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Abstract. Due to the increasing security threats in the Internet, new overlay
network architectures have been proposed to secure privileged services. In these
architectures, the application servers are protected by a defense perimeter where
only traffic from entities called servelets are allowed to pass. End users must be
authorized and can only communicate with entities called access points (APs).
APs relay authorized users’ requests to servelets, which in turn pass them to
the servers. The identity of APs are publicly known while the servelets are
typically secret. All communications are done through the public Internet. Thus
all the entities involved forms an overlay network. The main component of this
distributed system consists of n APs. and m servelets. A design for a network
is a bipartite graph with APs on one side, and the servelets on the other side.
If an AP is compromised by an attacker, all the servelets that are connected to
it are subject to attack. An AP is blocked, if all servelets connected to it are
subject to attack. We consider two models for the failures: In the average case
model, we assume that each AP i fails with a given probability pi. In the worst
case model, we assume that there is an adversary that knowing the topology
of the network, chooses at most k APs to compromise. In both models, our
objective is to design the connections between APs and servelets to minimize
the (expected/worst-case) number of blocked APs. In this paper, we give a
polynomial-time algorithm for this problem in the average-case model when the
number of servelets is a constant. We also show that if the probability of failure
of each AP is at least 1/2, then in the optimal design each AP is connected to
only one servelet (we call such designs star-shaped), and give a polynomial-time
algorithm to find the best star-shaped design. We observe that this statement
is not true if the failure probabilities are small. In the worst-case model, we
show that the problem is related to a problem in combinatorial set theory, and
use this connection to give bounds on the maximum number of APs that a
perfectly failure-resistant design with a given number of servelets can support.
Our results provide the first rigorous theoretical foundation for practical secure
overlay network design.
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1 Introduction

Providing secure and highly available services using the shared Internet infrastructure is
very challenging due to security threats in the Internet. Distributed Denial of Service



(DDoS) attacks are a major threat to Internet security. Attacks against high-profile
web sites such as Yahoo, CNN, Amazon and E*Trade in early 2000 [7] rendered the
services of these web sites unavailable for hours or even days. During the hour long
attack against root Domain Name Servers (DNS) in Oct, 2002, only four or five of the
13 servers were able to withstand the attack and remain available to legitimate Internet
traffic throughout the strike [13]. Internet service would have started degrading if the
attack had been sustained long enough for the information contained in the secondary
DNS caches to start expiring—a process that usually takes from a few hours to about
two days. A recent attack on June 15, 2004 against Akamai’s DNS servers caused several
major customers of Akamai’s DNS hosting services, including Microsoft Corp., Yahoo
Inc., and Google Inc. to suffer brief but severe slowdown [22] in their web performance.
The event was marked by being a step beyond “simple bandwidth attacks” on individual
web sites to more sophisticated targeting of core upstream Internet routers, DNS servers
and bandwidth bottlenecks.

To defend against DDoS attacks, one can trace the attack sources and punish the
perpetrators [3, 5, 19, 21, 4, 20, 8, 1, 11]. Due to the large number of compromised hosts
(known as Zombies) used in the attack, finding the attack origin can be very difficult.
Techniques to prevent DDoS attacks and/or to mitigate the effect of such attacks while
they are raging on have been proposed [12, 6, 17, 9, 14, 16, 15]. These mechanisms alone
do not prevent DDoS attacks from disrupting Internet services as they are reactive
in nature. Recent research efforts [9, 2] have focused on designing overlay network
architectures where certain critical elements are hidden from the attackers. The key
entities in these architectures are access points (APs), servelets and end application
servers. The end application servers are protected by a defense perimeter. Routers
at the boundary are installed with filters which only allow traffic from the servelets
in. The servelets are hidden from the attackers. Only a subset of access points are
allowed to access each servelet. User requests must be authorized by access points
and the requests are tunneled to their corresponding servelets via access points. The
servelets then communicate with the end application servers. The access points can
be geographically well placed to service the end users. The number of access points is
assumed to be much larger than the number of secret servelets. All communications go
through the public Internet. Thus all the entities involved form an overlay network.

The ability of such distributed systems to service their users is characterized by how
many access points can still communicate to the end application servers, should an at-
tack happens. This depends on how the access points are connected to the servelets.
Intuitively, if a vulnerable access point connects to all the servelets, once it is com-
promised, all the servelets will be subject to DDoS attacks. In the worse case, this in
turn denies all other access points from accessing the servelets. The network must be
designed to resist such attacks. However, how the network should be designed has not
been rigorously analyzed. In this paper, we formalize the problem as a combinatorial
optimization problem with the objective to maximize the number of surviving access
points. We first define our problem settings.

