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Abstract— We present SWAN, a system that boosts the
utilization of inter-datacenter networks by centrally control-
ling when and how much traffic each service sends and fre-
quently re-configuring the network’s data plane to match
current traffic demand. But done simplistically, these re-
configurations can also cause severe, transient congestion
because different switches may apply updates at different
times. We develop a novel technique that leverages a small
amount of scratch capacity on links to apply updates in a
provably congestion-free manner, without making any as-
sumptions about the order and timing of updates at individ-
ual switches. Further, to scale to large networks in the face
of limited forwarding table capacity, SWAN greedily selects
a small set of entries that can best satisfy current demand.
It updates this set without disrupting traffic by leveraging a
small amount of scratch capacity in forwarding tables. Ex-
periments using a testbed prototype and data-driven simu-
lations of two production networks show that SWAN carries
60% more traffic than the current practice.

Categories and Subject Descriptors: C.2.1 [Computer-

Communication Networks]: Network Architecture and Design

Keywords: Inter-DC WAN; software-defined networking

1. INTRODUCTION
The wide area network (WAN) that connects the data-

centers (DC) is critical infrastructure for providers of online
services such as Amazon, Google, and Microsoft. Many ser-
vices rely on low-latency inter-DC communication for good
user experience and on high-throughput transfers for relia-
bility (e.g., when replicating updates). Given the need for
high capacity—inter-DC traffic is a significant fraction of
Internet traffic and rapidly growing [19]—and unique traf-
fic characteristics, the inter-DC WAN is often a dedicated
network, distinct from the WAN that connects with ISPs to
reach end users [14]. It is an expensive resource, with amor-
tized annual cost of 100s of millions of dollars, as it provides
100s of Gbps to Tbps of capacity over long distances.

However, providers are unable to fully leverage this in-
vestment today. Inter-DC WANs have extremely poor ef-
ficiency; the average utilization of even the busier links is
40-60%. One culprit is the lack of coordination among the
services that use the network. Barring coarse, static limits
in some cases, services send traffic whenever they want and
however much they want. As a result, the network cycles
through periods of peaks and troughs. Since it must be pro-
visioned for peak usage to avoid congestion, the network is
under-subscribed on average. Observe that network usage
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does not have to be this way if we can exploit the char-
acteristics of inter-DC traffic. Some inter-DC services are
delay-tolerant. We can tamp the cyclical behavior if such
traffic is sent when the demand from other traffic is low.
This coordination will boost average utilization and enable
the network to either carry more traffic with the same ca-
pacity or use less capacity to carry the same traffic.1

Another culprit behind poor efficiency is the distributed
resource allocation model of today, typically implemented
using MPLS TE (Multiprotocol Label Switching Traffic En-
gineering) [4, 23]. In this model, no entity has a global view
and ingress routers greedily select paths for their traffic. As
a result, the network can get stuck in locally optimal routing
patterns that are globally suboptimal [26].

We present SWAN (Software-driven WAN), a system that
enables inter-DC WANs to carry significantly more traffic.
By itself, carrying more traffic is straightforward—we can let
loose bandwidth-hungry services. SWAN achieves high effi-
ciency while meeting policy goals such as preferential treat-
ment for higher-priority services and fairness among similar
services. Per observations above, its two key aspects are i)
globally coordinating the sending rates of services; and ii)
centrally allocating network paths. Based on current service
demands and network topology, SWAN decides how much
traffic each service can send and configures the network’s
data plane to carry that traffic.

Maintaining high utilization requires frequent updates to
the network’s data plane, as traffic demand or network topol-
ogy changes. A key challenge is to implement these updates
without causing transient congestion that can hurt latency-
sensitive traffic. The underlying problem is that the updates
are not atomic as they require changes to multiple switches.
Even if the before and after states are not congested, con-
gestion can occur during updates if traffic that a link is sup-
posed to carry after the update arrives before the traffic
that is supposed to leave has left. The extent and duration
of such congestion is worse when the network is busier and
has larger RTTs (which lead to greater temporal disparity
in the application of updates). Both these conditions hold
for our setting, and we find that uncoordinated updates lead
to severe congestion and heavy packet loss.

This challenge recurs in every centralized resource allo-
cation scheme. MPLS TE’s distributed resource allocation

1In some networks, fault tolerance is another reason for low
utilization; the network is provisioned such that there is am-
ple capacity even after (common) failures. However, in inter-
DC WANs, traffic that needs strong protection is a small
subset of the overall traffic, and existing technologies can
tag and protect such traffic in the face of failures (§2).



can make only a smaller class of “safe” changes; it cannot
make coordinated changes that require one flow to move in
order to free a link for use by another flow. Further, recent
work on atomic updates, to ensure that no packet experi-
ences a mix of old and new forwarding rules [22, 28], does
not address our challenge. It does not consider capacity lim-
its and treats each flow independently; congestion can still
occur due to uncoordinated flow movements.

We address this challenge by first observing that it is im-
possible to update the network’s data plane without creating
congestion if all links are full. SWAN thus leaves “scratch”
capacity s (e.g., 10%) at each link. We prove that this en-
ables a congestion-free plan to update the network in at
most d1/se–1 steps. Each step involves a set of changes to
forwarding rules at switches, with the property that there
will be no congestion independent of the order and tim-
ing of those changes. We then develop an algorithm to
find a congestion-free plan with the minimum number of
steps. Further, SWAN does not waste the scratch capacity.
Some inter-DC traffic is tolerant to small amounts of conges-
tion (e.g., data replication with long deadlines). We extend
our basic approach to use all link capacity while guaran-
teeing bounded-congestion updates for tolerant traffic and
congestion-free updates for the rest.

Another challenge that we face is that fully using net-
work capacity requires many forwarding rules at switches,
to exploit many alternative paths through the network, but
commodity switches support a limited number of forwarding
rules.2 Analysis of a production inter-DC WAN shows that
the number of rules required to fully use its capacity exceeds
the limits of even next generation SDN switches. We address
this challenge by dynamically changing, based on traffic de-
mand, the set of paths available in the network. On the
same WAN, our technique can fully use network capacity
with an order of magnitude fewer rules.

We develop a prototype of SWAN, and evaluate our ap-
proach through testbed experiments and simulations using
traffic and topology data from two production inter-DC
WANs. We find that SWAN carries 60% more traffic than
MPLS TE and it comes within 2% of the traffic carried by
an optimal method that assumes infinite rule capacity and
incurs no update overhead. We also show that changes to
network updates are quick, requiring only 1-3 steps.

While our work focuses on inter-DC WANs, many of its
underlying techniques are useful for other WANs as well
(e.g., ISP networks). We show that even without control-
ling how much traffic enters the network, an ability that is
unique to the inter-DC context, our techniques for global re-
source and change management allow the network to carry
16-25% more traffic than MPLS TE.

2. BACKGROUND AND MOTIVATION
Inter-DC WANs carry traffic from a range of services,

where a service is an activity across multiple hosts. Ex-
ternally visible functionality is usually enabled by multiple
internal services (e.g., search may use Web-crawler, index-
builder, and query-responder services). Prior work [6] and
our conversations with operators reveal that services fall into
three broad types, based on their performance requirements.

2The limit stems from the amount of fast, expensive memory
in switches. It is not unique to OpenFlow switches; number
of tunnels that MPLS routers support is also limited [2].

Interactive services are in the critical path of end user
experience. An example is when one DC contacts another
in the process of responding to a user request because not
all information is available in the first DC. Interactive traffic
is highly sensitive to loss and delay; even small increases in
response time (100 ms) degrade user experience [34].

Elastic services are not in the critical path of user expe-
rience but still require timely delivery. An example is repli-
cating a data update to another DC. Elastic traffic requires
delivery within a few seconds or minutes. The consequences
of delay vary with the service. In the replication example,
the risk is loss of data if a failure occurs or that a user will
observe data inconsistency.

Background services conduct maintenance and provi-
sioning activities. An example is copying all the data of
a service to another DC for long-term storage or as a pre-
cursor to running the service there. Such traffic tends to
be bandwidth hungry. While it has no explicit deadline or
a long deadline, it is still desirable to complete transfers as
soon as possible—delays lower business agility and tie up
expensive server resources.

In terms of overall volumes, interactive traffic is the small-
est subset and background traffic is the largest.

2.1 Current traffic engineering practice
Many WANs are operated using MPLS TE today. To

effectively use network capacity, MPLS TE spreads traffic
across a number of tunnels between ingress-egress router
pairs. Ingress routers split traffic, typically equally using
equal cost multipath routing (ECMP), across the tunnels
to the same egress. They also estimate the traffic demand
for each tunnel and find network paths for it using the con-
strained shortest path first (CSPF) algorithm, which iden-
tifies the shortest path that can accommodate the tunnel’s
traffic (subject to priorities; see below).

With MPLS TE, service differentiation can be provided
using two mechanisms. First, tunnels are assigned priori-
ties and different types of services are mapped to different
tunnels. Higher priority tunnels can displace lower priority
tunnels and thus obtain shorter paths; the ingress routers of
displaced tunnels must then find new paths. Second, pack-
ets carry differentiated services code point (DSCP) bits in
the IP header. Switches map different bits to different pri-
ority queues, which ensures that packets are not delayed
or dropped due to lower-priority traffic; they may still be
delayed or dropped due to equal or higher priority traffic.
Switches typically have only a few priority queues (4–8).

