing among links using various types of aggregate
link state information. We first show that joint optimization
of primary and backup paths is NP-hard in all cases. We
then consider algorithms that compute primary and backup
paths in two separate steps. Using link cost metrics that
capture bandwidth sharing, we devise heuristics for each
case. Our simulation study shows that these algorithms of-
fer a way to tradeoff bandwidth to meet a range of restora-
tion latency requirements.

1 Introduction

The emerging Multi-Protocol Label Switching (MPLS)
networks enable network service providers (NSPs) to
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setup policy and quality-of-service (QoS) constrained la-
bel switched paths (LSPs) between network nodes. The
QoS constraint in the form of minimum or peak bandwidth
guarantee per LSP has been considered most commonly in
literature[3, 1, 10]. Such constraint-based routing [3, 5]
is central to network traffic engineering [3, 2] and basic
constructs of several new network services such as layer-
3 provider provisioned VPNs (PPVPN) [15] and layer-2
PPVPNs [4]. Specific examples of such constructs are the
VPN tunnels in L3 PPVPNs, and the Virtual Private Wire
Service (VPWS) and Virtual Private LAN Service (VPLS)
in L2 PPVPNs. The two main steps in setting up LSPs are
(1) computing a path that satisfies required constraints and
(2) establishing and maintaining forwarding state along that
path. Clearly, the routing algorithm used in step 1 is a basic
building block for new network services.

Note that the failure of nodes or links along LSPs leads
to service disruption. The NSPs have considered enhancing
the reliability and availability of new services using restora-
tion routing, which sets up alternate paths to carry traffic
under fault conditions. There are two variants of restoration
routing: (1) End-to-end restoration: routes two link disjoint
paths – one primary path and one backup path between ev-
ery source, destination node pair [9, 13]. Resources are al-
ways reserved on the backup and are guaranteed to be avail-
able when the backup path is activated. In the event of a fail-
ure along the primary path, the source node detects path fail-
ure and activates the backup path. In the absence of an ex-
plicit signaling protocol, source node learns of link failures
via intra-domain routing updates such as OSPF link state
advertisements (LSA) packets or IS-IS Link State Packets
(IS-IS LSP) which are processed in the slow-path typically
in a routing daemon in the router or switch controller. Also,
such packets are typically generated by timer driven events.
This causes very large restoration latencies of the order of
seconds or at best 100s of milliseconds. (2) Local restora-
tion: routes a primary path between the source and des-
tination and a set of paths that protect the links along the
primary path [11]. It can minimize the need for source
node to be involved in the path restoration and therefore can
achieve fast restoration. Though local restoration may use
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more (bandwidth) resources, it is attractive as it can meet
stringent restoration latency requirements that are often of
the order of 50 ms – similar to existing SONET protection
mechanisms [18].

The problem of end-to-end and local restoration rout-
ing has been addressed in several recent research papers
[9, 13]. In this paper, we primarily focus on the problem
of local restoration routing. We first describe the new con-
cept of restoration routing with backtracking characterized
by a single parameter called backtracking distance D. We
consider three cases: (1) no backtracking (D = 0), (2) lim-
ited backtracking (D = k), and (3) unlimited backtrack-
ing (D = 1). We first consider the joint optimization
of primary and backup paths and show that the problem
is NP-hard. We therefore propose computation of primary
and backup paths in two steps. In the case of D = 0 and
D = k, we show that even the two-step optimization prob-
lem is NP-hard, whereas for D = 1 an optimal solution
exists for computation of backup path. We then describe
heuristics that use per-link network state in the form of (1)
residual link capacity (Rl), (2) bandwidth consumed by pri-
mary paths (Fl), (3) bandwidth consumed by backup paths
(Al) and optionally a fixed sized Backup Load Distribution
matrix [9, 13]. We also present simulation results to char-
acterize the performance of these algorithms. We show that
our algorithms offer a means to tradeoff bandwidth to meet
a range of restoration latency requirements.

1.1 Related Work

The MPLS Forum has proposed use of constraint-based
routing to setup “protection LSPs” to bypass failed links
and nodes [3]. In this scheme, the upstream router detects
the link failure and tunnels all traffic on that link along a pre-
established MPLS LSP implemented using the label stack-
ing mechanism. Clearly, this mechanism can be extended
to selectively reroute certain LSPs on the link instead of the
entire link traffic. Extensions have been proposed to the
RSVP resource reservation protocol to signal such a protec-
tion LSP [7]. However, the existing fast reroute model does
not require protection LSPs to have bandwidth guarantees
and aims to provide continuation of best-effort connectivity.
The orthogonal question of how to route such best-effort or
bandwidth guaranteed protection LSPs is still a topic of in-
vestigation. Our work provides an algorithmic framework
and candidate algorithms to solve this important problem.

The paper by Kodialam et al.[11] represents the current
state-of-the art approach for local restoration. Their al-
gorithm iteratively uses a shortest path algorithm to find
restoration path for each link in the primary path. The
shortest path algorithm is invoked for each edge in the net-
work. Therefore, the running time of their algorithm is
O(mnlogn + m2) where m is the number of edges in the

network and n is the number of nodes in the network. In
contrast, our running time is O(hnlogn + hm) where h

is the primary path length for D < 1 and a constant for
D =1. Their algorithm does not explicitly encourage link
sharing among multiple backup paths for the same primary
path and therefore, in the worst case may compute backup
paths that are largely link disjoint. Their work also does not
provide a theoretical and algorithmic framework for local
restoration that allows a network designer to tradeoff band-
width for better restoration latency. Our research reported
here overcomes these limitations.