Definition 1. A design for a network with n APs and m servelets is a bipartite graph
with APs on one side, and the servelets on the other side. If an AP fails (or is com-
promised), it attacks all the servelets that are connected to it and we say that these



servelets are attacked. If all servelets connected to an AP are attacked, we say that the
AP is blocked. By definition, we say any compromised AP is blocked.

We are interested in designing secure networks in which the number of blocked APs
is minimized. We consider two models of failures:

– In the average case model, we assume that each AP i fails with a given probabil-
ity pi. Our objective is to design the connections between APs and servelets to
minimize the expected number of blocked APs4.

– In the worst case model, we assume that there is an adversary that knowing the
topology of the network, chooses at most a given number k of APs to compromise.
Our objective is to design the connections between APs and servelets to minimize
the worse-case number of blocked APs.

This paper presents the first theoretical study of secure overlay network design. Our
results provide guidelines for practical design of such networks.

The rest of this paper is organized as follows. In Section 2, we study the problem in
the average case model. We first prove a lemma on the structure of the optimal design.
This lemma restricts the number of possible solutions and gives a polynomial-time
algorithm for the problem where the number of servelets is constant. It also implies a
polynomial-time algorithm for the case that each AP can be connected to at most one
servelet. We prove that if all failure probabilities are large enough (namely, greater than
1
2 ), then the optimal design is of this form, and therefore can be found in polynomial
time. At the end of Section 2, we give an example that if failure probabilities are not
small, then the optimal design is not necessarily star shaped, and in fact, the best star-
shaped design can be worse than the optimal design by an arbitrary factor. Finally, in
Appendix A, we show hardness results for computing the expected number of blocked
APs for a given network. In Section 3, we study the worst case model. We establish a
connection between the secure network design problem and a problem in combinatorial
set theory, and use this to give the optimal design for one failed AP. For constant
number of failed APs, we use the probabilistic method to bound the maximum number
of APs that we can support using a fixed number of servelets without blocking any
other APs. We conclude in Section 4 with several open questions.

2 The Average-Case Model

In this section, we study the average case model. We give polynomial-time algorithms
for this problem in two cases: when the number of servelets is a constant, and when
the probability of failure of each AP is at least 1/2. We also demonstrate the difficulty
of the problem in Appendix A by showing that even when a design is given, computing
the probability that a given AP will be blocked or the expected number of APs that
will be blocked is #P -complete.

Our algorithms are based on the following lemma about the structure of the optimal
design.

4 For a detailed justification of this model, please see [2].



Lemma 1. Assume that APs are ordered in decreasing order of their failure probabil-
ities, i.e., p1 ≥ p2 ≥ . . . ≥ pn. For an AP i, let Si be the set of servelets connected to
i. There exists an optimal design in which for all i < j < k, if Si = Sk, then Sj = Si.

Proof. Assume that there is no optimal design with the desired property. Let S1, . . . , Sn

be an optimal solution in which for some i < j < k, Si = Sk but Sj 6= Si. Note that
Si = Sk implies that if either i or k fails, then both i and k are blocked. In particular,
the expected number of blocked APs given that i fails is equal to the expected number
of blocked APs given that k fails and is equal to the expected number of blocked APs
given that i and k fail. Let B11 be the expected number of blocked APs given that j
fails and at least one of i and k fail. Let B10 be the expected number of blocked APs
given that at least one of i and k fail and j does not fail. Similarly, let B01 be the
expected number of blocked APs given that j fails but neither i nor k fails and B00

be the expected number of blocked APs given that none of i and k and j fails. From
this definitions, it is straightforward to see that B11 ≥ B01. The expected number P∗

of blocked APs in an optimal design can be expressed as follows.

