
FlowTags: Enforcing Network-Wide Policies in the
Presence of Dynamic Middlebox Actions

Seyed Kaveh Fayazbakhsh
Stony Brook University

Vyas Sekar
Stony Brook University

Minlan Yu
USC

Jeffrey C. Mogul
Google Inc.

ABSTRACT
Past studies show that middleboxes are a critical piece of network
infrastructure for providing security and performance guarantees.
Unfortunately, the dynamic and traffic-dependent modifications in-
duced by middleboxes make it difficult to reason about the cor-
rectness of network-wide policy enforcement (e.g., access control,
accounting, and performance diagnostics). Using practical appli-
cation scenarios, we argue that we need a flow tracking capability
to ensure consistent policy enforcement in the presence of such dy-
namic traffic modifications. To this end, we propose FlowTags, an
extended SDN architecture in which middleboxes add Tags to out-
going packets, to provide the necessary causal context (e.g., source
hosts or internal cache/miss state). These Tags are used on switches
and (other) middleboxes for systematic policy enforcement. We
discuss the early promise of minimally extending middleboxes to
provide this support. We also highlight open challenges in the de-
sign of southbound and northbound FlowTags APIs; new control-
layer applications for enforcing and verifying policies; and auto-
matically modifying legacy middleboxes to support FlowTags.

Categories and Subject Descriptors: C.2.3
[Computer-Communication Networks]: Network Operations

Keywords: Network policy enforcement, middlebox

1. INTRODUCTION
A key advantage of Software-Defined Networking (SDN) is the

ability to consistently enforce and verify network-wide policies for
network management tasks (e.g., [9, 10, 12]). These tasks include:
stateful policy routing (e.g., a packet traverses a given sequence of
middleboxes [8]), access control (e.g., rate limiting traffic), and di-
agnostics/forensics (e.g., performance debugging or detecting ma-
licious activity [16]), among several others.

Unfortunately, middleboxes make it challenging to enforce and
verify such policies. The root cause of this problem is that as pack-
ets traverse the network, their headers and contents may be dynam-
ically modified by middleboxes; e.g., proxies terminate sessions,
while NATs and load balancers rewrite headers. In an SDN context,
these modifications make it difficult (if not impossible) to ensure
that the desired set of policies are consistently applied throughout
the network. This is particularly challenging because middleboxes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotSDN’13, August 16, 2013, Hong Kong, China.
Copyright 2013 ACM 978-1-4503-2178-5/13/08 ...$15.00.

often rely on proprietary internal logic for effecting such dynamic
traffic transformations.

Consider a setting where web traffic is directed through a proxy
cache. Such a proxy may terminate user-facing connections, cache
objects, spawn new connections, and multiplex new requests onto
existing connections. As a result, it is challenging to view the state
of a specific user request as it traverses the network. For instance,
we can no longer rate limit a user’s outgoing bandwidth or limit
the access of specific users, as we cannot identify the user who
has initiated a given request. (We elaborate on such scenarios in
Section 2).

It is somewhat ironic that even though a key reason for deploying
middleboxes is that they provide new policy compliance capabili-
ties [19, 20], they hamper the ability to check that these policies
are being enforced correctly! In order to address this problem, one
could envision extreme solutions that eliminate middleboxes alto-
gether [20] or replace proprietary solutions by consolidating them
into “open” SDN-capable hardware (e.g, [19]). While these ap-
proaches may partially address our concerns, practical technologi-
cal and business concerns make them untenable, at least in the near
term. In this work, we take the stance that rather than eliminate
middleboxes or completely rearchitect them, we should attempt to
integrate them into the SDN fold in a minimally intrusive way.

To this end, we identify flow tracking as a key capability for
policy enforcement in the presence of dynamic traffic transforma-
tions.1 That is, we need to associate additional contextual infor-
mation with a traffic flow (e.g., which user initiated it or whether
the response was cached) as it traverses the network, even if packet
headers and contents are modified. Based on this insight, we make
a case for extending SDN with the FlowTags architecture. Flow-
Tags envisions minimal extensions to middleboxes (e.g., through
vendor software upgrades) to add the relevant contextual informa-
tion, in the form of Tags embedded inside packet headers. SDN
switches and other downstream middleboxes use the Tag informa-
tion as part of their routing and packet processing operations. In a
general context, the idea of flow tracking is not new and has par-
allels in the programming languages and security literature; e.g.,
taint tracking [15] and information flow tracking [14]. Our specific
contribution is in making a case for flow tracking in the context of
integrating SDN and middleboxes.

