
NOX: Towards an Operating System for Networks

Natasha Gude Teemu Koponen Justin Pettit Ben Pfaff Martín Casado
Nick McKeown Scott Shenker

This article is an editorial note submitted to CCR. It has NOT been peer reviewed. Authors take full responsibility for this article’s technical content.

Comments can be posted through CCR Online.

Categories and Subject Descriptors:
C.2.6 [Computer Communication Networks]: Internetwork-
ing
C.2.1 [Computer Communication Networks]: Network Archi-
tecture and Design

General Terms: Design, Experimentation, Performance
Keywords: architecture, management, network, security

1 Introduction

As anyone who has operated a large network can attest,
enterprise networks are difficult to manage. That they have
remained so despite significant commercial and academic
efforts suggests the need for a different network manage-
ment paradigm. Here we turn to operating systems as an
instructive example in taming management complexity.

In the early days of computing, programs were written
in machine languages that had no common abstractions for
the underlying physical resources, making programs hard
to write, port, reason about, and debug. Modern operating
systems facilitate program development by providing con-
trolled access to high-level abstractions for resources (e.g.,
memory, storage, communication) and information (e.g., files,
directories). These abstractions enable programs to carry
out complicated tasks safely and efficiently on a wide variety
of computing hardware.

In contrast, networks are managed through low-level con-
figuration of individual components. Moreover, these configu-
rations often depend on the underlying network; for example,
blocking a user’s access with an ACL entry requires knowing
the user’s current IP address. More complicated tasks re-
quire more extensive network knowledge; forcing guest users’
port 80 traffic to traverse an HTTP proxy requires knowing
the current network topology and the location of each guest.
In this way, an enterprise network resembles a computer
without an operating system, with network-dependent com-
ponent configuration playing the role of hardware-dependent
machine-language programming.

What we clearly need is an “operating system” for net-
works, one that would provide a uniform and centralized
programmatic interface to the entire network.1 Analogous
to the read and write access to various resources provided
by computer operating systems, a network operating system
would provide the ability to observe and control a network.

1In the past, the term network operating system referred
to operating systems that incorporated networking (e.g.,
Novell NetWare), but this usage is now obsolete. We are
resurrecting the term to denote systems that provide an
execution environment for programmatic control over the
full network.

A network operating system would not manage the network
itself; it would merely provide a programmatic interface.
Applications implemented on top of the network operating
system would perform the actual management tasks.2 The
programmatic interface should be general enough to support
a broad spectrum of network management applications.

Such a network operating system represents two major
conceptual departures from the status quo. First, the network
operating system would present programs with a centralized
programming model3; programs are written as if the entire
network were present on a single machine (i.e., one would use
Dijkstra to compute shortest paths, not Bellman-Ford). This
requires (as in [8, 14, 3] and elsewhere) centralizing network
state. Second, programs would be written in terms of high-
level abstractions (e.g., user and host names), not low-level
configuration parameters (e.g., IP and MAC addresses). This
allows management directives to be enforced independent
of the underlying network topology, but it requires that the
network operating system carefully maintain the bindings
(i.e., mappings) between these abstractions and the low-level
configurations.

Thus, a network operating system allows management
applications to be written as centralized programs over high-
level names as opposed to the distributed algorithms over
low-level addresses we are forced to use today. While clearly a
desirable goal, achieving this transformation from distributed
algorithms to centralized programming presents significant
technical challenges, and the question we pose here is: Can
one build a network operating system at significant scale?
We argue for an affirmative answer to this question via proof-
by-example; herein we describe a network operating system
called NOX that achieves the goals outlined above.

Given the space limitations, we only give a cursory descrip-
tion of NOX, starting with an overview (Section 2), followed
by a sketch of NOX’s programmatic interface (Section 3) and
a discussion of a few NOX-based management applications
(Section 4). We discuss related work in Section 5, but be-
fore going further we want to emphasize NOX’s intellectual
indebtedness to the 4D project [8, 14, 3] and to the SANE
[7] and Ethane [6] designs. NOX is also similar in spirit, but
complementary in emphasis, to the Maestro system [4] which
was developed in parallel.

2In the rest of this paper, the term applications will refer
exclusively to management programs running on a network
operating system.
3By centralized we allude to a shared memory programming
model. However, as we discuss in Section 3, different memory
locations may have different access overheads.