P∗ = E[#blocked APs]
= pj(pi + pk − pipk)B11 + (1− pj)(pi + pk − pipk)B10

+ (1− pi)pj(1− pk)B01 + (1− pi)(1− pj)(1− pk)B00

Now we prove that the set of servelets of j can be exchanged with the set of servelets of
either i or k without increasing the expected number of blocked APs. For contradiction,
assume that both these exchanges increase the expected number of blocked APs. The
expected number of blocked APs after exchanging i and j can be written as

P1 = E[#blocked APs]
= pi(pj + pk − pjpk)B11 + (1− pi)(pj + pk − pjpk)B10

+ (1− pj)pi(1− pk)B01 + (1− pj)(1− pi)(1− pk)B00

Similarly, the expected number of blocked APs after exchanging j and k is

P2 = E[#blocked APs]
= pk(pi + pj − pipj)B11 + (1− pk)(pi + pj − pipj)B10

+ (1− pi)pk(1− pj)B01 + (1− pi)(1− pk)(1− pj)B00

By our assumption, we have P∗ < P1 and P∗ < P2. Therefore,

pjpkB11 + piB10 + pj(1− pk)B01 < pipkB11 + pjB10 + pi(1− pk)B01

Thus,
(pi − pj)(pkB11 −B10 − (1− pk)B01) > 0

Since pi ≥ pj , this implies

pkB11 −B10 − (1− pk)B01 > 0 (1)



Similarly, P∗ < P2 implies

piB11 −B10 − (1− pi)B01 < 0 (2)

By subtracting (1) from (2), we get (pi−pk)B11 < (pi−pk)B01, and hence B11 < B01.
However, this is impossible by the definition of B11 and B01. �

Using Lemma 1, we can prove the following result.

Theorem 1. There is a polynomial-time algorithm that constructs the optimal design
in the average case model when the number of servelets is at most a constant.

Proof Sketch. Assume that APs are ordered in the decreasing order of their failure
probabilities, i.e., p1 ≥ p2 ≥ . . . ≥ pn. Let Si denote the set of servelets connected to
the AP i. From Lemma 1, we know that there are indices 1 = α0 < α1 < α2 < · · · <
αs = n+1 such that for each j ∈ [αi, αi+1), Sj = Sαi , and the sets Sα0 , Sα1 , . . . , Sαs−1

are pairwise distinct. Since the total number of distinct sets of servelets is 2m, there
are at most

(
n+2m

2m

)
(2m)! ways to pick the indices α0, . . . , αs and the corresponding

Si’s. This number is bounded by a polynomial in n if m is a constant. Therefore,
the algorithm can check all such configurations. Computing the expected number of
blocked APs for each configuration can also be done in polynomial time when m is a
constant. �

If we can connect each AP to at most one servelet, the resulting graph is a union of
stars. We say that the design is star-shaped in this case. The following theorem proves
that the optimal star-shaped design can be found in polynomial time.

Theorem 2. The optimal star-shaped design can be computed in polynomial time.

Proof. Let the failure probabilities of the APs be p1 ≤ p2 ≤ . . . ≤ pn. It is easy to see
that the proof of Lemma 1 holds even if the design is restricted to a star-shaped design.
This shows that in the optimal star-shaped design we should partition the APs 1, . . . , n
into at most m + 1 consecutive parts each of which is connected to no servelet or to
one of the servelets. This can be done by dynamic programming in polynomial time.
We observe that the subset of APs that are connected to none of the servelets should
be among the APs with larger failure probability. Let A[k, t] be the minimum (over the
choice of the star-shaped design) of the expected number of blocked APs when the set
of APs consists of 1, 2, . . . , k and there exists t servelets. Let B(a, b) be the expected
number of blocked APs among the APs a, a + 1 . . . , b, if they are all connected to
the same servelet (and no other AP is connected to this servelet). Note that B(a, b)
can be easily computed in polynomial time for each a and b. It is not hard to see
that A[k, t] = min {min1≤l≤k{A[l, t− 1] + B(l + 1, k)},min1≤l≤k{A[l, t] + k − l}} and
A[k, 0] = k. Using this recurrence, the values of A[k, t] can be computed in polynomial
time. The value of the best star-shaped design is given by A[n, m]. �

It might appear that star-shaped designs are weaker than general designs. The
following theorem shows that if all failure probabilities are at least 1

2 , there is an
optimal design that is star-shaped.



Theorem 3. If all failure probabilities are at least 1
2 then there is a star-shaped optimal

design and therefore an optimal design can be found in polynomial time.

Proof. We start from an optimal design, D, and prove that we can change this design
to a star-shaped design without increasing the expected number of blocked APs.

