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ABSTRACT
Live virtual machine (VM) migration can move applications
from one location to another without a disruption in ser-
vice. However, applications often consist of multiple VMs
and rely on the state of the underlying network for basic
reachability, access control, and QoS functionality. Rather
than migrating an individual VM, we show how to migrate
an ensemble—the VMs, the network, and the management
system—to a different set of physical resources. Our LIME
(LIve Migration of Ensembles) design leverages recent ad-
vances in Software Defined Networking (SDN) for a clear
separation between the controller and the data-plane state in
the switches. Transparent to the application running on the
controller, LIME clones the data-plane state to a new set of
switches, and then incrementally migrates the traffic sources
(e.g., the VMs). During this transition, both networks de-
liver traffic and LIME maintains synchronized state. Ex-
periments with our initial prototype, built on the Floodlight
OpenFlow controller, suggest that network migration does
not have to be a disruptive, middle-of-the-night maintenance
event, but can become an integral network management mech-
anism completely transparent to applications.
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1. INTRODUCTION
Server virtualization decouples server software from

the underlying compute hardware, enabling dynamic
repositioning of virtual machines (VMs) to consolidate
servers, balance load, perform planned maintenance,
and optimize user performance. Once a research nov-
elty, live VM migration is fast becoming an invaluable
management tool in public and private clouds [5, 2, 15].
However, a VM rarely acts alone. VMs are often part
of multi-tier web applications, with significant interac-
tion between neighboring tiers. Placing these VMs near
each other improves performance and reduces network
overhead. Migrating a single VM in isolation could lead
to significant performance degradation and high band-
width costs to “backhaul” traffic to the other VMs. As
such, migrating an application may require joint migra-
tion of a group of related VMs [3, 6].

These applications are often tightly coupled with the
underlying network. Beyond providing basic reacha-
bility between the VMs, the network applies resource-
allocation policies like routing and packet scheduling,
and directs traffic through virtual appliances like load
balancers and firewalls. Though early cloud offerings
gave tenants a relatively simple view of the network,
customers increasingly demand more sophisticated func-
tionality. In fact, cloud providers could offer each “ten-
ant” a virtual network with the topology and configu-
ration customized to the application [14, 4]. However,
today’s VM migration techniques do not handle this
network state, limiting VM migration to a single subnet
or VLAN, or requiring manual intervention to configure
the network devices at the new location.

1.1 The Case for Ensemble Migration
With applications’ growing dependence on network

state, we believe the network should migrate along with
the VMs. Live migration of all (or part) of a network
ensemble would enable or simplify many management
tasks. We discuss some examples here.

Moving between cloud providers: Ensemble mi-
gration can allow applications to move between differ-
ent cloud providers. This can be used by customers to



change which provider is hosting their application. Or
it can be used by the cloud provider to transparently
offload a given tenant to a different cloud provider to
satisfy demand without turning away customers.

Reallocation of resources to reduce energy use:
Ensemble migration can allow a datacenter operator to
vacate a given cooling zone by moving everything in
that zone to a different location within the datacenter.
In doing so, the operator can shut down a given zone
temporarily to save on cooling costs.

Remapping virtual networks for improved ten-
ant performance: We envision that in the near fu-
ture, cloud providers will give tenants an abstraction
of a virtual topology of hosts and switches. With live
migration, the cloud provider can remap the tenant’s
virtual network to a mapping that provides better per-
formance as resources are freed up.

Inexpensively reducing side-channels: By period-
ically migrating entire virtual networks, a cloud provider
can limit the time a tenant shares server and network
resources with other (possibly adversarial) tenants, as a
sort of “moving target defense” against side-channel at-
tacks. This allows the cloud provider to get the financial
benefit of a shared and oversubscribed infrastructure as
opposed to a more robust solution which statically par-
tition all resources.

Planned maintenance: Migrating a single switch,
and its incident links, would enable planned mainte-
nance on network equipment without disrupting exist-
ing services.

Imminent failure avoidance : Rather than just let
a service die and then recover, with ensemble migra-
tion we can more gracefully transition from failing to
recovering. In the case of a given region failing (e.g., a
datacenter that lost power to one portion and is run-
ning on backup power), an operator can move subsets
of the ensemble away from failed regions. In the case of
nano datacenters which have been proposed as a ‘run
until complete failure’ mechanism, with ensemble mi-
gration, an operator can move a nano datacenter from
one container to another to improve reliability, perfor-
mance, and cost. Finally, migration is useful for disaster
preparation, such as evacuating a running data center
in advance of a hurricane.