In this position paper, we highlight the capabilities required
to realize the FlowTags architecture and outline the key design
and implementation challenges that arise. We describe a new
“southbound” controller–middlebox interface that enables SDN
controllers to configure the flow tagging capability, and the support
needed from middleboxes to implement FlowTags-related func-
tions. As a proof-of-concept implementation, we demonstrate that
it is possible to extend the open source proxy Squid to support
FlowTags (Section 4). In addition to enabling networks to correctly

1We use “flow” in a general sense rather than the IP 5-tuple sense.

Policy Routing Example

1

S1 S2

AppFirewall NAT

Internet

H2

H1

Policy:
H1: NAT
H2: NAT AppFirewall

SrcIP AppFirewall ?
SrcIP Internet ? Ideal path for H1

Ideal path for H2

Figure 1: Policy routing: S2 cannot decide if the NAT-ed flow is
from H1 or H2.

implement new policies, FlowTags can also provide new capabili-
ties to verify that these policies are being implemented correctly.

While our work shows early promise, significant challenges re-
main unresolved (Section 5). Our modifications to Squid (though
minimal) involved significant manual inspection to implement the
FlowTags logic. A natural question is if we can help middlebox
vendors to automatically retrofit FlowTags capabilities into legacy
systems. Similarly, we manually specify Tag-to-action mapping
rules necessary for a given application policy. In the spirit of recent
work (e.g., [13]), we also envision the development of new control
applications and “rule compilers” that can automatically configure
rules for generating and using Tags. Finally, there is the open ques-
tion of whether the capabilities we propose are sufficient to cover a
broad range of policy tasks.

In the rest of the paper, we begin with motivating scenarios. We
discuss related work inline throughout the paper.

2. MOTIVATION
We use illustrative management tasks to highlight how dynamic

traffic modifications by middleboxes impact the ability to imple-
ment and verify the intended policies. To this end, we use toy (and
admittedly contrived) examples.2 We also highlight the shortcom-
ings of some seemingly natural strawman solutions.

2.1 Traffic Attribution
Prior studies show that enterprises use different policy chains of

middleboxes for different traffic classes [8, 19]. In Figure 1, we
have two internal hosts (H1 and H2), two switches (S1 and S2), a
NAT, and an application-layer firewall. Suppose our policy chains
are H1 : NAT and H2 : NAT → AppFirewall . Here, the
NAT maps the internal source IPs (H1, H2) to public IPs. Ideally,
we want flows from H2 to be forwarded to the AppFirewall while
flows from H1 simply pass through at S2; however, because the
controller is unaware of the private-public IP mappings at the NAT,
it cannot set up the appropriate forwarding rules at S2.

Similarly, in the network of Figure 2, the administrator wants to
use an IDS to identify internal hosts trying to establish many out-
going connections via scan detection [16]. In the example, H1 initi-
ates two flows to destination D1 (Flows 1 and 2) while H2 initiates
one flow to D2 and another one to D3 (Flows 3 and 4, respectively).
Suppose the NAT maps Flow1 and Flow3 to the public source IP P1
and the other two to P2. Because the IDS can only see the NAT-ed
flows and cannot see the original Hi, it cannot reliably detect if any
Hi has contacted Ni > Nthreshold distinct destinations.

Extending these examples, consider a setting where the operator
wants to detect if specific traffic flows are being bottlenecked by
2Our examples are contrived primarily to simplify the discussion;
the scenarios they highlight are illustrative of real settings.

Forensic and Diagnostic Example

S1 S2

NAT

Internet

H2

H1

IDS/IPS
ScanCount(H)

Flow1: <H1,D1>
Flow2: <H1,D1>

Flow3: <H2, D2>
Flow4: <H2, D3>

Actual number of connections to distinct destinations: H1 = 1, H2 = 2
Observed number of connections to distinct destinations: P1 = 2, P2 = 2

Flow1, Flow3 P1
Flow2, Flow4 P2

<P1,D1>, <P2,D1>
<P1,D2>, <P2,D3>

Figure 2: Forensics and diagnostics: The challenge here is in at-
tributing diagnostic or forensic measurements to the specific host
that initiated a flow.

Figure 3: Access control and rate limiting: Complications intro-
duced by connection multiplexing, traffic dependence, and caching.

middleboxes; e.g., to decide if more virtual middlebox instances
are necessary in the data center [6]. To this end, she may run end-
to-end diagnostic probes and log packets at different vantage points
to compute metrics such as latency and throughput. These measure-
ments, however, will not be useful, as we cannot correlate incoming
and outgoing flows at middleboxes.