NOX Controller

app1 app2 app3

Network
View

OF switch

OF switch

wireless OF
switch

PC Server

Figure 1: Components of a NOX-based network:
OpenFlow (OF) switches, a server running a NOX
controller process and a database containing the net-
work view.

2 NOX Overview

We now give an overview of NOX by discussing its constituent
components, observation and control granularity, switch ab-
straction, basic operation, scaling, status and public release.
Components Figure 1 shows the primary components of
a NOX-based network: a set of switches and one or more
network-attached servers. The NOX software (and the man-
agement applications that run on NOX) run on these servers.
The NOX software can be thought of as involving several
different controller processes (typically one on each network-
attached server) and a single network view (this is kept in
a database running on one of the servers).4 The network
view contains the results of NOX’s network observations;
applications use this state to make management decisions.
For NOX to control network traffic, it must be able to affect
the behavior of network switches; for this purpose we have
chosen to use switches that support the OpenFlow (OF)
switch abstraction [1, 12], which we describe later in this
section.
Granularity An early and important design issue was the
granularity at which NOX would provide observation and
control. Choosing the granularity involves trading off scala-
bility against flexibility, and both are crucial for managing
large enterprise networks with diverse requirements. For
observation, NOX’s network view includes the switch-level
topology; the locations of users, hosts, middleboxes, and
other network elements; and the services (e.g., HTTP or
NFS) being offered. The view includes all bindings between
names and addresses, but does not include the current state
of network traffic. This choice of observation granularity
provides adequate information for many network manage-
ment tasks and changes slowly enough that it can be scalably
maintained in large networks.

The question of control granularity was more vexing. A
centralized per-packet control interface would clearly be in-
feasible to implement across any sizable network. At the
other extreme, operating at the granularity of prefix-based
routing tables would not allow sufficient control, since all
4For resilience, this database can be replicated, but these
replicas must be kept consistent (using traditional replicated
database techniques).

packets between two hosts would have to follow the same
path. For NOX we chose an intermediate granularity: flows
(similar in spirit to [13]). That is, once control is exerted on
some packet, immediately following packets with the same
header are treated in the same way. With this flow-based
granularity, we were able to build a system that can scale to
large networks while still providing flexible control.
Switch Abstraction Management applications control net-
work traffic by passing instructions to switches. These switch
instructions should be independent of the particular switch
hardware, and should support the flow-level control granu-
larity described above. To meet these requirements, NOX
has adopted the OpenFlow switch abstraction (see [1, 12]
for details). In OpenFlow, switches are represented by flow
tables with entries of the form:5

�header : counters, actions�

For each packet matching the specified header, the counters
are updated and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest
priority is chosen. An entry’s header fields can contain
values or ANYs, providing a TCAM-like match to flows. The
basic set of OpenFlow actions are: forward as default (i.e.,
forward as if NOX were not present), forward out specified
interface, deny, forward to a controller process, and modify
various packet header fields (e.g., VLAN tags, source and
destination IP address and port). Additional actions may
later be added to the OpenFlow specification.
Operation When an incoming packet matches a flow entry
at a switch, the switch updates the appropriate counters and
applies the corresponding actions. If the packet does not
match a flow entry, it is forwarded to a controller process.6
These unmatching packets often are the first packet of a flow
(hereafter, flow-initiations); however, the controller processes
may choose to receive all packets from certain protocols (e.g.,
DNS) and thus will never insert a flow entry for them. NOX
applications use these flow-initiations and other forwarded
traffic to (i) construct the network view (observation) and
(ii) determine whether to forward traffic, and, if so, along
which route (control).

As an example of (i), we have built applications that use
DNS, DHCP, LLDP, and flow-initiations to construct the
network view, including both the network topology and the
set of name-address bindings. We have also built applications
that intercept authentication traffic to perform user and host
authentications (using for example 802.1x). As an example
of (ii), we have developed access-control and routing applica-
tions that determine if a flow should be allowed, compute an
appropriate L2 route, install flow entries in all the switches
along the path, and then return the packet to the originating
switch (which then forwards it along the designated path).
Scaling Our confidence in the scalability of NOX follows
from considering the spectrum of timescales and consistency
5It is important to distinguish between the levels of ab-
straction provided by OpenFlow and NOX. NOX provides
network-wide abstractions, much like operating systems pro-
vide system-wide abstractions. OpenFlow provides an ab-
straction for a particular network component, and is thus
more analogous to a device driver.
6Typically, only the first 200 bytes of the first packet (in-
cluding the header) are forwarded to the controller, but the
controller may adjust this, or request additional packets be
forwarded, if more information is deemed necessary.

requirements. In terms of timescales, NOX processing occurs
at three very different rates:

• Packet arrivals: this is on the order of millions of
arrivals per second for a 10Gbps link.