1.2 Outline of the Paper

The outline of the rest of this paper is as follows: Sec-
tion 2 presents the background material for the remaining
discussion in the paper. Section 3 introduces the concept
of restoration routing with backtracking and describes the
three cases we consider. In Section 4, we show that the
joint optimization of primary path and corresponding local
restoration subgraph is NP-hard and advocate a two-step ap-
proach for computing them. Section 5 describes in detail
backup subgraph computation algorithms for D = 0; k;1
cases. The concept of post-processing to achieve further
bandwidth savings and the post-processing algorithms for
each case are discussed in Section 6. Section 7 describes our
simulation experiments in detail. Finally, Section 8 presents
our conclusions and future directions.

2 Background

In this section, we will present relevant background ma-
terial on various aspects of the problem of routing band-
width guaranteed backup paths.

2.1 Network and Service Model

The label switched network is modeled as a graph G =
(V;E), jV j = n, jEj = mwhere graph nodes correspond to
the network nodes and graph edges correspond to the phys-
ical links between the nodes. Each link in fact consists of
two simplex links in opposite direction: one for the trans-
mit path and the other for the receive path. The graph nodes
can be classified into two types[3]: (1) Label Edge Router
(LER): These are nodes at which the network traffic enters
or leaves the network. Such nodes are connected to the cus-
tomer edge (CE) routers which use the transport services of
the LSP service provider, (2) Label Switched Router (LSR):
these are the transit routers that forward packets based on
the MPLS labels.

Each LER independently receives requests from con-
nected CEs to setup bandwidth guaranteed paths. Each such
request r is modeled as a 3-tuple r = (s; d; b) where s is the
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source node, d is the destination node and b is the bandwidth
requirement [4]. In MPLS networks, an LSP between s and
d is a simplex flow, that is, packets flow in one direction
from s to d along a constrained routed path [3]. For reverse
traffic flow, additional simplex LSP must be computed and
routed from d to s. Clearly, the path from s to d can be dif-
ferent from the path from d to s. Also, the amount of band-
width reserved on each paths can be different. This request
model is often referred to as pipe model in the VPN litera-
ture [3]. We call this model and corresponding constrained
path routing asymmetric request model. The algorithms re-
ported in this paper assume this request model.

2.2 Fault Model

In the context of protected path routing it is important
to consider two kinds of failures, namely link failures and
router failures. A common fault model for link failures as-
sumed in the literature and justified by network measure-
ments is that at any given time only one link in the network
fails [18]. In other words, in the event of a link failure, no
other link fails until the failed link is repaired. We consider
single link failure in this paper. We do not address router
failure case due to space constraints.

2.3 Bandwidth Sharing

We distinguish bandwidth sharing into two categories:
(1) Inter-request sharing: The single fault model dictates
that two link-disjoint primary LSPs corresponding to two
requests each of b units do not fail simultaneously. This
allows them to share a single backup path of b units. In
other words, inter-request bandwidth sharing allows one of
the two primary paths to use the backup links “for free.” (2)
Intra-request sharing: In local restoration, since each link
on the primary path requires a backup path, and only one
link failure can happen at any given time, the backup paths
for different links in the same primary path can share links.
Also, backup paths can share primary path links. Notice
this type of sharing does not exist in the end-to-end path
restoration schemes.

Our goal is to develop online distributed local restora-
tion routing algorithms that utilize both inter-request shar-
ing and intra-request sharing in order to minimize the total
bandwidth reserved.

2.4 Network State Information

In our work we focus on online routing algorithms that
route a new path request based only on the knowledge of
current state of the network and do not exploit properties
of future requests. One can design schemes with varying
degrees of partial state. Kodialam et al. [10] describes one

such partial information scenario, referred to as the O(jEj)
information case here on, wherein for every link l in net-
work G = (V;E) with capacity Cl, three state variables are
maintained and exchanged among peering routers: (1) F l:
Amount of bandwidth used on link l by all primary paths
that use link l. (2) Al: Amount of bandwidth reserved by
all backup paths that contain link l. (3) R l: Residual ca-
pacity on the link l defined as Cl � (Fl + Al). Norden
et al.[13] proposed algorithms that use these three per-link
state variables and a new form of state called Backup Load
Distribution (BLD) matrix. Specifically, given a network
with m links, each network node (router or switch) main-
tains a m � m BLD matrix. If the primary load Fj on a
link j is b units, entries BLDM [i; j]; 1 � i � m; j 6= i,
record what fraction of b is backed up on link i. Note that
this approach, which we call as the O(jEj2) information
case, allows maximum bandwidth sharing. The algorithms
we propose in this paper work with both cases of state in-
formation.

2.5 Modeling Link Cost

Each link (interchangeably called edge) has
Cl; Rl; Fl; Al state variables associated with it and
may be assigned one or more link costs. In response to the
tunnel request r = (s; d; b), the source node uses its knowl-
edge of network state such as topology, C l; Rl; Al; Fl for
all links l 2 E and optionally BLD matrix to compute two
things: (1) a primary path P = (s = u1; u2; � � � d = uk)
where edge li = (ui; ui+1) 2 E, (2) a subgraph
Gsub = (Vsub; Esub) such that a backup path exists in Gsub

that can route traffic from s to d if any link l i fails.
The computation of P andGsub is based on two kinds of

link costs described below.
Cost of link l in the primary path: If a link is used in

the primary path P of request r = (s; d; b), then b units of
bandwidth has to be consumed on each link in P . Therefore
the cost �l of using a link l in the primary path is b ifR l � b,
otherwise 1.