Rapid deployment: With ensemble migration, one
can “pre-package” ensembles and quickly move them
from a staging area into production use with minimal
effort.

Troubleshooting: Production networks may not be
fully equipped to provide in-depth troubleshooting when
errors occur. With ensemble migration, an operator can
move an ensemble (or portion of an ensemble) to a test
environment to monitor the execution more closely.

1.2 LIME as a General Management Layer
Ensemble migration can serve as a powerful manage-

ment tool that cloud administrators can apply liberally,
but only if the technique is both general and efficient.

To be general, the solution must work correctly across
a wide variety of unmodified control-plane software and
end-host applications. By providing a general migra-
tion layer, the solution can separate out functionality
that are common across all control software applica-
tions. Rather than requiring each application to incor-
porate and customize special purpose functions to deal
with underlying changes in the physical infrastructure,
it is better to provide an abstraction of this functional-
ity for all to use. This is particularly useful in the case
of multi-tenant infrastructures, where the control-plane
software may be controlled by a different party than the
operator of the infrastructure.

To be efficient, ensemble migration cannot simply
“freeze” the network while installing state in new net-
work devices—the network is simply too important to
the running applications. While the earlier VROOM [13]
project showed how to perform live migration of a sin-
gle network element (virtual router running BGP or
OSPF), migrating multiple network elements running
arbitrary control-plane software, while minimizing VM
“backhaul” traffic during the transition, remains an un-
solved problem.

To address these challenges we propose LIME (LIve
Migration of Ensembles), a general and efficient solu-
tion for joint migration of VMs and the network. LIME
draws on the recent trend toward Software Defined Net-
working (SDN), where control-plane software runs on
a logically-centralized controller that installs packet-
handling rules in the switches. LIME runs on the con-
troller platform, and presents the (unmodified) control
application with a single, consistent view of the net-
work while seamlessly migrating switch and server state.
LIME incrementally copies parts of the ensemble, while
continuing to carry traffic. In fact, two copies of a
switch may forward traffic and generate events at the
same time.

2. ENSEMBLE MIGRATION IN AN SDN
LIME performs live migration of an ensemble of VMs

and switches in a Software Defined Network (SDN).
After a brief overview of SDN and the state in the
switches, we discuss the challenges of making ensem-
ble migration both general and efficient.

2.1 Software Defined Networking (SDN)
In a Software Defined Network (SDN), a logically-

centralized controller manages how the switches for-
ward packets. The controller exchanges control mes-
sages with the switches using a standard protocol, such
as OpenFlow [10], and offers a (possibly higher-level)
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Figure 1: SDN switch state.

API to controller applications. The switches provide a
simple packet-forwarding abstraction, such as a table
with a prioritized list of rules that match packets on
patterns and perform actions. For example, OpenFlow
switches match on the input port and packet header
fields (e.g., MAC addresses, IP addresses, TCP/UDP
ports, VLAN tags, etc.), including wildcards for “don’t
care” bits, and perform actions like dropping, forward-
ing, flooding, or directing a packet to the controller for
processing.

When migrating an SDN switch, we must think be-
yond the list of pattern-action rules. A rule may in-
clude traffic counters, as well as timers for deleting ex-
pired rules, as shown in Figure 1. Each switch has an
ordered, reliable channel with the controller. In addi-
tion to (un)installing rules, the control channel is useful
for querying traffic statistics, sending data packets, and
learning about topology changes. The control messages
experience delay, so a good API includes a way to no-
tify the controller when the switch has applied a set of
commands (e.g., the OpenFlow “barrier” message). In
addition to traditional packet queues, the switch may
also buffer packets awaiting further instruction from the
controller (e.g., to handle “send to the controller” ac-
tions).

2.2 Ensemble Migration Challenges
Inspired by live VM migration, ensemble migration

could proceed in three steps: (i) iteratively copy the
VM and switch state, (ii) freeze the old network for the
final state transfer, and (iii) start the new network. In
this solution, only one network handles data traffic and
interacts with the controller at a time. However, freez-
ing all of the VMs for a final copy of all of the VM and
switch state would lead to long outages to finish trans-
ferring all of that state. While many datacenter scale
services are designed to tolerate component failure, they
are not typically designed to withstand failure of entire
collections of servers. Instead, LIME should allow indi-

vidual VMs to start running in the new location, while
the rest of the state transfer continues.