• Flow initiations: with NOX’s definition of flow (which
is typically more persistent than NetFlow’s definition),
the flow-initiation rate is typically one or more orders
of magnitude less than the packet arrival rate.

• Changes in the network view: in our deployment expe-
rience this is on the order of tens of events per second
for networks of thousands of hosts.

In terms of consistency, the only network state that is
global (i.e., must be used consistently across the controller
processes) is the network view; this consistency requirement
arises because applications use data from the network view
to make control decisions, and those decisions should be
the same no matter to which controller instance the flow
has been sent. In contrast, since neither packet state nor
flow state are part of the network view, they can be kept in
local storage (i.e., packet state in switches, and flow state in
controller instances).

Thus, for the categories of events that occur on rapid
timescales, NOX can use parallelism; packet arrivals are
handled by individual switches without global per-packet
coordination, and flow-initiations are handled by individual
controller instances without global per-flow coordination.
Flows can be sent to any controller instance, so the capacity of
the system can be increased by adding more servers running
controller processes.

The one global data structure, the network view, changes
slowly enough that it can be maintained centrally (or, for
resilience, it can be kept consistently on a small set of replicas)
for even very large networks.

To give some rough numbers, a single controller process
running on a generic PC can currently handle 100,000 flow
initiations per second, more than sufficient for the large
campus networks we’ve measured in previous work [6].
Implementation Status We have been developing NOX
for over a year and have been running it in our internal
network of roughly 30 hosts for over 6 months. It is our
only means of network connectivity. NOX runs in user-
space on the network servers. Applications are written in
either Python or C++ and are loaded dynamically. The
core infrastructure and speed-critical functions of NOX are
implemented in C++ (currently about 32,000 lines). The
network view is a set of indexed hashtables, with extensions
for distributed access with local caching to aid scaling across
multiple controller instances.
Public Release Our brief presentation of NOX is only the
first step in our “proof” that one can build a network operat-
ing system. NOX is freely available at http://www.noxrepo.org
(GPL license), and we invite the community to build addi-
tional applications on NOX. The community’s experience
will provide the definitive answer to the question of whether
NOX provides a useful abstraction for network management.

3 Programmatic Interface

NOX’s programmatic interface is conceptually quite simple,
revolving around events, a namespace, and the network view.

Events Enterprise networks are not static: flows arrive and
depart, users come and go, and links go up and down. To
cope with these change events, NOX applications use a set
of handlers that are registered to execute when a particular
event happens. Event handlers are executed in order of their
priority (which is specified during handler registration). A
handler’s return value indicates to NOX whether to stop
execution of this event, or to continue by passing the event
to the next registered handler.

Some events are generated directly by OpenFlow messages,
such as switch join, switch leave, packet received, and switch
statistics received. Other events are generated by NOX ap-
plications as a result of processing these low-level events
and/or other application-generated events. For example,
NOX includes applications that will authenticate a user by
redirecting raw HTTP traffic (a packet received event) to a
captive web portal. Once the user is authenticated, the NOX
application generates a user authenticated event which can
be used by other applications.

We have implemented applications that reconstruct the
switch and host level topology, discover network services,
authenticate users and hosts, enforce network policy, and
detect network scanning (to name a few). Each of thes
services is coupled with an associated event that can be
leveraged by other applications.

Network View and Namespace NOX includes a num-
ber of “base” applications that construct the network view
and maintain a high-level namespace that can be used by
other applications. These applications handle user and host
authentication, and infer host names by monitoring DNS.
The inclusion of high-level names and their bindings in the
network view allows any application to convert a high-level
name into low-level addresses (or vice versa), allowing ap-
plications to be written in a topology independent manner.
To perform such conversions, high-level declarations can be
“compiled” against the network view to produce low-level
lookup functions that are enforced per-packet. These func-
tions are recompiled on each change to the network view.
In Section4.2 we describe how this is used in practice.

Because the network view must be consistent and made
available to all NOX controller instances, writing to it incurs
some expense. Thus, NOX applications should only write to
it when a change is detected in the network, and not for every
received packet. This is similar to the access model provided
by NUMA memory architectures. Also like NUMA, the
worst result of a poorly written application is performance
degradation, not incorrect function.