Implications: These scenarios highlight the difficulty in attribut-
ing network-level observations to the correct “principals” (i.e.,
hosts or IP flows) responsible for the traffic. Furthermore, even
basic data plane forwarding decisions, to steer packets through the
desired sequence of middleboxes, may depend on middlebox ac-
tions that are not exposed to the SDN controller.

2.2 Dynamic Traffic Dependence
Next, we consider the scenario in Figure 3 involving a proxy

used in conjunction with a resource management device (referred
to as ACRL). The operator wants to: (1) rate limit (“RL”) access of
individual hosts to the Internet, and (2) run application-level access
control (“AC”) logic (e.g., block access to specific websites).

In the rate limiting case, we face another form of the attribution
problem, because the ACRL cannot attribute connections coming
from the proxy on behalf of the hosts. What makes this problem
harder is that the proxy may multiplex connections from multiple
clients onto a persistent connection to an external server. (This also
applies to middleboxes such as WAN optimizers and application-
specific gateways.) Thus, we need to identify the set of hosts that
have a causal relationship with each proxy-initiated connection.
Extending the scenario, suppose we want to allow H1 to access a
particular website xyz but block H2’s access. H2, however, may be
able to get cached versions of xyz and thus evade the policy imple-
mented at the access control device. In this case, we want cached
responses to also be subject to the access control restrictions.

Implications: Middleboxes, such as proxies, that implement opti-
mizations such as content caching and connection caching make it
harder to reason about policy correctness, as we can no longer as-
sume a one-to-one mapping between incoming and outgoing flows
at such middleboxes. Furthermore, these actions may dynamically
depend on the actual traffic patterns (e.g., which objects have been
recently requested by some user or which sites users are accessing).

2.3 Strawman Solutions
Next, we discuss why some seemingly-natural strawman solu-

tions fail to address the above problems.

Correlating flows: We could heuristically reverse engineer the
middlebox logic; e.g., track the timings/payloads across flows
at switch S1 in Figures 1–2 to infer the private-public IP map-
ping [17]. Even if we ignore the overhead of this analysis, it is
difficult for an SDN controller to reason about the correctness of
such inferences. In the proxy example (Figure 3), inferring this
correlation is difficult when responses are cached or requests are
multiplexed, as there is no one-to-one mapping between incoming
and outgoing flows.

Middlebox placement: In Figure 1, we could place AppFirewall
before the NAT to solve the attribution problem. Placement, how-
ever, does not address the general case. To see why, consider Fig-
ure 3; placing the ACRL before the proxy may solve the attribution
problem, but introduces new correctness problems if the response
is cached—the cached response should not be subject to rate lim-
iting. More generally, we want to follow the SDN philosophy of
logical-to-physical decoupling and avoid embedding policy deci-
sions in the physical topology.

Consolidation: We could consolidate middlebox functions; e.g.,
run the ACRL logic inside the proxy or have SDN switches emu-
late some middleboxes (e.g., NAT, load balancers). While consol-
idation may partially address the problems, it may not always be
feasible, as different capabilities (e.g., proxy, firewall) may be pro-
vided by separate hardware middleboxes. We will encounter these
problems even in future consolidated middleboxes [19] if middle-
box modules are written by different vendors—the “shim” logic
for routing across modules within this consolidated box needs to
account for modifications induced by the specific modules.3

Policy verification tools: SDN has enabled new tools for checking
policy correctness such as Header Space Analysis (HSA) and Veri-
Flow [9, 10]. Unfortunately, HSA cannot be applied when middle-
boxes: (1) behave non-deterministically (e.g., load balancers), (2)
may terminate flows (e.g., proxies), or (3) change the packet con-
tent. Specifically, these are scenarios where a middlebox cannot be
modeled or its “inverse” cannot be determined [9]. By the same
token, VeriFlow would not apply for dynamic transformations.4

2.4 Summary
The above scenarios highlight the challenges that dynamic ac-

tions of middleboxes cause for packet forwarding and attribut-
ing the observed traffic to the appropriate network-level princi-
pals. These problems are aggravated by middleboxes with non-
deterministic and traffic-dependent operations (e.g., cached re-
sponses or multiplexed connections). Furthermore, even with per-
vasive logging, it is challenging to verify if a policy is implemented
correctly, or if it is being evaded, as we cannot correlate the traffic
3In some sense, consolidation doesn’t really solve the correctness
problem; it simply punts the problem to the middlebox vendor.
4To be fair, the authors of HSA and VeriFlow do not claim or intend
to tackle these scenarios.