Cost of link l in backup path: Consider a primary path
P with m links (1; 2; :::m). Let us consider a repre-
sentative link l that is a candidate link in a backup path
LBi for link i 2 P . We are interested in characteriz-
ing the cost of using l. The amount of bandwidth that
can be used on l for free to backup i is FR[l; i] =
Al�Backup load induced by i on l before request r. In the
O(jEj) information case, free bandwidth is FR[l; i] =
Al � Fi, whereas in the O(jEj2) information case, the free
bandwidth on l is FR[l; i] = Al � BLDM [l; i]. For the
rest of the paper we focus only on the O(jEj2) information
case. However, all our results apply equally to the O(jEj)
information case.

From the perspective of backup routing, every link has
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Table 1. Vector and scalar link costs

Vector W of costs for link l Simplified scalar cost for link l

w[l; i] =

8>><
>>:

1 if b� FR[l; i] > Rl

b � CF if b � FR[l; i]
FR[l; i] � CF+ if b > FR[l; i]
(b� FR[l; i]) � CR and(b� FR[l; i] < Rl)

(1) wl =

8>><
>>:

1 if b� FRl > Rl

b � CF if b � FRl

FRl � CF+ if b > FRl

(b� FRl) � CR and(b� FRl < Rl)

(2)

two kinds of bandwidth available: (1) Free bandwidth
(FR): that is completely sharable and does not require ex-
tra resource reservation. (2) Residual bandwidth (R): is the
actual capacity left unused on the link. If the LSP request
size b > FRl, then b � FRl units of bandwidth must be
allocated on the link to account for the worst case backup
load on the link. If the residual bandwidth R l falls short of
b� FRl (i.e b� FRl > Rl), then the link l cannot be used
on the backup path and is called an “infeasible link”. Given
this, the cost of using link l on a backup path to backup link
i on primary path consists of two parts: (1) cost of using the
free bandwidth on the link and (2) cost of using the residual
bandwidth on the link. Equation 1 illustrates the exact form
of cost w[l; i] incurred to backup link i on l. The cost met-
ricsCF (CR) should be selected in such a way that selecting
a link with high residual capacityRl, results in smaller cost.
See [13] for more details on these cost metrics.

Since there are m links in the primary path, each candi-
date link l has m associated costs w[l; 1]; w[l; 2] � � �w[l;m].
Given that a link l may be used in backup paths for multiple
links i in primary path, to make the problem tractable, we
have to follow a pessimistic approach and reduce the free
available bandwidth for l as follows:

FRl = mini2E(P )FR[l; i]

= Al �maxi2E(P )BLDM [l; i] (3)

where E(P ) denotes the edge set used in path P and V (P )
denote the node set used in path P . Correspondingly, the
cost wl of using link l on the backup path for any link in P
can be computed using Equation 2.

3 Concept of Local Restoration with Back-
tracking

In this section, we introduce the concept of backtracking
and discuss properties of backup subgraph Gsub in various
cases of backtracking.

3.1 Backtracking

In the case of end-to-end restoration routing, detection of
link failures and subsequent restoration by source node can

lead to long restoration latencies. Local restoration attempts

a Naïve local restoration

Primary

s u1 u2 u3 d

Local Backup
LB1

LB2 LB3

LB4

v2 v3
v4

v1

Downstream

b Local restoration with backtracking

u0 u1 u2 u3 d

v1
v2

LB1

LB

s

Figure 1. Local restoration and backtracking

to address this by “localizing” fault detection and subse-
quent restoration actions. Consider the simple example
shown in Figure 1-(a) where there are as many backup paths
LBi as links in the primary path and restoration is truly lo-
cal and rapid. Under single link failure model, completely
link disjoint LBis result in bandwidth wastage. Instead,
a model wherein backup paths (1) share links amongst
them and also (2) share links in the primary path can be
used to minimize bandwidth usage at the cost of increased
restoration latency. Consider the scenario shown in Fig-
ure 1-(b): In this case, links (u1; u2), and (u2; u3) are pro-
tected by a single backup path, LB1 = (u1; v1; v2; u3).
Clearly, in a naíve setup, the backup path for link (u2; u3)
is (u2; u1); LB1, which backtracks over primary path by
a distance of one link namely (u2; u1). Similarly for link
(u3; d), the backup path (u3; u2), (u2; u1), (u1; u0), LB2,
backtracks by a distance of three links. If restoration must
be truly local, i.e failure of (u2; u3) must be restored by u2
and failure of (u3; d) must be restored by u3, then u2, u3
must “switch back or backtrack” traffic on links (u3; u2),
(u2; u1), (u1; u0). Such repeated link traversals cause un-
desirable traffic loops, loss and bandwidth wastage. This is
especially true when the node performing the restoration is
multiple hops away from the node to which failed link be-
longs. Alternatively, if nodes u2 and u3 can inform u1 out-
of-band of their links failures, u1 can perform the restora-
tion. However, in this case restoration is non-local and re-
quires new form of signaling or modifications to existing
routing protocol state updates.

We define the backtracking distance D as the maximum
number of hops (links) in the primary path that must be
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traversed upstream towards the source before reaching the
node at which the required backup (restoration) path origi-
nates. Three cases that are of interest are as follows:

� No backtracking (D = 0): In this case, the backup
path must originate at the node at which the failed link
originates. This case represents true local restoration
and provides best restoration latency. The link restora-
tion paths computed in this case can use a subset of
primary path links downstream towards the destination
node.