Yet, VMs in the new location need a network to com-
municate. LIME could conceivably “freeze and copy” a
migrating switch by (i) copying the switch state from
one physical switch to another, (ii) freezing for the fi-
nal state transfer, and (iii) simultaneously starting the
switch in the new location and disabling the switch in
the old location. To ensure that data traffic flows dur-
ing the transition, LIME can install tunnels between
“neighboring” switches that temporarily reside in differ-
ent networks. However, temporarily freezing an entire
switch can lead to a period of complete packet loss. In
addition, when some switches have migrated and oth-
ers have not, a packet may traverse a tunnel between
the two networks at many hops in its journey. Even
if two VMs both reside in the new network, the path
between them may traverse switches still running in
the old network, requiring multiple traversals across the
tunnels. To minimize packet loss and backhaul traffic,
LIME should allow two physical switches to act a single
switch at the same time.

Running the old and new switches at the same time
avoids down time and ensures that VMs in the same
network communicate entirely within that network, and
traffic between VMs in different networks crosses the
boundary only once. However, during migration, LIME
must construct a consistent view of a single switch, even
though applications may have (unspecified) dependen-
cies on the ordering of events. This problem may seem
similar to the recent “consistent updates” work, which
ensures that a packet in flight experiences a single net-
work policy at each hop in its journey [11]. However, in
contrast, LIME must satisfy application-specific depen-
dencies between multiple packets that traverse different
instances of the same switch during a migration.

3. LIME ARCHITECTURE
LIME (LIve Migration of Ensembles) is a general and

efficient solution for joint migration of VMs and the
network. LIME builds upon virtualization technologies
and SDN to efficiently migrate subcollections of com-
ponents at a time.

As shown in Figure 2, LIME provides a general layer
that gives network operators the freedom to manage the
network while eliminating the need for controller appli-
cations to deal with these changes. Instead, it is the re-
sponsibility of LIME and the underlying virtualization
layer to maintain the abstraction provided to each of
the virtual networks. LIME enables network operators
(or automated processes) to initiate an ensemble migra-
tion through an API for specifying which elements to
collectively migrate, and where to migrate them. LIME
works closely with a network virtualization layer below
(such as FlowVisor [12] or FlowN [7]) to allocate re-
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Figure 2: LIME architecture with example. The
virtual network consists of two VMs and a vir-
tual switch which are presently mapped to phys-
ical devices within a larger infrastructure. To
migrate one VM and one virtual switch to dif-
ferent physical devices, LIME works with the
virtualization layer to extend the resources allo-
cated to the virtual network during the migra-
tion.

sources for the migration process. Importantly, LIME
masks the effects of migration from controller applica-
tions. These applications are presented with a network
abstraction that remains constant throughout the mi-
gration, allowing them to continue operating in a seam-
less fashion.

To migrate an ensemble from one location to another,
LIME performs a sequence of operations to network
state. In particular, LIME first clones one or more
switches, and then iteratively migrates VMs to new lo-
cations. This way, ingress traffic (from a VM) is pro-
cessed entirely within the network where that VM is lo-
cated and only gets tunneled to the other network when
the destination VM is in a different network – reducing
backhaul traffic. When the destination VM is also in
the new network, the traffic does not need to traverse a
longer path through the old switches. Once all VMs are
migrated, no traffic flows through the original switches,
so they can be deleted.

In performing this migration, LIME (in conjunction
with the virtualization layer) must maintain the logical
connections as seen by the control application (i.e., the
virtual links between virtual hosts and virtual switches).
To do this, LIME must perform a sequence of transla-
tions of packet-forwarding rules. In particular, LIME
alters the rule’s matching patterns and actions to main-
tain the logical connection as seen by the control ap-

plication — either altering the virtual port to be the
physical port (which can change during migration) or
by creating a tunnel when the neighbor is not directly
connected. LIME must also go beyond simple rule mod-
ification as switches can be cloned and therefore traffic
from two instances of a cloned switch to a VM must
be ‘merged’. The rule translation mechanism in LIME
takes care of this by duplicating rules when a rule matches
on an input port where traffic can now come from two
locations.