FlowTags Architecture

Network OS

Existing
Interfaces
e.g., OpenFlow

FlowTags
APIs

Control
Plane

Data
Plane

SDN
enabled
Switches

FlowTable

FlowTags
Enhanced

Middleboxes

FlowTags
Config

Control Apps

Figure 4: The FlowTags architecture: We highlight the exten-
sions we introduce as part of FlowTags. We avoid explicit changes
to switches or the need for direct interfaces between switches and
middleboxes.

flows across vantage points. The common theme across all of our
motivating scenarios is the lack of visibility into the relationship
between incoming and outgoing traffic at middleboxes.

3. FlowTags ARCHITECTURE
The examples presented in the previous section show that the

lack of visibility into middlebox actions hinders policy enforce-
ment and verification. Motivated by this observation, we propose
FlowTags, an extended SDN architecture that incorporates the nec-
essary visibility into middlebox actions in order to systematically
enforce and verify policies.

In designing FlowTags, we impose three pragmatic constraints:
(1) Require minimal modifications to middleboxes, in order to spur
adoption among middlebox vendors; (2) Preserve existing switches
as well as the switch-controller interface (e.g., OpenFlow), to retain
compatibility with switch vendors; (3) Avoid direct interactions
between middleboxes and switches, to decouple the evolutionary
paths of these different classes of devices.

The key idea in FlowTags is to tag packets with the neces-
sary middlebox context.5 Thus, the packet processing actions of
a FlowTags-enhanced middlebox will now entail adding the rele-
vant Tags into the packet header. The SDN controller configures
the actions on switches and middleboxes to use these Tags (added
by other middleboxes) as part of their data plane operations, in or-
der to correctly enforce network-wide policies.

3.1 Overview
SDN today provides an interface between the controller and

switches to control forwarding behavior. FlowTags extends this
architecture along three key dimensions highlighted in Figure 4:

1. FlowTags-enhanced middleboxes that account for an incoming
packet’s existing Tags while processing it, and that may also
add new Tags based on the context. Switches use Tags to steer
packets. These data plane FlowTags-related behaviors are dis-
cussed in Section 3.3.

2. New FlowTags APIs between the controller and FlowTags-
enhanced middleboxes We highlight these new APIs in Sec-
tion 3.2.

3. New control applications that configure the tagging behavior of
the middleboxes and switches, and that also leverage Tags to
support policy enforcement and verification (Section 3.4).

5Context refers to middlebox-specific internal information that is
critical for policy enforcement, e.g., cache hit/miss in the case of a
proxy or the public-private mappings in the case of a NAT.

Note that FlowTags neither imposes new capabilities on SDN
switches nor requires direct signaling between middleboxes and
switches; switches continue to use traditional SDN APIs. The only
interaction between switches and middleboxes is (indirectly) via
Tags. As discussed earlier, we take this approach to allow switch
and middlebox designs to innovate independently and to retain
compatibility with existing SDN standards (e.g., OpenFlow).

Conceptually, each packet is associated with a set of Tags. Given
packet header space limitations, packets only carry a compact en-
coding of the set, rather than the actual set of Tags. (For clarity,
we describe the design in terms of Tags rather than their encod-
ings.) Embedding this contextual information in the packets avoids
the need for each switch and middlebox to communicate with the
controller on a per-packet basis when making their forwarding/pro-
cessing decisions.

With the current OpenFlow specification, the only IPv4 field that
we could use in our current implementation (Section 4) to carry
Tags is the 6-bit ToS/DSCP field. Newer standards could allow us
to use additional header fields (Section 5.3).

In the simplest case, when a switch sees a packet with a Tag for
which it has no matching rule, it sends (as is typical in OpenFlow)
a packet-in message to the controller, which in turn responds with
the appropriate FlowTable rule. Likewise, when a middlebox sees
such a packet, it sends an analogous message to the controller to
learn the correct FlowTags-related action, using the functions de-
scribed below. In general, the actions that the controller sends to
a middlebox will be different from those that it sends to a switch.
To improve efficiency, in terms of table space and control-message
traffic, we can also install FlowTags-related actions proactively.

3.2 Southbound API
We define an interface between the enhanced SDN controller and

FlowTags-enhanced middleboxes in order to control the FlowTags-
related behavior. Note that middleboxes are both producers (e.g.,
the NAT needs to expose host-public IP mappings) as well as con-
sumers (e.g., the IDS scan detector must use Tags to attribute traffic
to hosts) of Tags. Corresponding to these two roles, we envision
two configuration tables: (1) Analogous to the FlowTable rules in
OpenFlow, each middlebox has a TagsFlowTable to match flow pat-
terns to Tags; and (2) A TagsActionTable that maps a packet with
specific Tags into (middlebox-specific) actions.