� Bounded backtracking (D = k): In this case, the
backup path can originate at a node on the primary
path up to k hops away from the node that owns the
link.

� Infinite backtracking (D = 1): This case allows un-
limited backtracking and therefore, in the worst case
may result in backup paths that originate at the source
node. The end-to-end restoration can be considered
a special case of this where the maximum backtrack-
ing allowed is equal to length of the primary path but
the restoration always has to be initiated at the source
node.

Clearly, D = 0 may require the highest amount backup
bandwidth, and lowest restoration latency whereas D = 1
requires the least amount of bandwidth and highest restora-
tion latency. Therefore, case D = k is interesting as it al-
lows us to tradeoff bandwidth for better restoration latency.
In the rest of the paper we address the problem of comput-
ing primary path P and its corresponding backup restora-
tion graph Gsub for various cases of backtracking.

4 Joint Optimization of Primary and Backup
Paths

In this section, we consider the problem of joint op-
timization of computing primary path and its associated
backup subgraph Gsub such that the total cost is mini-
mized. For a new request r = (s; d; b) and a given network
G = (V;E), ideally we would like to have a primary path
P = (s = u1; u2; � � � d = uk) and Gsub = (Vsub; Esub)
such that the total cost

P
l2E(P ) �l +

P
l2Esub

wl is min-
imized under the following constraints: for every edge
l = (ui; ui+1) 2 E(P ), there is a path from uj to ut in
Gsub such that 0 � i � j � D and t � i + 1, i.e. the
backtracking distance of the backup path does not exceed
D hops and the path must end at a node that is downstream
from ui+1 in P .

There are two characteristics of this joint optimization
problem that make it hard to solve: (1) For each edge,
its cost depends on whether it is used for primary path or

backup path. (2) Equation 1 shows that the cost of a backup
link also depends on which set of primary links it protects.
The following theorem characterizes the complexity of this
optimization problem.

Theorem 4.1 For all values of backtracking D (0; k;1),
computation of primary path P and a restoration subgraph
Gsub such that they are jointly optimal is NP-hard.

The proof of this theorem can be found in [12].

5 Two-step Algorithms

In this section, we consider two-step algorithms that
compute the primary path in the first step and then construct
the restoration graph Gsub in the second step. The basic
pseudo-code for these algorithms is presented in Table 2.

Table 2. A two-step algorithm

1. Given graph G and req r=(s,d,r);
2. P=WSPF(G,r); // Primary path using WSPF
3. If (P==NULL) return reject;
4. Switch (D) // Backup path computation
5. case 0:
6. Gsub=modified_directed_Steiner(G,P,r);
7. break;
8. case 1:
9. Gsub=Suurballe(G,P,r);
10. break;
11. case k:
12. Gsub=modified_Suurballe(G,P,r,k);
13. if (Gsub==NULL) return reject;
14. postprocessing(Gsub);
15. return accept;

The problem of primary path routing – computing a
bandwidth guaranteed path between a pair of source and
destination nodes- has received significant attention in re-
cent years. The simplest solution to this problem is to use
Dijkstra’s shortest path algorithm. However, its drawback
is that though it yields an optimal solution for a single re-
quest, over a span of multiple requests, it can lead to high re-
quest rejection and low network utilization [1, 10]. Several
new algorithms such as Widest Shortest Path First (WSPF),
Minimum Interference Routing [10], rectify this limitation.
The WSPF algorithm alleviates this problem by selecting
a shortest path with maximum (“widest”) residual capacity
on its component links. We choose WSPF (line 2) as a good
tradeoff between simplicity and performance.

In the remaining section, we discuss backup path com-
putation for cases of D = 0 (line 6), D = 1 (line 9), and
D = k (line 12) in detail.

5.1 Computing Backup Path for D = 0

In this case, we need to find a subgraph Gsub such that
there is an alternative path with no backtracking if any link
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in the primary path fails, and the total link costs for all
backup paths are minimized. The following theorem states
that the problem is NP-hard.

Directed Steiner tree Gsteiner
rooted at u6 (d)
with terminal nodes u1 u2 u3 u4 u5

B

u2 u3 u4 u5 u6
u1

Primary Path PA

d
u6

u3

u1

v2

v5

u5

v4

u4
v3

u

v1

d

Backup sub-graph Gsub with Steiner tree edges reversedC

u2 u3 u4 u5 u6
u1

v1

v3 v4 v5

v2

s d

(s)

Figure 2. Example of backup path for D = 0

Theorem 5.1 Given a network G = (V;E) and a pri-
mary path P from s to d, the problem of computing optimal
backup subgraph Gsub for D = 0 case is NP-hard.

For proof, please refer to [12]. This theorem also gives us
the algorithm for the computation of Gsub. Specifically, (1)
Compute a directed Steiner tree GStei on subgraph G0 =
(V;E�E(P )), rooted at d and with the nodes V (P )�fdg
in the primary path as its terminal nodes. (2) Reverse all the
edges of the tree to obtain backup subgraph G sub. Figure 2
illustrates this with an example. It shows the primary path
P = (s = u1, u2, u3, u4, u5, d = u6), the corresponding
Steiner tree Gstei and the backup subgraph Gsub which has
links that are reverse of those in Gstei.