First we prove that we can get rid of all the cycles in the optimal design D. If there
is a cycle in D, then there is a chordless cycle C in D as well. The length of cycle C is
even and is at least 4. We consider two cases:

Case 1: |C| ≥ 6. In this case, let cycle C be s1c1s2c2 . . . skcks1, where ci’s are APs
and si’s are servelets. We claim that removing one of the matchings c1s1, c2s2, . . . , cksk

or c1s2, c2s3, . . . , ck−1sk, cks1 will not increase the expected number of blocked APs.
Let D1 be the design D after removing the matching c1s1, c2s2, . . . , cksk and D2 be the
design after removing the matching c1s2, c2s3, . . . , ck−1sk, cks1. Removing a matching
from C will not increase the blocking probability of any AP other than c1, c2, . . . , ck.
So it is enough to argue that the expected number of blocked APs in c1, c2, . . . , ck

decreases as we remove one of these two matchings. Let Eci
for all 1 ≤ i ≤ k be the

event that all of servelets that are connected to ci and are not in the set {s1, s2, . . . , sk}
are attacked. Let Esi

be the event that at least one of the APs that are connected to
servelet si fails. The probability of Eci is denoted by Pci , and the probability of Eci

and not Esj is denoted by Pcis̄j . Similarly, the probability of Eci and Esj and not Esl

is denoted by Pcisj s̄l
, etc. Let PT (ci) be the blocking probability of ci in design T .

Then,

PD(ci) = pi + (1− pi)
(
Pci − Pcis̄i(1− pi−1)

− Pcis̄i+1(1− pi+1) + Pcis̄is̄i+1(1− pi−1)(1− pi+1)
)
.

Furthermore PD1(ci) = pi + (1− pi)Pcisi and PD2(ci) = pi + (1− pi)Pcisi+1 .
In order to prove that the expected number of blocked APs is not more in one of

the designs D1 and D2, it is enough to prove that PD(ci) ≥ 1
2 (PD1(ci) + PD2(ci)). In

order to prove this, it is enough to show the following:

P := Pci − Pcis̄i(1− pi−1)− Pcis̄i+1(1− pi+1) + Pcis̄is̄i+1(1− pi−1)(1− pi+1)

≥ 1
2
(Pcisi

+ Pcisi+1)

Using Pci = Pcisi + Pcis̄i = Pcisi+1 + Pcis̄i+1 , we have:

P ≥ 1
2
(Pcisi

+ Pcis̄i
+ Pcisi+1 + Pcis̄i+1)− Pcis̄i

(1− pi−1)− Pcis̄i+1(1− pi+1)

≥ 1
2
(Pcisi

+ Pcisi+1)

where we use the fact that pi−1 ≥ 1
2 and pi+1 ≥ 1

2 .

Case 2: |C| = 4. Let cycle C be c1s1c2s2c1. The analysis of this case is very similar
to the that of |C| > 4. We use the same notation as in the previous case. Again we



prove that removing one the matchings c1s1, c1s2 or c1s2, c2s1 will not increase the
expected number of blocked APs. Let D, D1 and D2 be an optimal design, and this
design after removing matchings c1s1, c1s2 and c1s2, c2s1, respectively.

PD(ci) = pi + (1− pi)(Pci
− (1− pi+1)(Pcis̄1 + Pcis̄2 − Pcis̄1s̄2))

≥ 1
2
(pi + (1− pi)Pcis1 + pi + (1− pi)Pcis2)

+ (1− pi)(pi+1 −
1
2
)(Pcis̄1 + Pcis̄2)

≥ 1
2
(PD1(ci) + PD2(ci)) + (1− pi)(pi+1 −

1
2
)(Pcis̄1 + Pcis̄2)

≥ 1
2
(PD1(ci) + PD2(ci))

Thus, in at least one of the designs D1 and D2, the expected number of blocked APs
is less than or equal to the expected number of blocked APs in D.

After getting rid of all cycles, D is a tree. Next, we show that it is possible to change
this tree to a star-shaped design without increasing the expected number of blocked
APs. Again, we consider two cases:

Case 1: There is a leaf s in tree D that is a servelet.
In this case, let c be the AP connected to servelet s. Removing all edges of c to servelets
other than s will decrease the expected number of blocked APs among APs other than
c. Furthermore, the blocking probability of c will not increase, since c has a private
servelet s.