Tag addition: When a middlebox receives a packet that
does not match in TagsFlowTable, it queries the controller via
RqstTag(Pkt,{MboxContext}) to obtain the relevant rule.
The response from the controller is a two-tuple of the form
〈FlowMatch,Tags〉.6 The middlebox will add these specific
Tags to packets matching the pattern FlowMatch when the con-
text is {MboxContext}. Note that the controller may need con-
text to determine Tags; e.g., a proxy needs to declare if the packet
was the result of a cache hit/miss. We also envision other functions
such as Copy () (to preserve Tags) and Delete () (reset after a
Tag has served its purpose). For brevity, we skip their details.7

Tag consumption: We also need corresponding APIs to control
how Tags affect a middlebox’s packet processing actions. When
a middlebox receives a packet with Tags that do not have an ac-
tion specified in the TagsActionTable, it queries the controller
6FlowMatch is analogous to struct ofp_match and can
support wildcard entries.
7It might seem that Copy is sufficient; i.e., a packet is tagged when
it enters the network, and middleboxes simply preserve Tags. How-
ever, there are scenarios where Tags need to reflect internal middle-
box decisions; e.g., the proxy needs to indicate if the response was
the result of a cache hit or miss.

via RqstAction(Pkt,Tags)8 to request the necessary packet
processing action from the controller. The controller responds
with an appropriate Action, in the form of a tuple of the form
〈FlowMatch,Action〉, that is specific to the middlebox; e.g.,
configuring how a NIDS should count packets for scan detection.

3.3 FlowTags Data Plane
Middleboxes: Adopting the FlowTags API entails two extensions
to middlebox software. First, vendors must support Tag-writing
functions. Our experience suggests that many middleboxes (e.g.,
Squid, Bro) follow a session-oriented architecture, where each in-
coming connection is associated with its attendant state [18, 19].
Thus, we can add the Tags to this connection record structure and
ensure that this information is added to outgoing packets. Second,
and perhaps more involved, middleboxes need to incorporate Tags
added by other middleboxes into their logic; e.g., when a NIDS or
an ACRL attributes a packet to the principal. Again, we can lever-
age the session-oriented model, to implement this logic.
Switch extensions: Switches continue to match on packet header
fields as defined by OpenFlow (or its descendants). They are ag-
nostic to the semantics of Tags; these semantics are maintained at
the controller.

3.4 Control Applications
We envision three new roles for control applications:

1. Analogous to today’s SDN control applications for access con-
trol and routing, we need new control applications to translate
a given set of network policies into (1) Tag addition/consump-
tion at middleboxes, and (2) Tag-based packet forwarding rules
at SDN switches.

2. We will also need to develop a suite of verification applications
to check whether the set of desired policies have been success-
fully enforced. As we saw in the motivating examples, policy
verification can be difficult in the presence of dynamic mid-
dlebox actions, as we do not know how a packet is modified
while traversing the network. By exposing Tags, FlowTags can
even enable us to extend existing policy verification techniques
(e.g., [9]) by treating Tags as additional header fields.

3. Finally, we need a Tag encoding layer to support suitable mech-
anisms to encode Tags given the available packet header fields.

3.5 End-to-End Example
To make the above discussion concrete, we revisit the proxy ex-

ample (Figure 3) extended with FlowTags as shown in Figure 5.
As in traditional SDN, the controller maintains a global view of the
network state, including switch FIBs. Additionally, the controller
maintains a copy the TagsFlowTable and TagsActionTable for each
middlebox. In this example, we need Tags to both distinguish the
hosts and determine whether the request results in a cache hit. Cor-
responding to these scenarios, the proxy adds suitable Tags to out-
going packets as shown; the FlowTables of the switches incorporate
Tags in making forwarding decisions.

To see how using Tags enables policy enforcement, suppose the
content for website xyz is in the proxy cache when H2 tries to ac-
cess it for the first time. Upon receiving this request, the proxy sets
Tag = 4 in the response packet as it learns from the controller us-
ing the RqstTag(Pkt,{H2,HIT}) API call, where Pkt is H2’s
HTTP request packet to get xyz. The proxy adds this Tag = 4 to
the (cached) response packet and sends it to S1. S1 forwards the
packet to S2 and S2 forwards it to the ACRL device. The ACRL
8We show Pkt and Tags separately for clarity—physically, Tags
is embedded in Pkt.