Among the approximation algorithms that compute di-
rected Steiner tree such as [17, 14, 6], we choose the SCTF
algorithms [14]. SCTF has good approximation ratio if the
graph is not very asymmetric (asymmetry is measured as
the sum of the larger cost of edges (u; v) and (v; u) di-
vided by the sum of the smaller cost.). Applying SCTF al-
gorithm with minor modifications, the backup subgraph is
computed as follows: the current subgraph Gsub is initial-
ized to be the single node d; the algorithm then iteratively
computes a shortest path from the current set of nodes in
the primary path that are not in the current subgraph to the
current subgraph; the algorithm terminates when all the pri-
mary nodes are in Gsub. Each iteration involves computing
a shortest path from one set of nodes to another set of nodes.
This requires only one invocation of Dijkstra’s algorithm by
adding dummy source and destination. The running time is
O(hnlogn + hm) where h = jV (P )j � 1, n = jV j and
m = jEj.

The reversed directed Steiner tree as a restoration sub-
graph Gsub has several advantages: (1) For every link

in the primary path, there are multiple restoration paths
that end on the immediate neighbor or neighbors down-
stream. This encourages sharing of primary path links
and minimizes new bandwidth reservation. In our exam-
ple (Figure 2), in the case of links (u3; u4) and (u4; u5),
the backup paths (u3; v3; v4; u5), and (u4; v4; u5) share the
primary path link (u5; u6) for restoration. (2) Also, the
explicit tree structure ensures that local restoration paths
share links. In our example, restoration path for (u1; u2)
is LB = (u1; v2; u3) which is also part of the restoration
path (u2; v1; u1; u1; v2; u3) for (u2; u3). In the Section 6,
we describe an algorithm that optimally selects restoration
paths from the Gsub.

5.2 Computing Backup Paths for D =1

Given a primary path P for request (s; d; b) in directed
graphG = (V;E), if there is no constraint on the backtrack-
ing distance, the following procedure due to Suurballe [16]
computes a minimum cost backup set of edges for P . The
idea is to reverse the direction of the edges on the path P
and set their cost to zero. All other edges are assigned cost
as defined in Equation 2. Compute a shortest path Q from s

to d in the resulting graph G0.
Suurballe [16] shows that the edges of Q that are not

in P represent the optimal backup path for the primary
path P with D = 1. Figure 3-(a) illustrates an example,
where primary path P is (u1; : : : ; u10) and backup sub-
graph consists of paths (u1; v1; v2 v3; u3), (u2; v4; v5; v6,
v7; u4; v8; v9; v10; u6), (u5; v11; v12; v13; u10).

5.3 Computing Backup Paths for D = k

For this case, we state the following theorem.

Theorem 5.2 Given a primary pathP inG = (V;E), com-
puting the minimum-cost backup subgraph Gsub based on
cost wl using bounded backtracking of D = k is NP-hard.

For proof, please refer to [12]. For the computation of
backup subgraph for D = k case, we build upon the pro-
cedure due to [16]. Table 3 illustrates the pseudo code of
our heuristic algorithm. We first compute a backup path Q
for P as in Section 5.2. It is easy to see that the cost of Q
is a lower bound on the cost of any solution for the D = k

case. The edges of Q allow the edges on the primary path
to be restored, however the maximum distance some edge
in the primary path has to backtrack might not be bounded
by k. Procedure maxD checks the maximum backtrack-
ing distance and if it exceeds k, additional paths are added
in a greedy fashion to the edges of Q. We use an example
to illustrate our ideas. Consider the example in Figure 3-
(a) after line 2 in Table 3. We use k = 1 in the example.
This requires that the restoration path for a link (u i; ui+1)
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Figure 3. Computing restoration paths for D = 0 and D = k

Table 3. Heuristic Algorithm for Backup Path
Computation of D = k case

modified_Suurballe(G,P,r,k)
1. Q=Suurballe(G,P);
2. If (Q==NULL) return NULL;
3.
4. if (maxD(P,Q)>k)
5. Ga=compExtraPaths(G,P,Q,k);
6. if (Ga==NULL) return NULL;
7. else Gsub=Q[Ga;
8. return Gsub;

in the primary path must originate at ui or ui�1. Note that
the edges of Q computed from Suurballes procedure allow
all edges except (u7; u8), (u8; u9) and (u9; u10) to have a
restoration path with backtracking distance at most 1. In
the example, the backup path with the smallest backtrack-
ing distance for the link (u8; u9) is the one that originates
at u5 which has a backtracking distance 3. If we add paths
BP1; BP2 as shown in Figure 3-(b) to the Gsub, we can
obtain an efficient solution that satisfies the backtracking
distance constraint. Our algorithm (Line 5) finds such paths
in the following way.

For every link (ui; ui+1) in the primary path which
does not have a restoration path with backtracking dis-
tance bounded by k, we add a path from some node
in the set fui�k; ui�k+1; : : : ; uig to reach a node in
fui+1; ui+2; : : : ; dg. This ensures that we satisfy the re-
quirement for all links on the primary path. We process
unsatisfied links in the order of their increasing distance to
the destination. In the example the link (u9; u10) is con-
sidered first. To satisfy this link we consider adding paths
from either u8 or u9 to reach the node u10. We consider
u8 first and if we are unable to find a path to reach u10,
we then consider u9. In general, when trying to satisfy link
(ui; ui+1), we search for paths starting with ui�k and stop
when we find a path. In the example, we find BP1 from u8.
Note that we find a shortest path at each step to minimize
the cost of solution. Once a link is satisfied, we move to the

next unsatisfied link (farther away from the destination) and
repeat the above procedure. In the above example adding
path BP1 satisfies both (u9; u10) and (u8; u9) and the next
unsatisfied link is (u7; u8). The process stops when no un-
satisfied links remain. All the BPi so obtained combined
with the original Q – i.e. Gsub = fBPig [ Q provides the
restoration graph that satisfies required backtracking con-
straint.