Case 2: All leaves of D are APs.
Consider a connected component of D which is not a star. Now consider a leaf AP c
in this component. AP c is connected to servelet s. Servelet s must have a neighboring
AP c′ which is connected to at least one other servelet s′, for otherwise the component
would be a star. We claim that removing the edge c′s′ decreases the expected number
of blocked APs. Let D′ be the tree after removing c′s′.

The blocking probability of all APs except c′ decrease in D′. In the following, we
prove that removing c′s′ also decreases the sum of blocking probabilities of the APs
c and c′. Let Pc′ be the probability that all servelets connected to c′, except possibly
s, are attacked. Let Ps be the probability that one AP other than c′ and c in the
neighborhood of s fails. As before, let PD(c) be the blocking probability of AP c in the
design D. Using the fact that D is a tree, we have

PD(c) = pc + (1− pc)(pc′ + Ps − pc′Ps)
PD(c′) = pc′ + (1− pc′)Pc′(pc + Ps − pcPs)
PD′(c) = pc + (1− pc)Ps

PD′(c′) = pc′ + (1− pc′)Pc′ .

Therefore,

PD(c) + PD(c′) = pc + (1− pc)(pc′ + Ps − pc′Ps) + pc′



+ (1− pc′)Pc′(pc + Ps − pcPs)
= PD′(c) + PD′(c′) + (pc′ − (1− pc′)Pc′)(1− pc)(1− Ps)
≥ PD′(c) + PD′(c′),

where in the last inequality we use the fact that pc′ ≥ 1
2 and Pc′ ≤ 1, and hence

pc′ − (1− pc′)Pc′ ≥ 0. This completes the proof of this case.
Using the above operations, we can change the tree-shaped design D to a star-

shaped design without increasing the expected number of blocked APs. Hence, we can
change any optimal design to an optimal tree-shaped design and then to an optimal
star-shaped design. �

Another case for which we can show that there is an optimal star-shaped design is
when the number of servelets is two.

Theorem 4. If the number of servelets is two, then there is an optimal design that is
star-shaped.

Proof. For simplicity, we prove the theorem assuming all APs have the same failure
probability p. The proof in the general case is similar. Let q = 1− p. Let A00, A10, A01,
and A11 be the set of APs connected to none of the servelets, to servelet 1, to servelet
2, and to both servelets in an optimal solution. Let nuv = Auv for 0 ≤ u, v ≤ 1 and
n = n01+n10+n11. Let P1 be the probability that servelet 1 is not attacked. For i ∈ A10,
P1 = Pr[i is blocked] = 1−qn10+n11 . For i ∈ A01, P2 = Pr[i is blocked] = 1−qn01+n11 .
For i ∈ A11, P3 = Pr[i is blocked] = 1− qn01+n11 − qn10+n11 + qn01+n10+n11 . Thus, the
expected number of blocked APs is equal to P∗ = n10P1 + n01P2 + n11P3. WLOG,
assume that n01 ≥ n10. We prove that moving one of the APs from A11 to A10 decreases
the expected number of blocked APs. Before moving this AP from A11 to A10,

P∗ = n− (n10 + n11)qn10+n11 − (n01 + n11)qn01+n11 + n11q
n01+n10+n11

After this movement, the expected number of blocked APs is

P = n− (n10 + n11)qn10+n11 − (n01 + n11 − 1)qn01+n11−1 + (n11 − 1)qn01+n10+n11

Now we have,

P∗ − P = qn01+n11−1[(n01 + n11)(1− q)− 1 + qn10+1]
≥ qn01+n11−1[(n01 + n11)p− 1 + (1− p)n10+1]
≥ qn01+n11−1(n01 + n11 − n10 − 1)p
≥ 0

where the last two inequalities are from (1−p)n10+1−1 > −p(n10 +1) and n01 +n11 ≥
n10+1. Therefore, we can move all APs from A11 to either A10 or A01 without increasing
the expected number of blocked APs. Thus, there is a star-shaped optimal solution. �

The above proof was based on a local operation that removes one of the edges
attached to an AP of degree more than one. However, this local operation can increase
the expected number of blocked APs when the number of servelets is more than two.



For example, consider a cycle of size six with three APs and three servelets. It is not
hard to show that removing any of the edges of this design will increase the expected
number of blocked APs. In the following theorem, we show that without an assumption
on the failure probabilities or the number of servelets, the optimal design need not be
star shaped.

Theorem 5. There is an instance of the secure network design problem in which the
expected number of blocked APs in the optimal design is larger than that of the optimal
star-shaped design by an arbitrary factor.