2.2 Problems of MPLS TE
Inter-DC WANs suffer from two key problems today.

Poor efficiency: The amount of traffic the WAN carries
tends to be low compared to capacity. For a production
inter-DC WAN, which we call IDN (§6.1), we find that the
average utilization of half the links is under 30% and of three
in four links is under 50%.

Two factors lead to poor efficiency. First, services send
whenever and however much traffic they want, without re-
gard to the current state of the network or other services.
This lack of coordination leads to network swinging between
over- and under-subscription. Figure 1a shows the load over
a day on a busy link in IDN. Assuming capacity matches
peak usage (a common provisioning model to avoid conges-
tion), the average utilization on this link is under 50%. Thus,
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Figure 1: Illustration of poor utilization. (a) Daily traffic
pattern on a busy link in a production inter-DC WAN.
(b) Breakdown based on traffic type. (c) Reduction in
peak usage if background traffic is dynamically adapted.
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Figure 2: Inefficient routing due to local allocation.

half the provisioned capacity is wasted. This inefficiency is
not fundamental but can be remedied by exploiting traffic
characteristics. As a simple illustration, Figure 1b separates
background traffic. Figure 1c shows that the same total traf-
fic can fit in half the capacity if background traffic is adapted
to use capacity left unused by other traffic.

Second, the local, greedy resource allocation model of
MPLS TE is inefficient. Consider Figure 2 in which each
link can carry at most one flow. If the flows arrive in the
order FA, FB , and FC , Figure 2a shows the path assignment
with MPLS TE: FA is assigned to the top path which is one
of the shortest paths; when FB arrives, it is assigned to the
shortest path with available capacity (CSPF); and the same
happens with FC . Figure 2b shows a more efficient routing
pattern with shorter paths and many links freed up to carry
more traffic. Such an allocation requires non-local changes,
e.g., moving FA to the lower path when FB arrives.

Partial solutions for such inefficiency exist. Flows can
be split across two tunnels, which would divide FA across
the top and bottom paths, allowing half of FB and FC to
use direct paths; a preemption strategy that prefers shorter
paths can also help. But such strategies do not address the
fundamental problem of local allocation decisions [26].

Poor sharing: Inter-DC WANs have limited support for
flexible resource allocation. For instance, it is difficult to
be fair across services or favor some services over certain
paths. When services compete today, they typically obtain
throughput proportional to their sending rate, an undesir-
able outcome (e.g., it creates perverse incentives for service
developers). Mapping each service onto its own queue at
routers can alleviate problems but the number of services
(100s) far exceeds the number of available router queues.
Even if we had infinite queues and could ensure fairness on
the data plane, network-wide fairness is not possible without
controlling which flows have access to which paths. Consider
Figure 3 in which each link has unit capacity and each ser-

𝑆2 

𝑆1 

𝐷2 

𝐷3 𝑆3 

𝐷1 
1/2 

1/2 

1/2 

1/2 

(a) Link-level

𝑆2 

𝑆1 

𝐷2 

𝐷3 𝑆3 

𝐷1 
1/3 

1/3 

2/3 

2/3 

(b) Network-wide

Figure 3: Link-level fairness 6= network-wide fairness.

vice (Si→Di) has unit demand. With link-level fairness,
S2→D2 gets twice the throughput of other services. As we
show, flexible sharing can be implemented with a limited
number of queues by carefully allocating paths to traffic and
control the sending rate of services.

3. SWAN OVERVIEW AND CHALLENGES
Our goal is to carry more traffic and support flexible

network-wide sharing. Driven by inter-DC traffic character-
istics, SWAN supports two types of sharing policies. First,
it supports a small number of priority classes (e.g., Inter-
active > Elastic > Background) and allocates bandwidth
in strict precedence across these classes, while preferring
shorter paths for higher classes. Second, within a class,
SWAN allocates bandwidth in a max-min fair manner.

SWAN has two basic components that address the funda-
mental shortcomings of the current practice. It coordinates
the network activity of services and uses centralized resource
allocation. Abstractly, it works as:

1. All services, except interactive ones, inform the SWAN

controller of their demand between pairs of DCs. In-
teractive traffic is sent like today, without permission
from the controller, so there is no delay.

2. The controller, which has an up-to-date, global view of
the network topology and traffic demands, computes
how much each service can send and the network paths
that can accommodate the traffic.

3. Per SDN paradigm, the controller directly updates the
forwarding state of the switches. We use OpenFlow
switches, though any switch that permits direct pro-
gramming of forwarding state (e.g., MPLS Explicit
Route Objects [3]) may be used.

While the architecture is conceptually simple, we must ad-
dress three challenges to realize this design. First, we need
a scalable algorithm for global allocation that maximizes
network utilization subject to constraints on service prior-
ity and fairness. Best known solutions are computationally
intensive as they solve long sequences of linear programs
(LP) [9, 25]. Instead, SWAN uses a more practical approach
that is approximately fair with provable bounds and close
to optimal in practical scenarios (§6).

Second, atomic reconfiguration of a distributed system of
switches is hard to engineer. Network forwarding state needs
updating in response to changes in the traffic demand or
network topology. Lacking WAN-wide atomic changes, the
network can drop many packets due to transient congestion
even if both the initial and final configurations are uncon-
gested. Consider Figure 4 in which each flow is 1 unit and
each link’s capacity is 1.5 units. Suppose we want to change
the network’s forwarding state from Figure 4a to 4b, perhaps
to accommodate a new flow from R2 to R4. This change re-
quires changes to at least two switches. Depending on the
order in which the switch-level changes occur, the network
reaches the states in Figures 4c or 4d, which have a heavily
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Figure 4: Illustration of congestion-free updates. Each
flow’s size is 1 unit and each link’s capacity is 1.5 units.
Changing from state (a) to (b) may lead to congested
states (c) or (d). A congestion-free update sequence is
(a);(e);(f);(b).

congested link and can significantly hurt TCP flows as many
packets may be lost in a burst.

To avoid congestion during network updates, SWAN com-
putes a multi-step congestion-free transition plan. Each step
involves one or more changes to the state of one or more
switches, but irrespective of the order in which the changes
are applied, there will be no congestion. For the reconfigura-
tion in Figure 4, a possible congestion-free plan is: i) move
half of FA to the lower path (Figure 4e); ii) move FB to the
upper path (Figure 4f); and iii) move the remaining half of
FA to the lower path (Figure 4b).

A congestion-free plan may not always exist, and even if
it does, it may be hard to find or involve a large number of
steps. SWAN leaves scratch capacity of s ∈ [0, 50%] on each
link, which guarantees that a transition plan exists with at
most d1/se−1 steps (which is 9 if s=10%). We then develop
a method to find a plan with the minimal number of steps.
In practice, it finds a plan with 1-3 steps when s=10%.

Further, instead of wasting scratch capacity, SWAN al-
locates it to background traffic. Overall, it guarantees
that non-background traffic experiences no congestion dur-
ing transitions, and the congestion for background traffic is
bounded (configurable).

Third, switch hardware supports a limited number of for-
warding rules, which makes it hard to fully use network ca-
pacity. For instance, if a switch has six distinct paths to
a destination but supports only four rules, a third of paths
cannot be used. Our analysis of a production inter-DC WAN
illustrates the challenge. If we use k-shortest paths between
each pair of switches (as in MPLS), fully using this network’s
capacity requires k=15. Installing these many tunnels needs
up to 20K rules at switches (§6.5), which is beyond the capa-
bilities of even next-generation SDN switches; the Broadcom
Trident2 chipset will support 16K OpenFlow rules [32]. The
current-generation switches in our testbed support 750 rules.

To fully exploit network capacity with a limited number of
rules, we are motivated by how the working set of a process
is often a lot smaller than the total memory it uses. Sim-
ilarly, not all tunnels are needed at all times. Instead, as
traffic demand changes, different sets of tunnels are most
suitable. SWAN dynamically identifies and installs these
tunnels. Our dynamic tunnel allocation method, which uses
an LP, is effective because the number of non-zero variables
in a basic solution for any LP is fewer than the number of
constraints [24]. In our case, we will see that variables in-
clude the fraction of a DC-pair’s traffic that is carried over a
tunnel and the number of constraints is roughly the number
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Figure 5: Architecture of SWAN.

of priority classes times the number of DC pairs. Because
SWAN supports three priority classes, we obtain three tun-
nels with non-zero traffic per DC pair on average, which is
much less than the 15 required for a non-dynamic solution.

Dynamically changing rules introduces another wrinkle for
network reconfiguration. To not disrupt traffic, new rules
must be added before the old rules are deleted; otherwise,
the traffic that is using the to-be-deleted rules will be dis-
rupted. Doing so requires some rule capacity to be kept
vacant at switches to accommodate the new rules; done sim-
plistically, up to half of the rule capacity must be kept va-
cant [28], which is wasteful. SWAN sets aside a small amount
of scratch space (e.g., 10%) and uses a multi-stage approach
to change the set of rules in the network.

4. SWAN DESIGN
Figure 5 shows the architecture of SWAN. A logically

centralized controller orchestrates all activity. Each non-
interactive service has a broker that aggregates demands
from the hosts and apportions the allocated rate to them.
One or more network agents intermediate between the con-
troller and the switches. This architecture provides scale—
by providing parallelism where needed—and choice—each
service can implement a rate allocation strategy that fits.

Service hosts and brokers collectively estimate the ser-
vice’s current demand and limit it to the rate allocated by
the controller. Our current implementation draws on dis-
tributed rate limiting [5]. A shim in the host OS estimates
its demand to each remote DC for the next Th=10 seconds
and asks the broker for an allocation. It uses a token bucket
per remote DC to enforce the allocated rate and tags packets
with DSCP bits to indicate the service’s priority class.