In the above procedure, we need to find a short-
est path from a node u 2 fui�k; : : : ; uig to reach
any node in fui+1; ui+2; : : : ; dg. This can be imple-
mented by Dijkstra’s algorithm by first shrinking the nodes
fui+1; ui+2; : : : ; dg into a single super node. In computing
the shortest path we reduce the cost of the edges in Gsub

computed till now to zero so as to make sure that we reuse
the edges that are already in our solution as much as possi-
ble.

6 Post-processing

In the following we first discuss the concept of post-
processing and provide algorithms for each case of back-
tracking.

6.1 Need for Post-processing

=u u u uu

LB1

LB2

v1

v2

v3

v4

1

6

2 3 4 5 d=u5

Figure 4. Need for post-processing

Figure 4 illustrates primary path P (u0; u1; u2, u3; u4,
u5), and the corresponding backup subgraph G sub for
D = 0 for a request of size b = 18 units. Recall
that Gsub is the reverse of the Steiner tree rooted at u5.
Here link 1 (u0; u1) is backed up using path LB1, consti-
tuted by (u0; v1), (v1; v2), (v2; v4) (v4; u5), whereas link
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4 (u3; u4) is backed up by using path LB2 constituted
by (u3; v3), (v3; v4), (v4; u5). Consider link 6 (u0; v1)
on LB1, with residual bandwidth R6 = 22, backup load
A6 = 32. The backup load induced by link 4 on link 6 is
BLDM [6; 4] = 20, whereas load induced by link 1 on link
6 is BLDM [6; 1] = 10.

Unfortunately, when link cost wl is assigned for Steiner
tree computation, a pessimistic assumption has to be made:
the worst case backup load on link 6 is 20 units induced
by link 4. This has to be done to account for possibility
that backup path for link 4 may include link 6. So the extra
bandwidth reservation on link 6 is b� (A6�BLDM [6; 4])
or (18 - (32 -20))=6 units. In other words, the Equa-
tions 2, 3, we employ to compute FR l and wl in Steiner
tree computation are rather conservative as they assume that
any candidate link in backup graph may have to backup
worst case load from a link in the primary path. Clearly,
if we introduce post-processing that follows computation
of Steiner tree and path selection, we can fix this situa-
tion. Specifically, in our example, if we account for the
fact that only backup path LB1 for link 1 uses link 6, we
can see that the amount of free bandwidth on link 6 is
(A6 � BLDM [6; 1]) = 32 � 10 = 22, which is greater
than the request size. Clearly, in that case no extra band-
width has to be reserved on link 6. Such post processing
of the solution can reduce extra bandwidth reservation for
backup paths and therefore save bandwidth.

We provide post-processing algorithms for each case of
D. The two main goals of these algorithms are: (1) Iden-
tify for each primary path link, a set of potential restoration
paths with minimum backtracking distance. (2) Minimize
the total bandwidth reserved on the backup paths subject to
assignment of restoration paths. We state the following the-
orem for post-processing for all three cases of backtracking:

Theorem 6.1 Given a primary path P , the backup sub-
graphGsub that our algorithms compute is a forest consist-
ing a set of trees fTig. The amount of bandwidth needed to
be reserved can be computed optimally by a single traversal
of P and one ordered traversal of each tree Ti. The backup
paths for each primary edge can be found in time linear in
the output size.

We do not give a formal proof of the theorem. However
the description of the algorithms in the following subsec-
tions contains all the ideas behind the proof.

6.2 Post-processing for D = 0

For this case we describe a post-processing algorithm
that results in the minimum use of bandwidth subject to us-
ing the edges of Gsub for restoration. We use the exam-
ple from Figure 2 to illustrate the algorithm. The algorithm
is based on the fact that the backup edges form a Steiner

tree Gstei on the vertices of the primary path P . For a link
(ui; ui+1) on the path P , the restoration path has to origi-
nate at ui. In Gstei for every ui in P , there is a unique di-
rected path LBi from ui to the destination d. We could use
this path LBi as a restoration path for (ui; ui+1), however
we notice thatLBi can intersect the path P at several places
and in particular there could be a vertex u j , j � i + 1 that
lies on LBi. In this case it is easy to see that the portion of
LBi from ui to uj is sufficient to restore the link (ui; ui+1).
In Figure 2 the path LB3 is (u3; v3; v4; u5; v5; u6). How-
ever the portion of LB3 that is (u3; v3; v4; u5) is sufficient
to restore the link (u3; u4). More generally, for the unique
path LBi from ui to d, let uj be the first vertex in LBi such
that j � i + 1. Let Q0

i be the portion of LBi from ui to
uj . We use Q0

i to restore the link (ui; ui+1). In Figure 2,
the path LB2 intersects P at u1; u3; u5 and finally reaches
d = u6. We use the portion ofLB2 from u1 to u3, henceQ0

2

is (u2; v1; u1; v2; u3). It is easily seen that this Q0
i as con-

structed above is necessary and sufficient for the restoration
of (ui; ui+1).