Proof. Choose a sufficiently large number m, and let n =
(

m
m/2

)
and p = 1/n2. We first

analyze the expected number of blocked APs in the best star-shaped design with these
parameters. Let ni denote the number of APs connected to the ith servelet in such a
design, and n0 denote the number of APs not connected at all. The expected number
of blocked APs can be expressed as

n0 +
m∑

i=1

ni (1− (1− p)ni) ≥
m∑

i=0

ni (1− (1− p)ni) .

There is at least one i, 0 ≤ i ≤ m, with ni ≥ n/(m + 1). Thus, the above expression is
at least

n

m + 1

(
1− (1− p)n/(m+1)

)
≥ n

m + 1

(
pn

m + 1
− p2n2

(m + 1)2

)
≥ pn2

2(m + 1)2
,

where the first inequality follows from (1− p)s ≤ 1− ps + p2s2.
Now, we propose a different design and analyze the expected number of blocked

APs in such a design. For each of the n =
(

m
m/2

)
APs, we pick a distinct subset of m/2

servelets, and connect the AP to the servelets in this set. This design guarantees that
if only one AP is attacked, then no other AP will be blocked. We use this to bound the
expected number of blocked APs. By the union bound, the probability that more than
one AP is attacked can be bounded by n2p2. In this case, we bound the number of
blocked APs by n. Similarly, with probability at most np, exactly one AP is attacked,
and in this case only one AP (the one that is attacked) is blocked. Thus, the expected
number of blocked APs is at most n2p2 × n + np× 1 = 2/n.

Therefore, the ratio of the expected number of blocked APs in the latter design to
the one in the best star-shaped design is at most 4(m + 1)2/n, which tends to zero as
m tends to infinity. �

3 The Worst-Case Model

In this section, we study a model where an adversary selects at most a given number k
of APs to compromise, and the objective is to minimize the number of blocked APs in
the worst case. We observe that the worst-case model is closely related to the following
problem in extremal combinatorics.



Definition 2. Let A = (A1, A2, . . . , An) be a family of subsets of the universe U =
{1, 2, . . . ,m}. We call the family A k-union free if for any Ai0 , . . . , Aik

∈ A such that
ij 6= it for j 6= t, we have Ai0 6⊆ ∪1≤j≤kAij . In particular, a family A is 1-union free if
none of the elements of A is a subset of another. Let Lk(m) be the maximum number
of subsets in a k-union free family of subsets of the universe {1, 2, . . . ,m}.

We call a design perfect for k failures, if no matter which k APs fail, no other AP is
blocked. It is not difficult to see that there exists a perfect design for k failures with m
servelets and n APs if and only if n ≤ Lk(m). The following theorem gives lower and
upper bounds on the value of Lk(m). The lower bound in this theorem is proved by
Kleitman and Spencer [10] for a more general problem. We include the proof here for
the sake of completeness. We also give an upper bound based on Sperner’s theorem.
Sperner’s theorem gives a tight bound on the maximum number of subsets in a 1-union
free family of subsets. See also Ruszinkó [18] for an upper bound for a related problem.

Theorem 6. For every k and m,

(1− kk

(k + 1)k+1
)−m/(k+1) ≤ Lk(m) ≤ k

(
1 +

(
m
m
2

) 1
k

)
= O(k2m/km−1/(2k)).

Proof. We start by proving the upper bound. Let A = (A1, A2, . . . , An) be a k-union-
free family of subsets of {1, 2, . . . ,m}. Consider unions of k distinct sets from A. We
claim that no two such unions, say Ai1 ∪ · · · ∪Aik

and Aj1 ∪ · · · ∪Ajk
, are equal unless

{i1, . . . , ik} = {j1, . . . , jk}. The reason for this is that if two such unions are equal and
there is an index il not contained in {j1, . . . , jk}, then we have Ail

⊆ Aj1 ∪ · · · ∪ Ajk
,

contradicting the assumption that A is k-union-free. Therefore, the collection of sets
that are obtained by taking the union of k distinct sets in A contains exactly

(
n
k

)
distinct sets. Furthermore, similar reasoning shows that no set in this collection is
contained in another. Therefore, by Sperner’s theorem, this collection can contain at
most