Finally, LIME consists of a collection of primitives
that ensure certain ordering conditions on operations
are met, allowing the preservation of semantics of packet
forwarding and control application behavior. We dis-
cuss this in the next section.

4. CONSISTENT VIEW OF A SWITCH
To perform live migration without compromising cor-

rectness, LIME must hide the effects of migration from
end hosts and controller applications, even when mul-
tiple instances of a switch carry traffic and generate
events. In this section we describe requirements toward
this goal and initial steps taken in LIME to respect (un-
specified) dependencies between packets, and preserve
the rich API to controller applications. As future work,
we will formalize these requirements with models and
provide proofs of correctness. To simplify the discus-
sion, we assume a switch undergoing migration consists
of two switch instances, though in practice multiple in-
stances may coexist.

4.1 Respecting Inter-Packet Dependencies
Data packets must be handled in a way that could have
happened in a migration-free setting.

In a best-effort network, packets may experience de-
lay, loss, or out-of-order delivery, even in the absence
of migration. As such, LIME does not need to de-
liver all the packets at exactly the same time as in any
particular run of a migration-free network. Yet, LIME
must respect (unspecified) dependencies between pack-
ets. LIME ensures that the new switch instance starts
with an up-to-date snapshot of the rules, but we must
also address the various ways rules can change during
the migration process. We ensure that only LIME can
modify the rules, and that LIME respects packet de-
pendencies when communicating with the switches to
update the rules and handle events:

Prevent the switches from changing the rules:
While a migration is in progress, the switch instances
should not change rules autonomously. For example,
switches should not apply soft timeouts that delete rules
after a period of inactivity, since one switch instance
might delete a rule when the other does not. LIME
can still offer controller applications an API with soft
timeouts, as discussed in Section 4.2.
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Respect packet dependencies while updating
rules: The controller cannot ensure that both switches
apply new commands at exactly the same time. Unfor-
tunately, some packets have (unspecified) application
dependencies. For example, one packet may trigger a
response from the receiver, and these two packets may
traverse different instances of the same switch. LIME
must prevent any inconsistent handling of these pack-
ets (e.g., if the first packet was handled by a newly-
installed rule, the second should not be handled by an
older rule). Hence, during an ongoing migration, LIME
updates rules in two phases. In the first phase, LIME
installs a rule with the same pattern, but with a “drop”
(or “send to controller”) action to discard (or serialize)
the packets. Once LIME knows that both switch in-
stances have installed the new rule (e.g., through the
use of a barrier), phase two installs the rule with the
action specified by the application. This ensures that
any dependent packet is dropped (or sent to the con-
troller) or processed appropriately by the updated rule.
Note that the packet loss (or extra controller traffic)
only affects traffic matching the pattern in the updated
rule, and only during phase 1.

Respect packet dependencies when receiving
events: Each switch instance sends control messages
(e.g., “packet in” events) to the controller over an or-
dered, reliable channel. LIME must merge the control
messages from the two switches, while respecting (un-
written) dependencies. Fortunately, most packets do
not have dependencies, and could easily be reordered in
a best-effort network; for these packet-in events, LIME
can safely merge control messages from the two switches
into a single stream. However, dependencies can arise
if a rule has multiple actions—both “send to the con-
troller” and “forward”. The forwarded packet could
reach the receiver, triggering a response packet that
might traverse a different instance of the same switch. A
packet-in event triggered by the response packet could
reach the controller before the first one—something that
would never happen with a single switch. To serialize
these events during migration, LIME replaces any such
rule with a single “send to the controller” action, and
handles the packet accordingly.

4.2 Preserving Application Semantics
Control applications should not require modification to
work correctly under ensemble migration.

Controller applications should be shielded from the
ensemble migration taking place beneath them. The
applications should continue to enjoy a rich API that
works correctly throughout the migration, with LIME
combining the results from multiple switches and emu-
lating any necessary API features:

Combining information from both switch in-
stances: To preserve the illusion of a single switch,

LIME must combine information from both switch in-
stances. If the application issues a “barrier” command
(to receive notification when a set of control commands
complete), LIME should wait to receive notification from
both switches before notifying the application. If a link
fails at one switch instance, LIME should report a link
failure to the application; similarly, if either switch in-
stance fails, LIME should report a switch failure. If the
application queries traffic counters, LIME should query
both switches and sum the results; furthermore, after
migration completes, LIME must maintain traffic statis-
tics from the old switch (or combined results from the
two switches) to answer future queries correctly. A key
requirement is that the data coming from the switches
can be combined correctly. Some statistics (e.g., 95th-
percentile traffic load on a link, something that is ex-
pensive to compute even on a single switch) cannot be
combined across links on two different switches. Fortu-
nately, the many important sources of information on
today’s switches are easily combined, and future switch
features can be designed to simplify aggregation of in-
formation from multiple switches.