S1 S2

Proxy	 w/	
FlowTags	

Internet

H2

H1

Policy:	 	
Block	 H2	 à	 xyz	
RateLim	 Internet	

Input	 Tag	 Out	
H1	 *	 Proxy	
H2	 *	 Proxy	

Proxy	 2	 H1	
Proxy	 *	 S2	

Tag	 Src	 Ac/on	
1	 H1	 RateLim	
3	 H2	 RateLim	 +	 Block	
4	 H2	 Block	

addTag(H1,	 MISS,	 1)	
addTag(H1,	 HIT,	 2)	
addTag(H2,	 MISS,	 3)	
addTag(H2,	 HIT,	 4)	

Input	 Tag	 Out	
S1	 *	 ACRL	

ACRL	 4	 S1	
ACRL	 *	 Internet	

ACRL:	 	
Rate	 limit	 Internet	 b/w	
Block	 H2	 à	 xyz	
w/	 FlowTags	

Controller	 w/	 FlowTags	

S1	 FlowTable	 S2	 FlowTable	

Proxy	 	
TagsFlowTable	

ACRL	 	
TagsAcLonTable	

Figure 5: An example of using FlowTags: Each packet carries
the contextual information necessary for correct policy enforce-
ment (e.g., which source? is this cached or not?) Only the for-
warding rules affected by tagging are shown for brevity.

device uses the RqstAction(Pkt,4) API to learn the packet pro-
cessing action for this packet, which in this case is blocking the
packet. (The API calls are not shown in the figure, for clarity.)

As this example shows, FlowTags enables us to implement the
intended access control policy correctly even in the presence of
dynamic and traffic-dependent middlebox actions. In addition to
policy enforcement, Tags can also provide new policy verification
capabilities. For instance, we can collect packet-level logs at the
switches and middleboxes and correlate them using Tags, to create
an end-to-end view of a packet as it traverses the network.

4. PRELIMINARY RESULTS
In this section, we demonstrate the feasibility of extending

legacy middleboxes to support FlowTags and show how FlowTags
can address the challenges highlighted in Section 2.

Modifications to Squid: As a proof-of-concept implementation,
we modified Squid (v 3.2), the popular open source proxy cache.
Our extensions required ≈30 lines of code (out of a total of over
100,000 lines). While our changes are minimal, figuring out where
to add these 30 lines was not easy. Given our lack of familiarity and
the lack of adequate documentation, we used a combination of call
graph analysis, explicit tracing, and code walk-throughs to identify
the code chokepoints.9 We use the ToS/DSCP field of IPv4 packets
to add Tags.

Experiment Setup: For brevity, we focus on an example similar
to Figure 3, as that is the most complex setup. We use two instances
of Squid; one as a proxy cache, and the other as an access control
device.10 The policies for our experiment setup, shown in Figure 6,
are as follows. Suppose H1 has unrestricted web access, but H2 is
blocked from Site1 and Site2. The access control squid device is
configured to implement the desired blocking policy.11

For this example, the Tag values encode two bits of information:
the source host that initiated the request and whether the response
was the result of a cache hit/miss.

Correctness: In order to evaluate the correctness of our modi-
fications, we consider a specific sequence of four requests issued
9The specific files we modified are client_side_reply.cc,
client_side_request.cc, and forward.cc.

10While the proxy and the access control device could be consoli-
dated, we decouple them for purposes of illustration.

11The specific sites are not relevant; we pick simple sites with a
single index.html object for simplicity.

1

S1 S2

Access Control
Device Squid

Internet

H2

H1

H1
H2

Tag observed at access
control device

tag1
tag4

Host
Log observed at

host

Requested
Website

Site1 200 OK
403 Forbidden Site1

H2
H1

tag3

tag2

403 Forbidden

200 OK

Site2
Site2

time

Figure 6: Proof-of-concept: The experiment shows that using
Tags allows us to enforce the intended policy even in the presence
of proxy effects. Tags also enable post-mortem verification to check
if the policy was applied correctly.

by the hosts as shown: H1/H2 fetch Site1 and then H2/H1 fetch
Site2. We choose this order because it allows us to demonstrate
that Tags serve both intended purposes: (a) distinguishing packets
from the two hosts, and (b) distinguishing a cache hit vs. a cache
miss. In our experiment, the proxy starts with an empty cache. We
instrument the browsers (Firefox) with Firebug/NetExport exten-
sions to log the HTTP request and response sequences, to verify
that the policies were implemented correctly. In addition, we also
log block/allow events at the access control Squid box. The fig-
ure shows a simplified view of the logs at the hosts as well as the
logs at the access control device. Though this is a toy example, it
shows that we can correctly implement the intended policies. As
discussed earlier, the Tags also enable us to correlate the events
logged at the hosts, switches, and the middleboxes, and thus verify
that the policies are implemented correctly.