Now we address the issue of minimizing the bandwidth.
For each link ` in Gstei, let S` be the set of all i such that
the link ` is in the restoration path Q0

i for link (ui; ui+1). In
our example from Figure 2, the link (v2; u3) is used by Q0

1

and Q0
2, hence S(v2;u3) = f1; 2g. For link (v4; u5) we have

S(v4;u5) = f3; 4g. In other words S` is the precise set of all
primary path links that use ` in their backup paths. There-
fore it is sufficient to reserve bandwidth on ` that will satisfy
the links in S` and not all the links of P . This results in sav-
ings in bandwidth. More precisely the free bandwidth on
` for backing up links in S` is FR` = mini2S` FR[`; i].
This is to be contrasted with the pessimistic estimation
FR` = mini2E(P ) FR[`; i] used in the computation of
Gstei. Since S` is a proper subset of E(P ) we can poten-
tially use more free bandwidth on ` than estimated.

The revised bounds on the free bandwidth can be easily
computed once the restoration paths Q 0

i are computed for
all i. However we note that both the Q0

i for all links of
P and the FR` for all the links in Gstei can be computed
in a single DFS traversal of Gstei by keeping some simple
state information at the vertices of the trees. The traversal of
Gstei takes O(m) time where m is the number of vertices
(edges) in Gstei. If we need an explicit enumeration of the
restoration paths we need an additional O(h) time where h
is the sum total of the lengths ofQ0

i. Hence the running time
is linear in the size of the tree and the size of the output.

6.3 Post-processing for D =1; k

The post-processing algorithms for D = 1 and D = k

are conceptually similar to the case D = 0 and hence we
omit the details. However we do need to take care of two
issues. First, for a given link (ui; ui+1) in P there might be
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several restoration paths that satisfy the backtracking con-
straint. By choosing the restoration path with the minimum
backtracking distance we can make the restoration path for
each link unique. Second, instead of a single tree as in the
D = 0 case we might have a forest consisting of many trees.
We process each of these trees much as we do in the D = 0
case.

7 Simulation Experiments

In this section, we describe simulation experiments
that characterize the benefits of our proposed local link
restoration schemes over existing end-to-end path restora-
tion schemes. We conduct a set of experiments that com-
pare our three schemes (D = 0; k;1) with two end-to-end
restoration schemes, namely Enhanced Widest-Shortest-
Path First(EWSPF) [13], and simple Shortest Path First
(SPF). EWSPF exploits bandwidth sharing among backup
paths and has been shown to perform better than other
schemes in the literature [13]. The SPF scheme uses link
costs based on the residual capacity and computes two inde-
pendent paths: one used as primary and the other as backup
and do not attempt to share backup paths. It is used as a base
line to show how much benefit bandwidth sharing schemes
can provide. Because our topology is relatively small, we
only consider D = 1 case for the limited backtracking al-
gorithm.

7.1 Simulation Setup

This section describes the network topology, traffic pa-
rameters and performance metrics used in the simulation.

Table 4. Simulation parameters
Parameter Value

Request (REQ) arrival Poisson at every router

Call holding time (HT)
200 time units, expo-
nentially distributed

Simulation time (STT) Fixed 50,000 units
Request Volume (RV) during
entire STT

50,000 to 300,000

Max single LSP REQ size 5% of the link capacity

Mean REQ inter-arrival time Computed using RV
and STT

Destination node selection Randomly distributed

Table 7.1 shows the parameters used in the experiments.
Call holding time is how long each request lasts. Note that
in reality, request load at various nodes may not be ran-
dom and the amount of requests between certain node pairs
may be dis-proportional. However, no real life call traffic
data sets are currently available in public domain, there-
fore we use Poisson distribution to model request arrival

process. We use 6 quantization levels for the EWSPF al-
gorithm which are 0:05; 0:1; 0:3; 0:5; 0:7 and 1:0 times the
maximum requested bandwidth [13]. The network topol-
ogy we use is the same as the homogenous topology in [13].
The topology represents the Delaunay triangulation for the
20 largest metro areas in continental U.S. All links are of
the same capacity (OC-48). Additional results for different
topologies can be found in [12].

7.2 Performance Metrics

We defined performance metrics to characterize (1)
restoration latency and (2) bandwidth sharing performance
[13].

7.2.1 Restoration Latency Performance

A brute force direct simulation of faults and subsequent
measurement of restoration latency requires a very complex
model that simulates multi-gigabit data traffic, link faults
and corresponding fault propagation traffic in a complete
network. Such a simulation that involves simulation of traf-
fic instead of just request arrivals and corresponding route
computations yields at best only representative performance
numbers. So instead of taking this inordinately complex
approach, we use an indirect way to measure restoration la-
tency based on the following two performance metrics: (1)
Histogram of Backtracking Distance (HBD): Given a pri-
mary path of length l, the restoration model used dictates
the amount of worst case backtracking for a link in the pri-
mary path. For example, with local restoration and back-
tracking distance of D = 2, the backup path may backtrack
0; 1 or 2 links. On the other hand for end-to-end restora-
tion, for the 1st link in the path, backtracking is equal to
zero, whereas for the lth link in the path, restoration back-
tracks to source node and has backtracking distance of l�1.
The more the backtracking, the more is the restoration la-
tency. Therefore, we compute a histogram, where bin i cor-
responds to total number of links in the admitted primary
paths for which backup path backtracks i links. Clearly, this
histogram characterizes the probability that a given amount
of backtracking will occur. (2) Average Case Backtracking
Distance (ABD): We define this metric as follows:

ABD =

Pna
i=1

PjPij
j=1DijPna

i=1 j Pi j
(4)

where na is total number of accepted requests, Pi is
the primary path routed for request i, jP ij represents the
length of the path and Dij is the actual backtracking dis-
tince to backup the j-th link of the primary path P i. ABD
measures the average backtracking distance among all the
backup paths. Clearly, it captures expected case of back-
tracking and therefore, restoration latency.
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7.2.2 Bandwidth Sharing Performance

We used the following performance metrics in our evalua-
tion: (1) Fraction Rejected (FR): is the fraction of requests
that are dropped during each simulation run. (2) Total band-
width consumed: is the total bandwidth consumed by each
scheme including primary and backup reservations.