Control Management applications exert network control
through OpenFlow. The OpenFlow switch abstraction al-
lows applications to insert entries, delete entries, or read
counters from entries in the flow table. Through its ability
to modify these flow table entries, a management application
has complete control of L2 routing, packet header manipu-
lation, and ACLs. With the definition of additional switch
actions, applications could also control common per-packet
processing primitives such as encryption and rate-limiting.

The OpenFlow abstraction is intended to be general, so it
can only require features common to most switches. There-
fore we do not expect that the actions standardized by the
OpenFlow Switch Consortium will include custom per-packet
processing (e.g., deep packet inspection). However, NOX ap-
plications can direct traffic through specialized middleboxes,

so NOX-managed networks can still take advantage of the
latest per-packet processing technology.

Higher-Level Services NOX includes a set of “system li-
braries” to provide efficient implementations of functions
common to many network applications. These include a
routing module, fast packet classification, standard network
services (such as DHCP and DNS), and a policy-based net-
work filtering module.

Interface and Runtime Limitations Our goal with NOX
is to build a practical platform for writing centralized net-
work applications that can scale to large networks. So far,
we have focused on scalability and functionality, and have
yet to address a number of practical considerations that
would improve the safety and isolation of NOX applications.
For example, we assume that there is coordination between
application writers and do not try to protect against ma-
licious or faulty applications – a bad application can drop
an event, overwrite random memory, or hang the system
with an infinite loop. We feel providing inter-application
coordination and isolation is a rich area for exploration in
which the Maestro project has already made progress [4].

4 Example Applications

We now describe a few examples of NOX applications. To
illustrate NOX’s programming model, we start with two
oversimplified examples. To give an idea of NOX’s power, we
then describe how we used NOX to re-implement Ethane [6],
an identity-based access-control system. To convey NOX’s
flexibility, we end with two ongoing projects aiming for novel
network functionality.

4.1 Two Simple Examples

User-based VLAN Tagging Figure 2 contains a simplis-
tic NOX application that sets up VLAN tagging rules on user
authentication based on a predefined user-to-VLAN map-
ping. NOX is responsible for detecting all flow-initiations,
attributing the flow to the correct user, host and ingress
access point, and dispatching the event to the application.
This would provide attribution in logging and diagnostics; it
could also, with minor modifications to the routing module,
support traffic isolation.

Simplistic Scan Detection The application in Figure 3
attempts to detect scanning hosts by counting the number
of unique L2 and L3 destinations a host tries to contact that
have not authenticated. NOX has access to traffic across
the network, and it can leverage the network view which
tracks all authenticated hosts on the network. Contrast this
simple implementation to that in [11], where scan detection
required a traffic choke-point and heuristics to guess whether
an IP address is active.

4.2 Ethane

We recently built a system called Ethane that provides
network-wide access-control using a centralized declaration
of policy over high-level principals (i.e., entities in the net-
work view namespace) [6]. Because we have implemented
Ethane both with and without NOX, Ethane is an instructive
example of how NOX simplifies management application de-
velopment: our stand-alone Ethane implementation required
over 45,000 lines of C++, while our implementation within
NOX required a few thousand lines of Python.

On user authentication, statically setup VLAN tagging
rules at the user’s first hop switch
def setup_user_vlan(dp, user, port, host):

vlanid = user_to_vlan_function(user)
For packets from the user, add a VLAN tag
attr_out[IN_PORT] = port
attr_out[DL_SRC] = nox.reverse_resolve(host).mac
action_out = [(nox.OUTPUT, (0, nox.FLOOD)),

(nox.ADD_VLAN, (vlanid))]
install_datapath_flow(dp, attr_out, action_out)
For packets to the user with the VLAN tag, remove it
attr_in[DL_DST] = nox.reverse_resolve(host).mac
attr_in[DL_VLAN] = vlanid
action_in = [(nox.OUTPUT, (0, nox.FLOOD)),

(nox.DEL_VLAN)]
install_datapath_flow(dp, attr_in, action_in)

nox.register_for_user_authentication(setup_user_vlan)

Figure 2: An example NOX application written
in Python that statically sets VLAN tagging rules
on user authentication. A complete application
would also add VLAN removal rules at all end-point
switches.