Performance overhead: Using the Firebug logs, we also measure
the overhead of web page load times for 50 popular websites (from
Alexa). Across all runs, the maximum overhead w.r.t. unmodified
Squid was less than 1%. This is not surprising, as we proactively
install the tagging rules. With a reactive approach, however, we ex-
pect slightly higher overheads due to middlebox-controller RTTs.

5. CHALLENGES AND OPEN ISSUES
The work presented here is only a starting point toward a full-

fledged realization of the FlowTags architecture. In this section,
we highlight several challenges and open issues.

5.1 Data Plane
Honoring Tags: Previous studies show that middleboxes hinder
adoption of transport- or network-level header extensions in wide
area networks [5, 11]. By focusing on a single administrative do-
main, we avoid the problem of remote middleboxes impacting cor-
rectness. That said, middlebox (and switch) implementations must
honor Tags in packets, and not modify them unless explicitly re-
quested to do so via the FlowTags APIs. We speculate that this
“compliance” requirement is minimal and easy to test.

Automatically extending middleboxes: Given the diversity of
the middlebox market (types of functions and vendors) and the
large installed legacy codebase, a natural question is whether we
can automatically add FlowTags extensions to existing middlebox
software. Our experience in modifying Squid is that while the code
changes are minimal, identifying where to add the necessary code
is far from trivial! One direction is to use program analysis tech-
niques; e.g., to identify dominators in the control flow graph that
serve as natural “chokepoints” to add the FlowTags extensions.

Identifying middleboxes-specific semantics: The semantics of
the tagging actions, as mandated by FlowTags, are inherently tied
to middlebox-specific processing logic. We can use domain knowl-
edge and black-box testing (e.g., inferring how a middlebox reacts
to a particular test stream) to model these semantics.

5.2 Control Plane
FlowTags northbound extensions: Ultimately, the success of any
SDN framework (not just FlowTags) depends on the ability to im-
plement the management tasks. As discussed in Section 2, exist-
ing techniques [9, 10, 13] are not sufficient to express the stateful
and traffic-dependent behaviors (e.g., caching) that FlowTags ad-
dresses. Given the difficulty of reasoning about even simple policy
scenarios in the presence of dynamic traffic modifications, we need
new controller applications to enable network-wide policy enforce-
ment and verification (see Section 3.4).
Dynamic policy invocation: So far, we have discussed only
pre-specified policies, even if the middlebox actions are dynamic.
One could extend FlowTags to support dynamic invocation scenar-
ios [3]. For example, traffic is first processed by a lightweight IDS,
and “suspicious” packets are directed to a fine-grained IDS for fur-
ther inspection. In this case, we need the state of the packet flagged
by the first IDS to steer the packet. This can be viewed as a com-
bination of the policy routing and traffic dependencies discussed in
Section 2, with the policy route depending on the traffic.
Hidden or implicit policies: Middleboxes might have implicit and
embedded policies. For instance, an intrusion prevention system
may run some cross-session analysis that the controller is not aware
of. FlowTags cannot currently handle this. We expect that in the
common case, the policy rules (e.g., ACL, signatures) are explicitly
configured by the network operators even though middleboxes may
run proprietary software.

5.3 APIs and Encoding
Are the FlowTags APIs sufficient? While we have verified that
our APIs address the motivating scenarios in Section 2, an open
question is to characterize the domain of management tasks that
FlowTags can or cannot address.
Encoding Tags: Our prototype uses the 6-bit ToS field, which is
not big enough for real-life use. One option is to extend OpenFlow
to match on the 16-bit IP ID field (if fragmentation is disabled), or
to use the 20-bit flow-label in IPv6 (thus answering the question
“how should we use the flow-label field?” [4]). We can also try to
spatially reuse Tag values by formulating Tag encoding as a graph-
coloring problem. FlowTags can also potentially leverage the sup-
port for flexible pushing/popping of tags on packets provided by
OpenFlow v1.1.
How many bits? We need a way to estimate the number of Tags
needed for a given network/policy setting, and thus the number of
header bits for Tags to inform future SDN specifications.

5.4 Evolution and Adoption
We expect that market pressures will force middlebox vendors

(e.g., Riverbed, BlueCoat, and F5) to provide SDN-like capabili-
ties. Given the minimal middlebox extensions that FlowTags needs,
we hope that vendors will adopt FlowTags, mirroring the adop-
tion of OpenFlow by switch vendors. Note that enterprises already
request certain product features from vendors today; support for
FlowTags may be as simple as applying a software patch. An open
challenge, however, is to develop mechanisms to assure middlebox
vendors that supporting FlowTags will not reveal any proprietary
information beyond any “black-box” reverse engineering.