The service broker aggregates demand from hosts and up-
dates the controller every Ts=5 minutes. It apportions its
allocation from the controller piecemeal, in time units of Th,
to hosts in a proportionally fair manner. This way, Th is the
maximum time that a newly arriving host has to wait before
starting to transmit. It is also the maximum time a service
takes to change its sending rate to a new allocation. Brokers
that suddenly experience radically larger demands can ask
for more any time; the controller does a lightweight compu-
tation to determine how much of the additional demand can
be carried without altering network configuration.

Network agents track topology and traffic with the aid
of switches. They relay news about topology changes to
the controller right away and collect and report information
about traffic, at the granularity of OpenFlow rules, every
Ta=5 minutes. They are also responsible for reliably up-
dating switch rules as requested by the controller. Before
returning success, an agent reads the relevant part of the
switch rule table to ensure that the changes have been suc-
cessfully applied.

Controller uses the information on service demands and



network topology to do the following every Tc=5 minutes.
1. Compute the service allocations and forwarding plane

configuration for the network (§4.1, §4.2).
2. Signal new allocations to services whose allocation has

decreased. Wait for Th seconds for the service to lower
its sending rate.

3. Change the forwarding state (§4.3) and then signal
the new allocations to services whose allocation has
increased.

4.1 Forwarding plane configuration
SWAN uses label-based forwarding. Doing so reduces for-

warding complexity; the complex classification that may be
required to assign a label to traffic is done just once, at the
source switch. Remaining switches simply read the label and
forward the packet based on the rules for that label. We use
VLAN IDs as labels.

Ingress switches split traffic across multiple tunnels (la-
bels). We propose to implement unequal splitting, which
leads to more efficient allocation [13], using group tables in
the OpenFlow pipeline. The first table maps the packet,
based on its destination and other characteristics (e.g.,
DSCP bits), to a group table. Each group table consists
of the set of tunnels available and a weight assignment that
reflects the ratio of traffic to be sent to each tunnel. Con-
versations with switch vendors indicate that most will roll
out support for unequal splitting. When such support is un-
available, SWAN uses traffic profiles to pick boundaries in
the range of IP addresses belonging to a DC such that split-
ting traffic to that DC at these boundaries will lead to the
desired split. Then, SWAN configures rules at the source
switch to map IP destination spaces to tunnels. Our ex-
periments with traffic from a production WAN show that
implementing unequal splits in this way leads to a small
amount of error (less than 2%).

4.2 Computing service allocations
When computing allocated rate for services, our goal is

to maximize network utilization subject to service priorities
and approximate max-min fairness among same-priority ser-
vices. The allocation process must be scalable enough to
handle WANs with 100s of switches.

Inputs: The allocation uses as input the service demands
di between pairs of DCs. While brokers report the demand
for non-interactive services, SWAN estimates the demand
of interactive services (see below). We also use as input
the paths (tunnels) available between a DC pair. Running
an unconstrained multi-commodity problem could result in
allocations that require many rules at switches. Since a DC
pair’s traffic could flow through any link, every switch may
need rules to split every pair’s traffic across its outgoing
ports. Constraining usable paths avoids this possibility and
also simplifies data plane updates (§4.3). But it may lead to
lower overall throughput. For our two production inter-DC
WANs, we find that using the 15 shortest paths between
each pair of DCs results in negligible loss of throughput.

Allocation LP: Figure 6 shows the LP used in SWAN. At
the core is the MCF (multi-commodity flow) function that
maximizes the overall throughput while preferring shorter
paths; ε is a small constant and tunnel weights wj are pro-
portional to latency. sPri is the fraction of scratch link ca-
pacity that enables congestion-managed network updates;
it can be different for different priority classes (§4.3). The

Inputs:
di: flow demands for source destination pair i
wj : weight of tunnel j (e.g., latency)
cl: capacity of link l

sPri: scratch capacity ([0, 50%]) for class Pri
Ij,l: 1 if tunnel j uses link l and 0 otherwise

Outputs:
bi =

∑
j bi,j : bi is allocation to flow i; bi,j over tunnel j

Func: SWAN Allocation:
∀ links l : cremain

l ← cl; // remaining link capacity

for Pri = Interactive,Elastic, . . . ,Background do

{bi} ←
Throughput Maximization
Approx. Max-Min Fairness

(
Pri, {cremain

l }
)
;

cremain
l ← cremain

l −
∑
i,j bi,j · Ij,l;

Func: Throughput Maximization(Pri, {cremain
l }):

return MCF(Pri, {cremain
l }, 0,∞, ∅);

Func: Approx. Max-Min Fairness(Pri, {cremain
l }):

// Parameters α and U trade-off unfairness for runtime
// α > 1 and 0 < U ≤ min(fairratei)

T ← dlogα
max(di)

U
e; F ← ∅;

for k = 1 . . . T do
foreach bi ∈ MCF(Pri, {cremain

l }, αk−1U,αkU, F ) do
if i /∈ F and bi < min(di, α

kU) then
F ← F + {i}; fi ← bi; // flow saturated

return {fi : i ∈ F};

Func: MCF(Pri, {cremain
l }, bLow, bHigh, F ):

//Allocate rate bi for flows in priority class Pri
maximize

∑
i bi − ε(

∑
i,j wj · bi,j)

subject to ∀i /∈ F : bLow ≤ bi ≤ min(di, bHigh);
∀i ∈ F : bi = fi;
∀l :

∑
i,j bi,j · Ij,l ≤ min{cremain

l , (1− sPri)cl};
∀(i, j) : bi,j ≥ 0.

Figure 6: Computing allocations over a set of tunnels.

SWAN Allocation function allocates rate by invoking MCF
separately for classes in priority order. After a class is allo-
cated, its allocation is removed from remaining link capacity.

It is easy to see that our allocation respects traffic prior-
ities. By allocating demands in priority order, SWAN also
ensures that higher priority traffic is likelier to use shorter
paths. This keeps the computation simple because MCF’s
time complexity increases manifold with the number of con-
straints. While, in general, it may reduce overall utilization,
in practice, SWAN achieves nearly optimal utilization (§6).

Max-min fairness can be achieved iteratively: maximize
the minimal flow rate allocation, freeze the minimal flows
and repeat with just the other flows [25]. However, solving
such a long sequence of LPs is rather costly in practice, so
we devised an approximate solution instead. SWAN provides
approximated max-min fairness for services in the same class
by invoking MCF in T steps, with the constraint that at step
k, flows are allocated rates in the range

[
αk−1U,αkU

]
, but

no more than their demand. See Fig. 6, function Approx.
Max-Min Fair. A flow’s allocation is frozen at step k when
it is allocated its full demand di at that step or it receives a
rate smaller than αkU due to capacity constraints. If ri and
bi are the max-min fair rate and the rate allocated to flow
i, we can prove that this is an α-approximation algorithm,
i.e., bi ∈

[
ri
α
, αri

]
(Theorem 1 in Appendix).

Many proposals exist to combine network-wide max-min
fairness with high throughput. A recent one offers a search
function that is shown to empirically reduce the number of



LPs that need to be solved [9]. Our contribution is showing
that one can trade-off the number of LP calls and the degree
of unfairness. The number of LPs we solve per priority is T ;
with max di=10Gbps, U=10Mbps and α=2, we get T=10.
We find that SWAN’s allocations are highly fair and take less
than a second combined for all priorities (§6). In contrast,
Danna et al. report running times of over a minute [9].

Finally, our approach can be easily extended to other pol-
icy goals such as virtually dedicating capacity to a flow over
certain paths and weighted max-min fairness.

Interactive service demands: SWAN estimates an inter-
active service’s demand based on its average usage in the last
five minutes. To account for prediction errors, we inflate the
demand based on the error in past estimates (mean plus two
standard deviations). This ensures that enough capacity is
set aside for interactive traffic. So that inflated estimates do
not let capacity go unused, when allocating rates to back-
ground traffic, SWAN adjusts available link capacities as if
there was no inflation. If resource contention does occur,
priority queueing at switches protects interactive traffic.

Post-processing: The solution produced by the LP may
not be feasible to implement; while it obeys link capacity
concerns, it disregards rule count limits on switches. Di-
rectly including these limits in the LP would turn the LP
into an Integer LP making it intractably complex. Hence,
SWAN post-processes the output of the LP to fit into the
number of rules available.

Finding the set of tunnels with a given size that carries
the most traffic is NP-complete [13]. SWAN uses the follow-
ing heuristic: first pick at least the smallest latency tunnel
for each DC pair, prefer tunnels that carry more traffic (as
per the LP’s solution) and repeat as long as more tunnels
can be added without violating rule count constraint mj at
switch j. If Mj is the number of tunnels that switch j can
store and λ ∈ [0, 50%] is the scratch space needed for rule
updates (§4.3.2), mj=(1−λ)Mj . In practice, we found that
{mj} is large enough to ensure at least two tunnels per DC
pair (§6.5). However, the original allocation of the LP is no
longer valid since only a subset of the tunnels are selected
due to rule limit constraints. We thus re-run the LP with
only the chosen tunnels as input. The output of this run has
both high utilization and is implementable in the network.