(
m

m/2

)
sets. Thus,(

n

k

)
≤
(

m

m/2

)
⇒ n ≤ k

(
1 +

(
m
m
2

) 1
k

)
= O(k2m/km−1/(2k)),

completing the proof of the upper bound.
To prove the lower bound, we use the probabilistic method to construct a k-union-

free collection of sets of the required size. Fix p = 1
k+1 , and pick each of the n sets in

the collection by picking each element in {1, . . . ,m} independently with probability p.
Therefore, for a given set of indices i0, i1, . . . , ik, the probability that Ai0 ⊆ Ai1∪· · ·∪Aik

is precisely (1 − p(1 − p)k)m = (1 − kk

(k+1)k+1 )m. Therefore, by the union bound, the

probability that the collection is not k-union-free is less than nk+1(1 − kk

(k+1)k+1 )m.

Hence, if we pick n ≤ (1 − kk

(k+1)k+1 )−m/(k+1), there is a nonzero probability that the
resulting collection is k-union-free. This completes the proof of the lower bound. �

Note that the above theorem suggests a randomized algorithm for our network
design problem: put each edge in the graph with probability 1

k+1 . We can bound the



expected number of blocked APs resulting from this randomized algorithm using similar
ideas of the proof of the above theorem. For small values of k, this algorithm works
exponentially better than the optimal star-shaped design.

The only case where we know the exact value of Lk(m) is when k = 1. In this case,
we can prove the following stronger theorem.

Theorem 7. If k = 1, then there is a design in which the maximum number of APs
an adversary can block is at most

⌈
n/
(

m
bm/2c

)⌉
. Conversely, for every design for such

a network, there is a strategy for the adversary to block at least
⌈
n/
(

m
bm/2c

)⌉
APs.

Proof Sketch. We can obtain a design for k = 1 by duplicating each of the
(

m
bm/2c

)
subsets of size bm/2c of the set of servelets

⌈
n/
(

m
bm/2c

)⌉
times, and associate an AP

to each subset. To prove the other direction, we use the fact that the collection of
all subsets of a set of size m can be partitioned into

(
m

bm/2c
)

chains. Therefore, in

every design there are at least
⌈
n/
(

m
bm/2c

)⌉
APs that are connected to sets of servelets

belonging to the same chain. Hence, if the adversary compromises the AP connected
to the subset at the top of this chain, all other APs connected to the subsets in this
chain will fail. �

4 Conclusion

In this paper, we presented the first theoretical study of the secure network design
problem. We showed that in the average case model, when failure probabilities are
large (greater than 1

2 ), there is an optimal star-shaped design, and such a design can
be computed in polynomial time. On the other hand, there are instances with small
failure probabilities where the optimal star-shaped design is arbitrarily worse than
the optimal design. The case of small failure probabilities seems to be related to the
stronger model where an adversary is allowed to select at most k APs to compromise.
We observed that in this model, a random design performs considerably better than
the optimal star-shaped design.

We still do not know of any hardness result or a polynomial-time algorithm for the
general case of the secure network design problem, although the connection between
this problem and the problem of finding a tight bound on the size of the largest k-union-
free family of sets (which is a long-standing open problem) suggests that computing
the exact optimum is difficult. Even an approximation algorithm for this problem, or
tighter bounds for the k-union-free problem, would be interesting. Lovasz Local Lemma
gives us a small improvement in the lower bound, but more significant improvement
seem to require new techniques. Finally, it would be interesting to prove Theorem 3
with a weaker assumption (e.g., that probabilities are greater than a small constant),
or show that such a generalization is not true.
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A Expected number of blocked APs: A Hardness result

In terms of hardness, we can show that given a particular design, it is hard to compute
the probability that a given AP is blocked, and the expected number of APs that will
be blocked.

Theorem 8. The following two problems are #P-complete:

– Given a design and assuming uniform failure probabilities of p = 1/2, compute the
probability that a given AP i will be blocked.

– Given a design and assuming uniform failure probabilities of p = 1/2, compute the
expected number of APs that will be blocked.

Proof Sketch. For the first problem, we can give a reduction from the problem of
computing the number of solutions of a set-cover instance. The second problem can be
reduced to the first by adding a “private servelet” for each AP except one. �

Even though finding the exact expected number of blocked APs is hard, it is not
hard to approximate within a factor of 1 + ε for any positive constant ε by sampling
polynomially many times and taking the average. Note that the above theorem does
not show any hardness result for finding the optimal network. The complexity of this
problem for general failure probabilities is still open.