6. CONCLUSIONS
The early success of SDN has led to demands of increased func-

tionality, especially to support functions above Layer 2 and Layer 3
capabilities [1, 2]. This trajectory invariably puts SDN on a col-
lision course with middleboxes, which makes it challenging to
achieve a key benefit of SDN—enforcing and verifying network-
wide policies. While we are not aware of any middlebox vendors
announcing SDN support, this convergence appears inevitable, and
it behooves us as the SDN community to inform this debate sooner
rather than later.

FlowTags is a useful starting point in this respect, as it requires
minimal extensions from middlebox vendors and demands no new
capabilities of switch vendors. That said, it is only one point in a
broader design space. We do not claim that FlowTags is the only
support necessary; e.g., other functions such as migration may re-
quire deeper visibility into middlebox state [7]. Looking into the
future, one may even consider SDN support for configuring the
internal actions of middleboxes; e.g., dynamically installing code
snippets, or choosing from a set of candidate code paths.

Acknowledgments
We thank Rodrigo Fonseca and Shriram Krishnamurthy for their
feedback. This work was supported in part by the Intel Lab’s Uni-
versity Research Office. Seyed Kaveh Fayazbakhsh was supported
in part by a Renaissance Technologies Fellowship.

7. REFERENCES
[1] 2012 Cloud Networking Report.

http://www.webtorials.com/content/2012/11/2012-cloud-
networking-report.html.

[2] ONF Expands Scope; Drives Technical Work Forward.
https://www.opennetworking.org/media/press-releases/
564-onf-expands-scope-drives-technical-work-forward.

[3] A. Greenlagh et al. Flow Processing and the Rise of Commodity Network
Hardware. ACM CCR, Apr. 2009.

[4] S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme. IPv6 Flow Label Update.
http://rmv6tf.org/wp-content/uploads/2012/11/rmv6tf-
flow-label11.pdf.

[5] R. Fonseca, G. M. Porter, R. H. Katz, S. Shenker, and I. Stoica. IP options are
not an option. Technical Report UCB/EECS-2005-24, EECS Department,
University of California, Berkeley, Dec 2005.

[6] A. Gember et al. Stratos: Virtual Middleboxes as First-Class Entities.
UW-Madison TR1771, 2012.

[7] A. Gember, P. Prabhu, Z. Ghadiyali, and A. Akella. Toward software-defined
middlebox networking. In Proc. HotNets-XI, 2012.

[8] D. A. Joseph, A. Tavakoli, and I. Stoica. A Policy-aware Switching Layer for
Data Centers. In Proc. SIGCOMM, 2008.

[9] P. Kazemian, G. Varghese, and N. McKeown. Header space analysis: static
checking for networks. In Proc. NSDI, 2012.

[10] A. Khurshid, W. Zhou, M. Caesar, and P. B. Godfrey. Veriflow: verifying
network-wide invariants in real time. In Proc. NSDI, 2013.

[11] M. Honda et al. Is it still possible to extend TCP? In Proc. IMC, 2011.
[12] N. McKeown. Mind the Gap: SIGCOMM’12 Keynote.

http://www.youtube.com/watch?v=Ho239zpKMwQ.
[13] C. Monsanto, N. Foster, R. Harrison, and D. Walker. A compiler and run-time

system for network programming languages. In Proc. POPL, 2012.
[14] Y. Mundada et al. Practical Data-Leak Prevention for Legacy Applications in

Enterprise Networks. http://hdl.handle.net/1853/36612.
[15] J. Newsome and D. Song. Dynamic Taint Analysis for Automatic Detection,

Analysis, and Signature Generation of Exploits on Commodity Software. In
Proc. NDSS, 2005.

[16] V. Paxson. Bro: A system for detecting network intruders in real-time. In
Computer Networks, pages 2435–2463, 1999.

[17] Z. Qazi, C. Tu, L. Chiang, R. Miao, and M. Yu. SIMPLE-fying Middlebox
Policy Enforcement Using SDN. In Proc. SIGCOMM, 2013.

[18] V. Sekar et al. Network-wide deployment of intrusion detection and prevention
systems. In Proc. CoNext, 2010.

[19] V. Sekar et al. Design and implementation of a consolidated middlebox
architecture. In Proc. NSDI, 2012.

[20] J. Sherry et al. Making Middleboxes Someone Else’s Problem: Network
Processing as a Cloud Service. In Proc. SIGCOMM, 2012.