To further speed-up allocation computation to work with
large WANs, SWAN uses two strategies. First, it runs the
LP at the granularity of DCs instead of switches. DCs have
at least 2 WAN switches, so a DC-level LP has at least 4x
fewer variables and constraints (and the complexity of an
LP is at least quadratic in this number). To map DC-level
allocations to switches, we leverage the symmetry of inter-
DC WANs. Each WAN switch in a DC gets equal traffic
from inside the DC as border routers use ECMP for outgoing
traffic. Similarly, equal traffic arrives from neighboring DCs
because switches in a DC have similar fan-out patterns to
neighboring DCs. This symmetry allows traffic on each DC-
level link (computed by the LP) to be spread equally among
the switch-level links between two DCs. However, symmetry
may be lost during failures; we describe how SWAN handles
failures in §4.4.

Second, during allocation computation, SWAN aggregates
the demands from all services in the same priority class be-
tween a pair of DCs. This reduces the number of flows that
the LP has to allocate by a factor that equals the number
of services, which can run into 100s. Given the per DC-

Inputs:


q, sequence length

b0i,j = bi,j , initial configuration

bqi,j = b′i,j , final configuration

cl, capacity of link l
Ijl, indicates if tunnel j using link l

Outputs: {bai,j} ∀a ∈ {1, . . . q} if feasible

maximize cmargin // remaining capacity margin
subject to ∀i, a :

∑
j b
a
i,j = bi;

∀l, a : cl ≥
∑
i,j max(bai,j , b

a+1
i,j ) · Ij,l + cmargin;

∀(i, j, a) : bai,j ≥ 0; cmargin ≥ 0;

Figure 7: LP to find if a congestion-free update sequence
of length q exists.

pair allocation, we divide it among individual services in a
max-min fair manner.

4.3 Updating forwarding state
To keep the network highly utilized, its forwarding state

must be updated as traffic demand and network topology
change. Our goal is to enable forwarding state updates that
are not only congestion-free but also quick; the more agile
the updates the better one can utilize the network. One
can meet these goals trivially, by simply pausing all data
movement on the network during a configuration change.
Hence, an added goal is that the network continue to carry
significant traffic during updates.3

Forwarding state updates are of two types: changing the
distribution of traffic across available tunnels and changing
the set of tunnels available in the network. We describe
below how we make each type of change.

4.3.1 Updating traffic distribution across tunnels
Given two congestion-free configurations with different

traffic distributions, we want to update the network from the
first configuration to the second in a congestion-free man-
ner. More precisely, let the current network configuration
be C={bij : ∀(i, j)}, where bij is the traffic of flow i over
tunnel j. We want to update the network’s configuration
to C′={b′ij : ∀(i, j)}. This update can involve moving many
flows, and when an update is applied, the individual switches
may apply the changes in any order. Hence, many transient
configurations emerge, and in some, a link’s load may be
much higher than its capacity. We want to find a sequence
of configurations (C=C0, . . . , Ck=C′) such that no link is
overloaded in any configuration. Further, no link should be
overloaded when moving from Ci to Ci+1 regardless of the
order in which individual switches apply their updates.

In arbitrary cases congestion-free update sequences do not
exist; when all links are full, any first move will congest at
least one link. However, given the scratch capacity that
we engineered on each link (sPri; §4.2), we show that there
exists a congestion-free sequence of updates of length no
more than d1/se−1 steps (Theorem 2 in Appendix). The
constructive proof of this theorem yields an update sequence
with exactly d1/se−1 steps. But shorter sequences may exist
and are desirable because they will lead to faster updates.

We use an LP-based algorithm to find the sequence with
the minimal number of steps. Figure 7 shows how to exam-
ine whether a feasible sequence of q steps exists. We vary

3Network updates can cause packet re-ordering. In this
work, we assume that switch-level (e.g., FLARE [17]) or
host-level mechanisms (e.g., reordering robust TCP [35]) are
in place to ensure that applications are not hurt.



q from 1 to d1/se−1 in increments of 1. The key part in
the LP is the constraint that limits the worst case load on a
link during an update to be below link capacity. This load
is
∑
i,j max(bai,j , b

a+1
i,j )Ij,l at step a; it happens when none

of the flows that will decrease their contribution have done
so, but all flows that will increase their contribution have
already done so. If q is feasible, the LP outputs Ca={bai,j},
for a=(1, . . . , q − 1), which represent the intermediate con-
figurations that form a congestion-free update sequence.

From congestion-free to bounded-congestion: We
showed above that leaving scratch capacity on each link fa-
cilitates congestion-free updates. If there exists a class of
traffic that is tolerant to moderate congestion (e.g., back-
ground traffic), then scratch capacity need not be left idle;
we can fully use link capacities with the caveat that transient
congestion will only be experienced by traffic in this class.
To realize this, when computing flow allocations (§4.2), we
use sPri = s > 0 for interactive and elastic traffic, but set
sPri = 0 for background traffic (which is allocated last).
Thus, link capacity can be fully used, but no more than
(1− s) fraction is used by non-background traffic. Just this,
however, is not enough: since links are no longer guaranteed
to have slack there may not be a congestion-free solution
within d 1

s
e − 1 steps. To remedy this, we replace the per-

link capacity constraint in Figure 7 with two constraints, one
to ensure that the worst-case traffic on a link from all classes
is no more than (1 + η) of link capacity (η ∈ [0, 50%]) and
another to ensure that the worst-case traffic due to the non-
background traffic is below link capacity. In this case, we
prove that i) there is a feasible solution within max(d1/se–
1, d1/ηe) steps (Theorem 3 in Appendix) such that ii) the
non-background traffic never encounters loss and iii) the
background traffic experiences no more than an η fraction
loss. Based on this result, we set η = s

1−s in SWAN, which

ensures the same d 1
s
e − 1 bound on steps as before.

4.3.2 Updating tunnels
To update the set of tunnels in the network from P

to P ′, SWAN first computes a sequence of tunnel-sets
(P=P0, . . . , Pk=P ′) that each fit within rule limits of
switches. Second, for each set, it computes how much traffic
from each service can be carried (§4.2). Third, it signals ser-
vices to send at a rate that is minimum across all tunnel-sets.
Fourth, after Th=10 seconds when services have changed
their sending rate, it starts executing tunnel changes as
follows. To go from set Pi to Pi+1: i) add tunnels that
are in Pi+1 but not in Pi—the computation of tunnel-sets
(described below) guarantees that this will not violate rule
count limits; ii) change traffic distribution, using bounded-
congestion updates, to what is supported by Pi+1, which
frees up the tunnels that are in Pi but not in Pi+1; iii)
delete these tunnels. Finally, SWAN signals to services to
start sending at the rate that corresponds to P ′.

We compute the interim tunnel-sets as follows. Let P addi

and P remi be the set of tunnels that remain be added and
removed, respectively, at step i. Initially, P add0 =P ′−P and
P rem0 =P−P ′. At each step i, we first pick a subset pai ⊆
P addi to add and a subset pri ⊆ P remi to remove. We then
update the tunnel sets as: Pi+i=(Pi∪pai )−pri , P addi+1 =P addi −
pai , and P remi+1 =P remi − pri . The process ends when P addi and
P remi are empty (at which point Pi will be P ′).

At each step, we also maintain the invariant that Pi+1,
which is the next set of tunnels that will be installed in the

network, leaves λMj rule space free at every switch j. We
achieve this by picking the maximal set pai such that the
tunnels in pa0 ∪ · · · ∪ pai fit within taddi rules and the mini-
mal set pri such that the tunnels that remain to be removed
(P remi −pri ) fit within tremi rules. The value of taddi increases
with i and that of tremi decreases with i; they are defined
more precisely in Theorem 4 in Appendix. Within the size
constraint, when selecting pai , SWAN prefers tunnels that
will carry more traffic in the final configuration (P ′) and
those that transit through fewer switches. When selecting
pri , it prefers tunnels that carry less traffic in Pi and those
that transit through more switches. This biases SWAN to-
wards finding interim tunnel-sets that carry more traffic and
use fewer rules.

We show that the algorithm above requires at most
d1/λe−1 steps and satisfies the rule count constraints (Theo-
rem 4 in Appendix). At interim steps, some services may get
an allocation that is lower than that in P or P ′. The problem
of finding interim tunnel-sets in which no service’s allocation
is lower than the initial and final set, given link capacity con-
straints, is NP-hard. (Even much simpler problems related
to rule-limits are NP-hard [13]). In practice, however, ser-
vices rarely experience short-term reductions (§6.6). Also,
since both P and P ′ contain a common core in which there
is at least one common tunnel between each DC-pair (per
our tunnel selection algorithm; §4.2), basic connectivity is
always maintained during transitions, which in practice suf-
fices to carry at least all of the interactive traffic.

4.4 Handling failures
Gracefully handling failures is an important part of a

global resource controller. We outline how SWAN handles
failures. Link and switch failures are detected and com-
municated to the controller by network agents, in response
to which the controller immediately computes new alloca-
tions. Some failures can break the symmetry in topology
that SWAN leverages for scalable computation of allocation.
When computing allocations over an asymmetric topology,
the controller expands the topology of impacted DCs and
computes allocations at the switch level directly.

Network agents, service brokers, and the controller have
backup instances that take over when the primary fails. For
simplicity, the backups do not maintain state but acquire
what is needed upon taking over. Network agents query the
switches for topology, traffic, and current rules. Service bro-
kers wait for Th (10 seconds), by which time all hosts would
have contacted them. The controller queries the network
agents for topology, traffic, and current rule set, and service
brokers for current demand. Further, hosts stop sending
traffic when they are unable to contact the (primary and
secondary) service broker. Service brokers retain their cur-
rent allocation when they cannot contact the controller. In
the period between the primary controller failing and the
backup taking over, the network continues to forward traffic
as last configured.