scans = defaultdict(dict)
def check_for_scans(dp, inport, packet):

dstid = nox.resolve_host_dest(packet)
if dstid == None:

scans[packet.l2.srcaddr][packet.l2.dstaddr] = 1
if packet.l3 != None:

scans[packet.l2.srcaddr][packet.l3.dstaddr] = 1
if len(scans[packet.l2.srcaddr].keys()) > THRESHOLD:

print nox.resolve_user_source_name(packet)
print nox.resolve_host_source_name(packet)

To be called on all packet-in events
nox.register_for_packet_in(check_for_scans)

Figure 3: A simplistic NOX application written in
Python that attempts to detect scanning hosts by
tracking the number of unique, unknown L2 and L3
destinations attempted by a single host.

Ethane has two requirements that make it difficult to
implement using traditional network management techniques:
(i) it requires knowledge of the principals on the network
(e.g., users, nodes7), and (ii) it requires control over routing
at the granularity of a flow’s 7-tuple (source user, source host,
first-hop switch, protocol, destination user, destination host,
last-hop switch).8 Both of these are natively supported by
NOX: the application has access to the source and destination
principals associated with each event, and the routing module
supports route computation with constraints.

Implementing the basic Ethane functionality within NOX
involves first checking each flow directly against the declared
policy and then passing the resulting contraints to NOX’s
routing module. The only subtle aspect of the implemen-
tation is how to efficiently check flows against the policy,
since a linear scan of the policy declaration file for each flow
does not scale as the complexity of the policy increases. To
improve performance in the average case, we dynamically
construct efficient lookup trees from the policy declarations.
7We use the term node to refer to hosts, switches, and other
network elements.
8This requirement arises from policies that impose routing
constraints on a particular class of flows, such as requiring
them to traverse specified middleboxes.

4.3 Other Applications

The following are two examples of areas where NOX is being
employed to explore new functionality.

Power Management There has been significant recent
interest in managing networks to save power [9, 2]. The
two techniques most commonly discussed are (i) reducing
the speed of underutilized links, or turning them off alto-
gether, and (ii) providing proxies to intercept network chatter
(only allowing necessary packets to reach hosts would make
wake-on-LAN more effective). NOX’s global view of the
network and the routes currently in use facilitates the former
technique, while NOX’s interposition on all flow-initiations
facilitates the latter. Thus, NOX is an ideal platform for im-
plementing these techniques, and there is ongoing work [10]
pursuing this opportunity.9

Home Networking Calvert et al., in [5], trace many of
the difficulties in managing home networks to the end-to-end
nature of the Internet architecture, and propose that a more
centralized network design be used in homes. NOX could
centralize the observation and control functions of the home
network, while preserving the decentralized nature of the
datapath (thereby avoiding potential bottlenecks). NOX
would also provide a natural platform on which one could
build management tools to handle the many higher-layer
configuration issues (directing machines to local printers,
etc.) that bedevil home networks. There are two ongoing
efforts exploring NOX’s use in the home.

5 Related Work and Open Issues

The idea of giving control mechanisms a global view of the
network was first developed in the context of the 4D project
(see [8, 14, 3]). Providing this view required a new network-
ing paradigm based on simple switches enslaved to a logically
centralized decision element that oversees the full network.
This centralized paradigm is more flexible, since new function-
ality can be programmed at the decision element rather than
requiring a new distributed algorithm, but raises the specter
of a single point of failure. However, adequate resilience
can be achieved by applying standard replication techniques
to the decision element. Note that these replication tech-
niques are completely decoupled from the network control
algorithms, so they do not impede application innovation.

The goal of 4D systems is to control forwarding (e.g., FIBs
in routers), and thus their network view only includes the
network infrastructure (e.g., links, switches/routers). The
SANE [7] and Ethane [6] projects provided a broader class
of functionality by including a namespace for users/nodes in
their network view and keeping track of the bindings between
these names and the low-level MAC and IP addresses. SANE
and Ethane also capture flow-initiation events, to exercise
control at a finer granularity (per-flow control rather than
FIB-based control).

NOX extends the SANE/Ethane work in two dimensions.
First, it attempts to scale this centralized paradigm to very
large systems. This scaling is made possible by the differ-
ing timescales discussed above. The second extension is
allowing general programmatic control of the network. The
SANE/Ethane systems were designed around a single appli-
cation: identity-based access control. NOX aims to provide
9We are indebted to Brandon Heller for pointing out NOX’s
potential role in power management.

a general programming interface that makes it easier to sup-
port current management tasks and possible to provide more
advanced management functionality. We have described a
few example applications in this paper, but only experience
will reveal how generally useful this interface is. By mak-
ing NOX freely available, we hope that the community will
provide valuable feedback on NOX’s utility.