Retaining a rich control API: Control applica-
tions benefit from having a rich API that can, and
arguably should, differ from the low-level interface to
the switches. As discussed above, LIME does not use
certain switch features (e.g., soft timeouts) during the
migration process, to ensure packet dependencies are
respected. This does not mean that controller applica-
tions cannot use these features. If the API to controller
applications supports soft timeouts, LIME can realize
this abstraction during the transition by (for example)
polling the traffic counters on the switches and deleting
the rule in both switches if no traffic matches the rule
in either switch for a period of time. Similarly, if the
API supports rules that simultaneously send a packet
to the controller and forward to an output port, LIME
can install a rule with a “send the controller” action,
and apply the appropriate policy to the packet at the
controller, without the application’s knowledge.

We envision that SDNs will evolve to offer controller
applications an API with higher-level programming ab-
stractions, deviating more and more from the low-level
API to the underlying switch hardware. Future SDN
platforms may completely shield the programmer from
nitty-gritty details like timeouts and rules. In our future
work, we plan to explore how LIME can capitalize on
this trend to simplify support for ensemble migration.

5. PROTOTYPE AND EVALUATION
We implemented a prototype of LIME on top of the

Floodlight controller [8]. LIME is implemented as a
layer residing between the Floodlight NOS and the con-
troller applications. As part of this implementation, we
expose an API to enable the network operator to is-
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sue migration commands. With this prototype we are
able to provide some initial insights into the value of
LIME. Overall, evaluation with our initial prototype
suggests that LIME is capable of performing migration
with substantially reduced outage time (measured by
packet loss), without imposing much overhead.

Figure 3: Topology used for experiments.

We evaluate the benefits of the switch cloning sup-
ported in LIME (as compared to freeze-and-copy) by
deploying a network (shown in Figure 3) within the
Mininet HiFi (High Fidelity) emulator [9]. In this ex-
periment, hosts h1 and h2 are communicating via switches
s1, s3, and s2. The controller application installs rules
on each of the switches to provide a path between the
hosts. To measure performance of migrating the net-
work in isolation, h1 continually pings h2 with 64-byte
packets while performing a migration of s3. Each exper-
iment is repeated 10 times, with results reported as an
average. As Table 1 shows, packet loss is 0% with LIME
while it is quite considerable with freeze-and-copy.

Table 1: Packet loss during migration.
Approaches Average Std dev Max Min

packet loss
LIME (clone) 0 0 0 0

freeze-and-copy 32 4.22 40 30

As LIME is an extra layer in software, there is going
to be extra processing overhead in the controller. To
evaluate this overhead, we used the cbench controller
benchmarking tool [1]. We run cbench in “throughput”
mode, emulating 10 switches, with 100 hosts attached
to each switch. Our (unoptimized) LIME prototype is
able to process 9046.16 packet-in events per second, as
compared to 9702.34 with Floodlight without LIME –
an overhead of only about 7%.

6. CONCLUSIONS AND FUTURE WORK
Live ensemble migration can be a powerful manage-

ment tool for network operators. Leveraging recent ad-
vances in SDN, with LIME, we show how to migrate
an entire ensemble in a way that both supports arbi-
trary controller application software and efficiently or-
chestrates the migration process. Our evaluation with
our initial prototype shows the promise that ensemble
migration can be an integral tool rather than a rate
maintenance event.

As future work, we plan to explore algorithms which
make use of the general framework for orchestrating

a migration. This includes determining the optimal
grouping of components, the best migration approach
to use for that group, the migration order across groups,
and optimizing migration based on appropriate network
measurements. In addition, we plan to integrate and
investigate technologies like redundancy elimination to
reduce the overhead of copying the state for multiple re-
lated VMs. Finally, we plan to extend LIME for other
management needs, such as cloning ensembles for the
purposes of failover or load balancing.
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