4.5 Prototype implementation
We have developed a SWAN prototype that implements

all the elements described above. The controller, service
brokers and hosts, and network agents communicate with
each other using RESTful APIs. We implemented network
agents using the Floodlight OpenFlow controller [11], which
allows SWAN to work with commodity OpenFlow switches.



Arista 

Cisco N3K 

Blade 

Server 

(a)

Datacenters 

Aggregate 
cable bundles 

Hong Kong 

New York 

Florida 

Barcelona 

Los 
Angeles 

(b)

WAN-facing switch Border router 

Data Center 

Server 

…
 

…
 

Data Center 

5 5 

(c)

Figure 8: Our testbed. (a) Partial view of the equip-
ment. (b) Emulated DC-level topology. (c) Closer look
at physical connectivity for a pair of DC.

We use the QoS features in Windows Server 2012 to mark
DSCP bits in outgoing packets and rate limit traffic using
token buckets. We configure priority queues per class in
switches. Based on our experiments (§6), we set s=10% and
λ=10% in our prototype.

5. TESTBED-BASED EVALUATION
We evaluate SWAN on a modest-sized testbed. We ex-

amine the efficiency and the value of congestion-controlled
updates using today’s OpenFlow switches and under TCP
dynamics. We will extend our evaluation to the scale of
today’s inter-DC WANs in §6.

5.1 Testbed and workload
Our testbed emulates an inter-DC WAN with 5 DCs

spread across three continents (Figure 8). Each DC has: i)
two WAN-facing switches; ii) 5 servers per DC, where each
server has a 1G Ethernet NIC and acts as 25 virtual hosts;
and iii) an internal router that splits traffic from the hosts
over the WAN switches. A logical link between DCs is two
physical links between their WAN switches. WAN switches
are a mix of Arista 7050Ts and IBM Blade G8264s, and
routers are a mix of Cisco N3Ks and Juniper MX960s. The
SWAN controller is in New York, and we emulate control
message delays based on geographic distances.

In our experiment, every DC pair has a demand in each
priority class. The demand of the Background class is infi-
nite, whereas Interactive and Elastic demands vary with a
period of 3-minutes as per the patterns shown in Figure 9.
Each DC pair has a different phase, i.e., their demands are
not synchronized. We picked these demands because they
have sudden changes in quantity and spatial characteristics
to stress SWAN. The actual traffic per {DC-pair, class} con-
sists of 100s of TCP flows. Our switches do not support
unequal splitting, so we insert appropriate rules into the
switches to split traffic as needed based on IP headers.

We set Ts and Tc, the service demand and network up-
date frequencies, to one minute, instead of five, to stress-test
SWAN’s dynamic behavior.

5.2 Experimental results
Efficiency: Figure 10 shows that SWAN closely approxi-
mates the throughput of an optimal method. For each 1-min
interval, this method computes service rates using a multi-
class, multi-commodity flow problem that is not constrained
by the set of available tunnels or rule count limits. It’s pre-

 0
 0.05

 0.1
 0.15

 0  1  2  3

D
e
m

a
n
d
 p

e
r

D
C

-p
a
ir

[n
o
rm

. 
to

lin
k 

ca
p

a
ci

ty
]

Time [minute]
(a) Interactive

 0
 0.1
 0.2
 0.3
 0.4
 0.5

 0  1  2  3
Time [minute]

(b) Elastic

Figure 9: Demand patterns for testbed experiments.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0  1  2  3  4  5  6

S
ta

ck
e
d
 g

o
o
d
p
u
t

[n
o
rm

. 
to

 m
a
x
]

Time [minutes]

Interactive
ElasticElastic

Background

Optimal goodput

Figure 10: SWAN achieves near-optimal throughput.

.5
.75

1

 0  10  20

Interactive

.5
.75

1

 0  10  20

Elastic

.5
.75

1

 0  10  20T
h
ro

u
g
h
p
u
t 

[n
o
rm

.
to

 m
a
x
im

u
m

]

Time [second]

Background

(a) SWAN

.5
.75

1

 0  10  20

Interactive

.5
.75

1

 0  10  20

Elastic

.5
.75

1

 0  10  20T
h
ro

u
g
h
p
u
t 

[n
o
rm

.
to

 m
a
x
im

u
m

]

Time [second]

Background

(b) One-shot

 0

 0.2

 0.4

 0.6

 0.8

 1

0% 20% 40%C
u
m

u
la

ti
v
e
 f

ra
ct

io
n

o
f 

D
C

-p
a
ir

 fl
o
w

s

Throughput loss

Elastic

Bkgd

(c) One-shot

Figure 11: Updates in SWAN do not cause congestion.

diction of interactive traffic is perfect, it has no overhead
due to network updates, and it can modify service rates in-
stantaneously.

Overall, we see that SWAN closely approximates the op-
timal method. The dips in traffic occur during updates be-
cause we ask services whose new allocations are lower to
reduce their rates, wait for Th=10 seconds, and then ask
services with higher allocations to increase their rate. The
impact of these dips is low in practice when there are more
flows and the update frequency is 5 minutes (§6.6).

Congestion-controlled updates: Figure 11a zooms in
on an example update. A new epoch starts at zero and the
throughput of each class is shown relative to its maximal
allocation before and after the update. We see that with
SWAN there is no adverse impact on the throughput in any
class when the forwarding plane update is executed at t=10s.

To contrast, Figure 11b shows what happens without
congestion-controlled updates. Here, as in SWAN, 10% of
scratch capacity is kept with respect to non-background traf-
fic, but all update commands are issued to switches in one
step. We see that Elastic and Background classes suffer
transient throughput degradation due to congestion induced
losses followed by TCP backoffs. Interactive traffic is pro-
tected due to priority queuing in this example but that does
not hold for updates that move a lot of interactive traffic
across paths. During updates, the throughput degradation
across all traffic in a class is 20%, but as Figure 11c shows,
it is as high as 40% for some of the flows.

Failure recovery: Figure 12 shows that SWAN can
quickly recover from failures. It plots a zoomed in view
of what happens to network throughput when we fail a ran-
domly selected link at 10 seconds and then another at 20
seconds. We see that throughput close to optimal is re-
stored in 1 second. The major sources of the delay include
failure detection and error message propagation.
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6. DATA-DRIVEN EVALUATION
To evaluate SWAN at scale, we conduct data-driven sim-

ulations with topologies and traffic from two production
inter-DC WANs of large cloud service providers (§6.1). We
show that SWAN can carry 60% more traffic than MPLS
TE (§6.2) and is fairer than MPLS TE (§6.3). We also show
that SWAN enables congestion-controlled updates (§6.4) us-
ing bounded switch state (§6.5).

6.1 Datasets and methodology
We consider two inter-DC WANs:

IDN: A large, well-connected inter-DC WAN with more
than 40 DCs. We have accurate topology, capacity, and
traffic information for this network. Each DC is connected to
2-16 other DCs, and inter-DC capacities range from tens of
Gbps to Tbps. Major DCs have more neighbors and higher
capacity connectivity. Each DC has two WAN routers for
fault tolerance, and each router connects to both routers
in the neighboring DC. We obtain flow-level traffic on this
network using sFlow logs collected by routers.

G-Scale: Google’s inter-DC WAN with 12 DCs and 19
inter-DC links [14]. We do not have traffic and capacity in-
formation for it. We simulate traffic on this network using
logs from another production inter-DC WAN (different from
IDN) with a similar number of DCs. In particular, we ran-
domly map nodes from this other network to G-Scale. This
mapping retains the burstiness and skew of inter-DC traffic,
but not any spatial relationships between the nodes. As in
IDN, we assume that each DC has two switches, and each
switch connects to both switches in adjacent DCs.

We estimate capacity based on the gravity model [29]. Re-
flecting common provisioning practices, we also round capac-
ity up to the nearest multiple of 80 Gbps. We obtained qual-
itatively similar results (omitted from the paper) with three
other capacity assignment methods: i) capacity is based on
5-minute peak usage across a week when the traffic is carried
over shortest paths using ECMP (we cannot use MPLS TE
as that requires capacity information); ii) capacity between
each pair of DCs is 320 Gbps; iii) capacity between a pair
of DCs is 320 or 160 Gbps with equal probability.

With the help of network operators, we classify traffic into
individual services and map each service to Interactive, Elas-
tic, or Background class. We assume that the networks were
provisioned such that what we measured was the real de-
mand of services which had not been modulated by capacity
limitations.

We conduct experiments using a flow-level simulator that
implements a complete version of SWAN. The demand of the
services is derived based on the traffic information from a
week-long network log. If the full demand of a service is not
allocated in an interval, it carries over to the next interval.

We place the SWAN controller at a central DC and simulate
control plane latency between the controller and entities in
other DCs (service brokers, network agents). This latency
is based on shortest paths, where the latency of each hop is
based on speed of light in fiber and great circle distance.

6.2 Network utilization
To evaluate how well SWAN utilizes the network, we com-

pare it to an optimal method that can offer 100% utiliza-
tion. This method computes how much traffic can be car-
ried in each 5-min interval by solving a multi-class, multi-
commodity flow problem. It is restricted only by link capac-
ities, not by rule count limits. The changes to service rates
are instantaneous, and rate limiting and interactive traffic
prediction is perfect.

We also compare SWAN to the current practice, MPLS
TE (§2). Our MPLS TE implementation has the advanced
features that IDN uses [4, 23]. Priorities for packets and tun-
nels protect higher-priority packets and ensure shorter paths
for higher-priority services. Per re-optimization, CSPF is
invoked periodically (5 minutes) to search for better path
assignments. Per auto-bandwidth, tunnel bandwidth is pe-
riodically (5 minutes) adjusted based on the current traffic
demand, estimated by the maximum of the average (across
5-minute intervals) demand in the past 15 minutes.