A related project of particular note is Maestro [4] (devel-
oped in parallel to NOX), which is also billed as a “network
operating system”. In general, operating systems can be
seen as revolving around two basic purposes: (i) providing
applications with a higher level of abstraction so they need
not deal with low-level details, and (ii) controlling the inter-
actions between applications. NOX focuses on the first, while
Maestro focuses on the second, “orchestratin” the control
decisions made by various management applications. We
think these approaches could be combined, and we hope to
soon explore this possibility.

Given that industry has substantially more experience with
practical enterprise management and security than academia,
we would be remiss in not mentioning commercial solutions.
Many commercial enterprise security products, such as fire-
walls, intrusion detection and protection systems, network
mappers, and proxies, are network appliances in that a par-
ticular functionality is provided by an element (or several
elements) placed in the network. This appliance approach
is easy to deploy, but leads to a fragmented architecture in
which the different appliances, and their functionality, are
completely decoupled. Moreover, none of these appliances
provide the flexibility of a general programming environment
for network observation and control.

One area where these commercial products are far more ad-
vanced than NOX is their ability to deal with packet payloads.
Many commercial solutions use deep-packet-inspection, prox-
ies, and/or data-logging, while NOX generally only inspects
the first few hundred bytes in a flow. However, NOX-based
management applications can incorporate these payload pro-
cessing technologies by directing flows through the appro-
priate middleboxes. Thus, one shouldn’t view NOX as a
replacement for current network management techniques,
but instead as a framework that can coordinate and manage
these ever-advancing technologies.

6 References

[1] OpenFlow Switch Consortium.
http://www.openflowswitch.org/.

[2] M. Allman, K. Christensen, B. Nordman, and
V. Paxson. Enabling an Energy-Efficient Future
Internet Through Selectively Connected End Systems.
In HotNets-VI, 2007.

[3] M. Caesar, D. Caldwell, N. Feamster, J. Rexford,
A. Shaikh, and J. van der Merwe. Design and
implementation of a routing control platform. In NSDI
’05, 2005.

[4] Z. Cai, F. Dinu, J. Zheng, A. L. Cox, and T. S. E. Ng.
Maestro: A Clean-Slate System for Orchestrating
Network Control Components. under submission, 2008.

[5] K. L. Calvert, W. K. Edwards, and R. E. Grinter.
Moving Toward the Middle: The Case Against the
End-to-End Argument in Home Networking. In
HotNets-VI, 2007.

[6] M. Casado, M. J. Freedman, J. Pettit, J. Luo,

N. McKeown, and S. Shenker. Ethane: taking control
of the enterprise. In SIGCOMM ’07, 2007.

[7] M. Casado, T. Garfinkel, M. Freedman, A. Akella,
D. Boneh, N. McKeown, and S. Shenker. SANE: A
Protection Architecture for Enterprise Networks. In
Usenix Security Symposium, 2006.

[8] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A
Clean Slate 4D Approach to Network Control and
Management. In ACM SIGCOMM Computer
Communication Review, 2005.

[9] C. Gunaratne, K. Christensen, S. Suen, and
B. Nordman. Reducing the Energy Consumption of
Ethernet with an Adaptive Link Rate (ALR). IEEE
Transactions on Computers, forthcoming.

[10] B. Heller and N. McKeown. A comprehensive power
management architecture. Work in progress, 2008.

[11] J. Jung, V. Paxson, A. Berger, and H. Balakrishnan.
Fast portscan detection using sequential hypothesis
testing. In IEEE Symposium on Security and Privacy,
2004.

[12] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. SIGCOMM Comput. Commun. Rev.,
38(2):69–74, 2008.

[13] P. Newman, G. Minshall, and T. L. Lyon. IP switching
- ATM under IP. IEEE/ACM Trans. Netw.,
6(2):117–129, 1998.

[14] J. Rexford, A. Greenberg, G. Hjalmtysson, D. A. Maltz,
A. Myers, G. Xie, J. Zhan, and H. Zhang.
Network-Wide Decision Making: Toward A Wafer-Thin
Control Plane. In HotNets III, 2004.