7.3 Simulation Results

In the following, we discuss variation of these perfor-
mance metrics for different cases ofD and request volumes.

7.3.1 Restoration Latency Performance
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Figure 5. Histogram of backtracking distance
(HBD)

Figure 5 shows the histogram of backtracking distance
for all the schemes using the request volume 300,000 as a
representative case. For schemes EWSPF, SPF andD =1,
backtracking distance is not bounded and can range from 0
to 13. Approximately 17% and 8% of backup paths require
backtracking distance 2 and 3 respectively. For schemes
D = 0 and D = 1 that bound the backtracking distance,
the backtracking distance stays within the preset limits.

Figure 6 shows the average backtracking distance ABD
for all the schemes. We see that the two metrics have sim-
ilar behavior. Note that the ABD for EWSPF and D = 1
increases more rapidly than that for SPF. This happens be-
cause SPF has high rate of request rejection and utilizes net-
work links rapidly. So it begins with shorter backup paths
but as the links fill up, it can’t find longer feasible paths be-
cause a large subset of network links become infeasible due
to lack of residual bandwidth. So with increased request re-
jection, the path length and therefore ABD metric remains
flat. On the contrary, EWSPF exploits more bandwidth
sharing and can route increasingly longer paths as load in-
creases which results in higher ABD. Note that the case of
D = 1 results in a similar behavior. This clearly suggests
that as the load on the network increases, higher ABD will
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Figure 6. Average backtracking distance
(ABD)

result in higher restoration latency and also, poorer control
on providing tighter bounds on it. On the contrary, with our
algorithms for D = 0; 1, the ABD stays within the pre-set
limits. Note that the ABD for EWSPF is about 12% longer
than that for D = 1 for all request size. The reason is that
our algorithm for D = 1 tries to reduce the backtracking
distance even if it does not place a bound.

7.3.2 Bandwidth Sharing Performance
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Figure 7. Bandwidth Sharing Performance

Fraction Rejected (FR): As expected, FR increases as
the load or RV increases. All the sharing schemes are
significantly better than SPF and can accept up to 22%
more requests. This suggests backup bandwidth sharing en-
ables much more efficient use of network resources than
no-sharing case. There are two factors that impact FR. (1)
Since end-to-end restoration schemes use one path to re-
store all the link failures in the primary path, fewer links
need extra bandwidth reservation than D < 1. (2) Lo-
cal restoration schemes can share backup bandwidth more
aggressively than end-to-end schemes. This is because: in
the end-to-end scheme, each link in the backup path has
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to assume that the maximum load in the primary link can
be backed up on that link (see Equation 2). On the other
hand, in the local restoration schemes with post process-
ing, each link only needs to backup the set of links whose
backup path uses that link, that is, more bandwidth can be
shared. Although EWSPF and D = 1 are analogous in
terms of unlimited backtracking, unlike the EWSPF case,
backup paths forD =1 case can share primary path links.
Therefore, FR for EWSPF should be higher than that of
scheme D = 1, (See Section 6). However, since the net-
works used in our simulation is relatively small, there are
not many cases where scheme D = 1 can share primary
path links. Therefore, the FR for EWSPF and D = 1 is
indistinguishable. With respect to D = 0 and D = 1, the
first factor is more effective as many more links are needed
for backup bandwidth reservation, this results in our algo-
rithm for D = 0 and D = 1 rejects upto 4% and 2% more
requests respectively than EWSPF.

Total Bandwidth Consumed: Figure 7-b shows the total
bandwidth consumed for all the schemes. We see that even
if SPF rejects upto 22% more request, it consumes much
more bandwidth than the other schemes. For example, SPF
consumes 28% more bandwidth than D = 0 when the re-
quest volume is 150,000. Scheme D = 0 consumes 17%
more bandwidth than EWSPF. Scheme D = 1 only con-
sumes 3% more than EWSPF. This suggests, schemeD = 1
is a good tradeoff between restoration latency and network
resource consumption.

8 Conclusions

In this paper, we proposed a framework for provisioning
bandwidth guaranteed paths with bounded restoration la-
tency. We introduced the novel concept of backtracking dis-
tance D and considered three different cases: (1) no back-
tracking (D = 0), (2) limited backtracking (D = k), and
(3) unlimited backtracking (D = 1). We used a link cost
model that captures bandwidth sharing among links using
various types of available link state information. We first
showed that joint optimization of primary and backup paths
is NP-hard in all cases. We then considered two-step algo-
rithms where primary path and backup paths are computed
in two separate steps. Using our link cost model, we devised
heuristic algorithms for each case.

Out simulation study to characterize the sharing and
restoration latency performance of our schemes shows that
D = 1 provides best tradeoff between bandwidth usage and
restoration latency. Since the fault information only needs
to be propagated at most one hop in this case, restoration
latency performance may be acceptable for most service
needs.
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