Figure 13 shows the traffic that different methods can
carry compared to the optimal. To quantify the traffic that
a method can carry, we scale service demands by the same
factor and use binary search to derive the maximum ad-
missible traffic. We define admissibility as carrying at least
99.9% of service demands. Using a threshold less than 100%
makes results robust to demand spikes.

We see that MPLS TE carries only around 60% of the op-
timal amount of traffic. SWAN, on the other hand, can carry
98% for both WANs. This difference means that SWAN car-
ries over 60% more traffic that MPLS TE, which is a signif-
icant gain in the value extracted from the inter-DC WAN.

To decouple gains of SWAN from its two main
components—coordination across services and global net-
work configuration—we also simulated a variant of SWAN

where the former is absent. Here, instead of getting demand
requests from services, we estimate it from their throughput
in a manner similar to MPLS TE. We also do not control
the rate at which services send. Figure 13 shows that this
variant of SWAN improves utilization by 10–12% over MPLS
TE, i.e., it carries 15–20% more traffic. Even this level of
increase in efficiency translates to savings of millions of dol-
lars in the cost of carrying wide-area traffic. By studying a
(hypothetical) version of MPLS that perfectly knows future
traffic demand (instead of estimating it based on history),
we find that most of SWAN’s gain over MPLS stems from
its ability to find better path assignments.

We draw two conclusions from this result. First, both
components of SWAN are needed to fully achieve its gains.
Second, even in networks where incoming traffic cannot be
controlled (e.g., ISP network), worthwhile utilization im-
provements can be obtained through the centralized resource
allocation offered by SWAN.

6.3 Fairness
SWAN improves not only efficiency but also fairness. To

study fairness, we scale demands such that background traf-
fic is 50% higher than what a mechanism admits; fairness is
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of interest only when traffic demands cannot be fully met.
Scaling relative to traffic admitted by a mechanism ensures
that oversubscription level is the same. If we used an identi-
cal demand for SWAN and MPLS TE, the oversubscription
for MPLS TE would be higher as it carries less traffic.

For an exemplary 5-minute window, Figure 14a shows the
throughput that individual flows get relative to their max-
min fair share. We focus on background traffic as the higher
priority for other traffic means that its demands are often
met. We compute max-min fair shares using a precise but
computationally-complex method (which is unsuitable for
online use) [25]. We see that SWAN well approximates max-
min fair sharing. In contrast, the greedy, local allocation of
MPLS TE is significantly unfair.

Figure 14b shows aggregated results. In SWAN, only 4%
of the flows deviate over 5% from their fair share. In MPLS
TE, 20% of the flows deviate by that much, and the worst-
case deviation is much higher. As Figure 14a shows, the
flows that deviate are not necessarily high- or low-demand,
but are spread across the board.

6.4 Congestion-controlled updates
We now study congestion-controlled updates in detail,

the tradeoff regarding the amount of scratch capacity and
their benefit. Higher levels of scratch capacity lead to
fewer stages, and thus faster transitions; but they lower the
amount of non-background traffic that the network can carry
and can waste capacity if background traffic demand is low.
Figure 15 shows this tradeoff in practice. The left graph
plots the maximum number of stages and loss in network
throughput as a function of scratch capacity. At the s=0%
extreme, throughput loss is zero but more stages—infinitely
many in the worst case—are needed to transition safely. At
the s=50% extreme, only one stage is needed, but the net-
work delivers 25−36% less traffic. The right graph shows the
PDF of the number of stages for three values of s. Based on
these results, we use s=10%, where the throughput loss is
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Figure 15: Number of stages and loss in network
throughput as a function of scratch capacity.
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Figure 16: Link oversubscription during updates.

negligible and updates need only 1-3 steps (which is much
lower than the theoretical worst case of 9).

To evaluate the benefit of congestion-controlled updates,
we compare with a method that applies updates in one shot.
This method is identical in every other way, including the
amount of scratch capacity left on links. Both methods send
updates in a step to the switches in parallel. Each switch ap-
plies its updates sequentially and takes 2 ms per update [8].

For each method, during each reconfiguration, we com-
pute the maximum over-subscription (i.e., load relative to
capacity), at each link. Short-lived oversubscription will be
absorbed by switch queues. Hence, we also compute the
maximal buffering required at each link for it to not drop
any packet, i.e., total excess bytes that arrive during over-
subscribed periods. If this number is higher than the size
of the physical queue, packets will be dropped. Per pri-
ority queuing, we compute oversubscription separately for
each traffic class; the computation for non-background traf-
fic ignores background traffic but that for background traffic
considers all traffic.

Figure 16 shows oversubscription ratios on the left. We
see heavy oversubscription with one-shot updates, especially
for background traffic. Links can be oversubscribed by up
to 60% of their capacity. The right graph plots extra bytes
on the links. Today’s top-of-line switches, which we use
in our testbed, have queue sizes of 9-16 MB. But we see
that oversubscription can bring 100s of MB of excess pack-
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Figure 17: SWAN needs fewer rules to fully exploit net-
work capacity (left). The number of stages needed for
rule changes is small (right).

ets and hence, most of these will be dropped. Note that we
did not model TCP backoffs which would reduce the load
on a link after packet loss starts happening, but regardless,
those flows would see significant slowdown. With SWAN,
the worst-case oversubscription is only 11% (= s

1−s ) as con-
figured for bounded-congestion updates, which presents a
significantly better experience for background traffic.

We also see that despite 10% slack, one-shot updates fail
to protect even the non-background traffic which is sensitive
to loss and delay. Oversubscription can be up to 20%, which
can bring over 50 MB of extra bytes during reconfigurations.
SWAN fully protects non-background traffic and hence that
curve is omitted.

Since routes are updated very frequently even a small like-
lihood of severe packet loss due to updates can lead to fre-
quent user-visible network incidents. For e.g., when updates
happen every minute, a 1

1000
likelihood of severe packet loss

due to route updates leads to an interruption, on average,
once every 7 minutes on the IDN network.

6.5 Rule management
We now study rule management in SWAN. A primary mea-

sure of interest here is the amount of network capacity that
can be used given a switch rule count limit. Figure 17 (left)
shows this measure for SWAN and an alternative that in-
stalls rules for the k-shortest paths between DC-pairs; k is
chosen such that the rule count limit is not violated for any
switch. We see that k-shortest path routing requires 20K
rules to fully use network capacity. As mentioned before,
this requirement is beyond what will be offered by next-
generation switches. The natural progression towards faster
link speeds and larger WANs means that future switches
may need even more rules. If switches support 1K rules,
k-shortest path routing is unable to use 10% of the network
capacity. In contrast, SWAN’s dynamic tunnels approach
enables it to fully use network capacity with an order of
magnitude fewer rules. This fits within the capabilities of
current-generation switches.

Figure 17 (right) shows the number of stages needed to
dynamically change tunnels. It assumes a limit of 750 Open-
Flow rules, which is what our testbed switches support.
With 10% slack only two stages are needed 95% of the time.
This nimbleness stems from 1) the efficiency of dynamic
tunnels—a small set of rules are needed per interval, and
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Figure 19: (a) SWAN carries close to optimal traffic even
during updates. (b) Frequent updates lead to higher
throughput.

2) temporal locality in demand matrices—this set changes
slowly across adjacent intervals.

6.6 Other microbenchmarks
We close our evaluation of SWAN by reporting on some

key microbenchmarks.

Update time: Figure 18 shows the time to update IDN
from the start of a new epoch. Our controller uses a PC with
a 2.8GHz CPU and runs unoptimized code. The left graph
shows a CDF across all updates. The right graph depicts a
timeline of the average time spent in various parts. Most up-
dates finish in 22s; most of this time goes into waiting for ser-
vice rate limits to take effect, 10s each to wait for services to
reduce their rate (t1 to t3) and then for those whose rate in-
creases (t4 to t5). SWAN computes the congestion-controlled
plan in parallel with the first of these. The network’s data
plane is in flux for only 600 ms on average (t3 to t4). This
includes communication delay from controller to switches
and the time to update rules at switches, multiplied by the
number of stages required to bound congestion. If SWAN

were used in a network without explicit resource signaling,
the average update time would only be this 600 ms.

Traffic carried during updates: During updates, SWAN

ensures that the network continues to maintain high utiliza-
tion. That the overall network utilization of SWAN comes
close to optimal (§6.2) is an evidence of this behavior. More
directly, Figure 19a shows the %-age of traffic that SWAN

carries during updates compared to an optimal method with
instantaneous updates. The median value is 96%.

Update frequency: Figure 19b shows that frequent up-
dates to the network’s data plane lead to higher efficiency.
It plots the drop in throughput as the update duration is
increased. The service demands still change every 5 minutes
but the network data plane updates at the slower rate (x-
axis) and the controller allocates as much traffic as the cur-
rent data plane can carry. We see that an update frequency
of 10 (100) minutes reduces throughput by 5% (30%).

Prediction error for interactive traffic: SWAN pre-
dicts the amount of interactive traffic in the next epoch.
Figure 20 shows the error in this prediction. It plots pre-
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prediction for interactive traffic.

dicted versus actual traffic that traverses a link relative to
its capacity. We see that the error is low, because interactive
traffic is stable at these timescales and tends to be a small
fraction of link capacity.

7. DISCUSSION
This section discusses several issues that, for conciseness,

were not mentioned in the main body of the paper.

Non-conforming traffic: Sometimes services may (e.g.,
due to bugs) send more than what is allocated. SWAN can
detect these situations using traffic logs that are collected
from switches every 5 minutes. It can then notify the owners
of the service and protect other traffic by re-marking the
DSCP bits of non-confirming traffic to a class that is even
lower than background traffic, so that it’s carried only if
there is any spare capacity.

Truthful declaration: Services may declare their lower-
priority traffic as higher priority or ask for more bandwidth
than they can consume. SWAN discourages this behavior
through appropriate pricing: services pay more for higher
priority and pay for all allocated resources. (Even within
a single organization, services pay for the infrastructure re-
sources they consume.)

Richer service-network interface: Our current design
has a simple interface between the services and network,
based on current bandwidth demand. In future work, we
will consider a richer interface such as letting services reserve
resources ahead of time and letting them express their needs
in terms of total bytes and a deadline by which they must
be transmitted. Better knowledge of such needs can further
boost efficiency, for instance, by enabling store-and-forward
transfers through intermediate DCs [20]. The key challenge
here is the design of scalable and fair allocation mechanisms
that composes the diversity of service needs.

8. RELATED WORK
SWAN builds upon several themes in prior work.

Intra-DC traffic management: Many recent works
manage intra-DC traffic to better balance load [1, 7, 8] or
share among selfish parties [15, 27, 30]. SWAN is similar
to the former in using centralized TE and to the latter in
providing fairness. But the intra-DC case has constraints
and opportunities that do not translate to the WAN. For
example, EyeQ [15] assumes that the network has a full bi-
section bandwidth core and hence only paths to or from the
core can be congested; this need not hold for a WAN. Sea-
wall [30] uses TCP-like adaptation to converge to fair share,
but high RTTs on the WAN would mean slow convergence.
Faircloud [27] identifies strategy-proof sharing mechanisms,
i.e., resilient to the choices of individual actors. SWAN uses
explicit resource signaling to disallow such greedy actions.

Signaling also helps it avoid estimating demands which other
centralized TE schemes have to do [1, 8].

WAN TE & SDN: As in SWAN, B4 uses SDNs in the
context of inter-DC WANs [14]. Although this parallel work
shares a similar high-level architecture, it addresses different
challenges. While B4 develops custom switches and mech-
anisms to integrate existing routing protocols in an SDN
environment, SWAN develops mechanisms for congestion-
free data plane updates and for effectively using the limited
forwarding table capacity of commodity switches.

Optimizing WAN efficiency has rich literature including
tuning ECMP weights [12], adapting allocations across pre-
established tunnels [10, 16], storing and re-routing bulk data
at relay nodes [20], caching at application-layer [31] and
leveraging reconfigurable optical networks [21]. While such
bandwidth efficiency is one of the design goals, SWAN also
addresses performance and bandwidth requirements of dif-
ferent traffic classes. In fact, SWAN can help many of these
systems by providing available bandwidth information and
by offering routes through the WAN that may not be dis-
covered by application-layer overlays.

Guarantees during network update: Some recent work
provides guarantees during network updates either on con-
nectivity, or loop-free paths or that a packet will see a con-
sistent set of SDN rules [18, 22, 28, 33]. SWAN offers a
stronger guarantee that the network remains uncongested
during forwarding rule changes. Vanbever et. al. [33] sug-
gest finding an ordering of updates to individual switches
that is guaranteed to be congestion free; however, we see
that such ordering may not exist (§6.4) and is unlikely to
exist when the network operates at high utilization.

9. CONCLUSIONS
SWAN enables a highly efficient and flexible inter-DC

WAN by coordinating the sending rates of services and cen-
trally configuring the network data plane. Frequent network
updates are needed for high efficiency, and we showed how,
by leaving a small amount of scratch capacity on the links
and switch rule memory, these updates can be implemented
quickly and without congestion or disruption. Testbed ex-
periments and data-driven simulations show that SWAN can
carry 60% more traffic than the current practice.

Acknowledgements. We thank Rich Groves, Parantap
Lahiri, Dave Maltz, and Lihua Yuan for feedback on the
design of SWAN. We also thank Matthew Caesar, Brighten
Godfrey, Nikolaos Laoutaris, John Zahorjan, and the SIG-
COMM reviewers for feedback on earlier drafts of the paper.

10. REFERENCES

[1] M. Al-Fares, S. Radhakrishnan, B. Raghavan,
N. Huang, and A. Vahdat. Hedera: Dynamic flow
scheduling for data center networks. In NSDI, 2010.

[2] D. Applegate and M. Thorup. Load optimal MPLS
routing with N+M labels. In INFOCOM, 2003.

[3] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan,
and G. Swallow. RSVP-TE: Extensions to RSVP for
LSP tunnels. RFC 3209, 2001.

[4] D. Awduche, J. Malcolm, J. Agogbua, M. O’Dell, and
J. McManus. Requirements for traffic engineering over
MPLS. RFC 2702, 1999.



[5] H. Ballani, P. Costa, T. Karagiannis, and
A. Rowstron. Towards predictable datacenter
networks. In SIGCOMM, 2011.

[6] Y. Chen, S. Jain, V. K. Adhikari, Z.-L. Zhang, and
K. Xu. A first look at inter-data center traffic
characteristics via Yahoo! datasets. In INFOCOM,
2011.

[7] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and
I. Stoica. Managing data transfers in computer
clusters with Orchestra. In SIGCOMM, 2011.

[8] A. R. Curtis, J. C. Mogul, J. Tourrilhes,
P. Yalagandula, P. Sharma, and S. Banerjee.
DevoFlow: Scaling flow management for
high-performance networks. In SIGCOMM, 2011.

[9] E. Danna, S. Mandal, and A. Singh. A practical
algorithm for balancing the max-min fairness and
throughput objectives in traffic engineering. In
INFOCOM, 2012.

[10] A. Elwalid, C. Jin, S. Low, and I. Widjaja. MATE:
MPLS adaptive traffic engineering. In INFOCOM,
2001.

[11] Project Floodlight.
http://www.projectfloodlight.org/.

[12] B. Fortz, J. Rexford, and M. Thorup. Traffic
engineering with traditional IP routing protocols.
IEEE Comm. Mag., 2002.

[13] T. Hartman, A. Hassidim, H. Kaplan, D. Raz, and
M. Segalov. How to split a flow? In INFOCOM, 2012.

[14] S. Jain et al. B4: Experience with a globally-deployed
software defined WAN. In SIGCOMM, 2013.

[15] V. Jeyakumar, M. Alizadeh, D. Mazières,
B. Prabhakar, and C. Kim. EyeQ: Practical network
performance isolation for the multi-tenant cloud. In
HotCloud, 2012.

[16] S. Kandula, D. Katabi, B. Davie, and A. Charny.
Walking the tightrope: Responsive yet stable traffic
engineering. In SIGCOMM, 2005.

[17] S. Kandula, D. Katabi, S. Sinha, and A. Berger.
Dynamic load balancing without packet reordering.
SIGCOMM CCR, 2007.

[18] N. Kushman, S. Kandula, D. Katabi, and B. M.
Maggs. R-BGP: Staying connected in a connected
world. In NSDI, 2007.

[19] C. Labovitz, S. Iekel-Johnson, D. McPherson,
J. Oberheide, and F. Jahanian. Internet inter-domain
traffic. SIGCOMM Comput. Commun. Rev., 2010.

[20] N. Laoutaris, M. Sirivianos, X. Yang, and
P. Rodriguez. Inter-datacenter bulk transfers with
NetStitcher. In SIGCOMM, 2011.

[21] A. Mahimkar, A. Chiu, R. Doverspike, M. D. Feuer,
P. Magill, E. Mavrogiorgis, J. Pastor, S. L. Woodward,
and J. Yates. Bandwidth on demand for inter-data
center communication. In HotNets, 2011.

[22] R. McGeer. A safe, efficient update protocol for
OpenFlow networks. In HotSDN, 2012.

[23] M. Meyer and J. Vasseur. MPLS traffic engineering
soft preemption. RFC 5712, 2010.

[24] V. S. Mirrokni, M. Thottan, H. Uzunalioglu, and
S. Paul. A simple polynomial time framework for
reduced-path decomposition in multi-path routing. In
INFOCOM, 2004.

[25] D. Nace, N.-L. Doan, E. Gourdin, and B. Liau.
Computing optimal max-min fair resource allocation
for elastic flows. IEEE/ACM Trans. Netw., 2006.

[26] A. Pathak, M. Zhang, Y. C. Hu, R. Mahajan, and
D. Maltz. Latency inflation with MPLS-based traffic
engineering. In IMC, 2011.

[27] L. Popa, G. Kumar, M. Chowdhury,
A. Krishnamurthy, S. Ratnasamy, and I. Stoica.
FairCloud: Sharing the network in cloud computing.
In SIGCOMM, 2012.

[28] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker. Abstractions for network update. In
SIGCOMM, 2012.

[29] M. Roughan, A. Greenberg, C. Kalmanek,
M. Rumsewicz, J. Yates, and Y. Zhang. Experience in
measuring backbone traffic variability: Models,
metrics, measurements and meaning. In Internet
Measurement Workshop, 2002.

[30] A. Shieh, S. Kandula, A. Greenberg, C. Kim, and
B. Saha. Sharing the data center network. In NSDI,
2011.

[31] S. Traverso, K. Huguenin, I. Trestian, V. Erramilli,
N. Laoutaris, and K. Papagiannaki. Tailgate: handling
long-tail content with a little help from friends. In
WWW, 2012.

[32] Broadcom Trident II series.
http://www.broadcom.com/docs/features/

StrataXGS_Trident_II_presentation.pdf, 2012.

[33] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and
O. Bonaventure. Seamless network-wide IGP
migrations. In SIGCOMM, 2011.

[34] C. Wilson, H. Ballani, T. Karagiannis, and
A. Rowstron. Better never than late: Meeting
deadlines in datacenter networks. In SIGCOMM, 2011.

[35] M. Zhang, B. Karp, S. Floyd, and L. Peterson.
RR-TCP: A reordering-robust TCP with DSACK. In
ICNP, 2003.

APPENDIX
Theorem 1. Let ri be the max-min fair rate of flow i,and bi
be the rate allocated to flow i by SWAN’s Approx Max-Min
Fairness algorithm (Figure 6), also let U < min ri. Then
bi ∈

[
ri
α
, αri

]
.

Proof Sketch: Observe that the linear program (MCF) per
se maximizes overall throughput

∑
bi with a bias towards

carrying more of the traffic on paths that have less weight
(e.g., shorter paths); ε is a small constant. However, Ap-
prox Max-Min Fairness invokes MCF in T steps with the
constraint that at step k, flows are allocated rates in the
range

[
αk−1U,αkU

]
but no more than their demand. A

flow’s allocation is frozen at step k when it is allocated its
full demand di at that step or it receives a rate smaller than
αkU due to capacity constraints.

The algorithm’s allocation proceeds in steps. Our proof
proceeds in epochs that consist of one or more steps. One of
three things can happen at each step – first, no link is newly
saturated at that step; second, some links are saturated but
every link has at least one flow using it that is not capacity
saturated, i.e, the flow has other links and paths that it can
send more traffic on; third, some links are saturated and
all flows on those links are capacity saturated. Note that,

http://www.projectfloodlight.org/
http://www.broadcom.com/docs/features/StrataXGS_Trident_II_presentation.pdf
http://www.broadcom.com/docs/features/StrataXGS_Trident_II_presentation.pdf


by definition, at steps of the first type if a flow is frozen it
has to be because its demand is saturated bi = di. Because
otherwise, the throughput maximization objective will cause
that flow to get the maximum possible rate at those steps.
The same holds at steps of the second type, because capacity
can be freed up on a saturated link by moving some of the
traffic belonging to its unsaturated flows off that link. Only
at steps of the third type could there be flows frozen because
they are limited by capacity. We say that the ongoing epoch
ends and a new one begins after each step of the third type.

We will prove that the maximal unfairness for flows that
are frozen in each epoch is bounded. Note, that at the end
of an epoch, every flow using one of the newly saturated
links in this epoch will also be frozen by definition. Hence,
these flows and links can be removed from the topology since
nothing changes for either at subsequent steps.

To prove this, first note that every flow that is frozen
because its demand has been met or it is capacity saturated
has rate equaling its max-min fair rate; since other flows
that remain unfrozen at the time this flow freezes receive
at least this much rate. Second, we divide flows that are
frozen due to capacity limits into groups such that two flows
will be in the same group if they send non-zero traffic on
at least one common link. Within a group, the rate could
be allocated unfairly. However, the total rate allocated to
these flows remains the same; allocating less reduces overall
throughput and allocating more is not possible since the
group is capacity constrained. Further since a group of flows
simultaneously freezes at the same stage (of type three), it
means that the ratio of the lowest flow rate to the largest
flow rate in the group is α and the fair rate of the flow falls
somewhere in between. 2

Theorem 2. If all links in the network have a relative slack
s, in both the initial flow C and and the final flow C′, then
there exists a congestion-free sequence of updates of length
no more than d1/se − 1.

Proof. We prove this constructively. Let b0i,j = bi,j denote
the allocated bandwidth in the initial configuration, and let
bqi,j = b′i,j denote the allocated bandwidth in the final con-
figuration, after q steps. The superscript 0, . . . , q refer to
the update stages. In each stage, we increase the allocated
bandwidth by (bqi,j − b

0
i,j)/q. This algorithm ensures:

• After q = d1/se − 1 stages, we reach the allocated
bandwidth in the final configuration as b0i,j + q ·
(bqi,j − b

0
i,j)/q = bqi,j .

• After the kth stage, we need to show the network con-
figuration is still valid, i.e.,

∑
j b
k
i,j = bi, the total

bandwidth of flow i. Because each bki,j is a linear

combination of b0i,j and bqi,j , we have min(b0i,j , b
q
i,j) ≤

bsi,j ≤ max(b0i,j , b
q
i,j). By adding up all possible

tunnels, we have min(
∑
j b

0
i,j ,

∑
j b
q
i,j) ≤

∑
j b
k
i,j ≤

max(
∑
j b

0
i,j ,
∑
j b
q
i,j). Because the original and target

configurations are valid, we must have bi =
∑
j b

0
i,j =∑

j b
q
i,j . Therefore,

∑
j b
k
i,j = bi. Likewise, the flow is

valid at every node in every step.

• After the kth stage, every link has slack s. Let wkl
denote the link l’s load after kth stage, we have wkl =∑
i,j b

k
i,j · Ij,l. Because the network has a slack s in

both original and target configurations, we have w0
l ≤

(1 − s)cl and wql ≤ (1 − s)cl. Because wkl is a linear

combination of w0
l and wql , we have wkl ≤ (1− s)cl.

• During each stage, we need to show any transient con-
figuration will not overload any link. Let ∆k

i,j denote

the increase of flow i’s rate at tunnel j during the kth

stage, we have ∆k
i,j = bk+1

i,j − b
k
i,j . Consider the worst

update sequence for link l where all the tunnels with in-
creased rate (∆k

i,j > 0) are already updated, while the
tunnels with decreased rate are not updated. In the
beginning of the stage, link l has a residual capacity
sCl. Now all the paths with increase rate are updated,
the increase of load is

∑
i,j;∆k

i,j>0 Ij,l · (b
q
i,j − b

0
i,j)/q ≤∑

i,j Ij,l · b
q
i,j/q ≤ s ·

∑
i,j Ij,l · b

q
i,j/(1− s) ≤ sCl.

Theorem 3. If non-background traffic has slack s in both C
and C′, then there exists an update sequence such that (i)
non-background traffic does not have congestive loss, (ii)
the maximal congestion for background traffic at any link
is bounded by ηCl, and (iii) the maximum length of the
update sequence is max(d1/se − 1, d1/ηe).

Proof. We reuse the same algorithm as given in the proof
for Theorem 2 but the maximum length of the update se-
quence is set to q = max(d1/se − 1, d1/ηe) here. Because
the non-background traffic goes at higher priority on the
data plane, and given q ≥ d1/se − 1, the algorithm ensures
that non-background traffic does not have congestive loss by
Theorem 2. Thus, we only need to show background traffic
can be dropped no more than ηCl at any link l. Let ∆k

i,j

denote the increase of flow i’s rate at tunnel j during the kth

stage, we have ∆k
i,j = bk+1

i,j − b
k
i,j . Consider the worst up-

date sequence for link l where all the tunnels with increased
rate (∆k

i,j > 0) are already updated, while the tunnels with
decreased rate are not updated. The maximal congestion is
at most the total increase of load G:

G ≤
∑

i,j;∆k
i,j>0

Ij,l · (bqi,j − b
0
i,j)/q

≤
∑
i,j

Ij,l · bqi,j/q

≤ η ·
∑
i,j

Ij,l · bqi,j

≤ ηCl.

Theorem 4. If any switch j has a memory slack λ ·Mj in
P and P ′, then the rule change algorithm requires at most
z = d1/λe − 1 steps and satisfies the memory constraint.

Proof. Recall that at ith step SWAN picks tunnels to add
such that the total added tunnels in the first i steps require
at most taddi rules. Also, SWAN picks tunnels to remove such
that the tunnels that remain to be removed require at most
tremi rules after the removal. Let rj , r

′
j and r∗j be the number

of rules used by P − P ′, P ′ − P and P ∩ P ′, respectively.
We define the per-step rule addition limit, denote by sj , to
be Mj − max(rj , r

′
j) + r∗j . Then we set taddi = i · sj and

tremi = max(0,Mj − r∗j − (1 + i)sj).
We first show the algorithm will terminate after z =
d1/λe − 1 steps. This holds if taddz = z · sj ≥ r′j + r∗j be-
cause we will have enough capacity to select entire P ′ at any



switch j. Also, because P and P ′ provide a slack of λMj ,
we have rj ≤ (1 − λ)Mj − r∗j and r′j ≤ (1 − λ)Mj − r∗j .
Therefore,

z · sj = (d1/λe − 1) · (Mj −max(rj , r
′
j)− r∗j )

≥ (1/λ− 1) · (λMj)

= (1− λ)Mj

≥ r′j + r∗j

Next, we show the algorithm satisfies the memory con-
straint at any switch. At ith step, the highest memory load
happens when new tunnels have already added to switches
but old tunnels have not deleted. The total added tunnels
in the first i steps contribute at most taddi = i · sj rules,
and the tunnels that remain to be removed require at most
tremi−1 = max(0,Mj − r∗j − i · sj) rules. Also, each switch
stores a static set of tunnels P ∩ P ′ that requires at most
r∗j rules. Adding these up, the maximal memory load is at
most (i · sj) + max(0,Mj − r∗j − i · sj) + (r∗j ) ≤Mj .
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