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Abstract
Network deployments handle changing application,
workload, and policy requirements via the deployment
of specialized network appliances or “middleboxes”. To-
day, however, middlebox platforms are expensive and
closed systems, with little or no hooks for extensibil-
ity. Furthermore, they are acquired from independent
vendors and deployed as standalone devices with little
cohesiveness in how the ensemble of middleboxes is
managed. As network requirements continue to grow
in both scale and variety, this bottom-up approach puts
middlebox deployments on a trajectory of growing de-
vice sprawl with corresponding escalation in capital and
management costs.

To address this challenge, we present CoMb, a new
architecture for middlebox deployments that systemati-
cally explores opportunities for consolidation, both at the
level of building individual middleboxes and in manag-
ing a network of middleboxes. This paper addresses key
resource management and implementation challenges
that arise in exploiting the benefits of consolidation in
middlebox deployments. Using a prototype implementa-
tion in Click, we show that CoMb reduces the network
provisioning cost 1.8–2.5× and reduces the load imbal-
ance in a network by 2–25×.

1 Introduction
Network appliances or “middleboxes” such as WAN op-
timizers, proxies, intrusion detection and prevention sys-
tems, network- and application-level firewalls, caches
and load-balancers have found widespread adoption in
modern networks. Several studies report on the rapid
growth of this market; the market for network security
appliances alone was estimated to be 6 billion dollars in
2010 and expected to rise to 10 billion in 2016 [9]. In
other words, middleboxes are a critical part of today’s
networks and it is reasonable to expect that they will re-
main so for the foreseeable future.

Somewhat surprisingly then, there has been relatively
little research on how middleboxes are built and de-
ployed. Today’s middlebox infrastructure has developed
in a largely uncoordinated manner—a new form of mid-
dlebox typically emerging as a one-off solution to a spe-
cific need, “patched” into the infrastructure through ad-
hoc and often manual techniques.

This bottom-up approach leads to two serious forms
of inefficiency. The first is inefficiency in the use of in-
frastructure hardware resources. Middlebox applications

are typically resource intensive and each middlebox is in-
dependently provisioned for peak load. Today, because
each middlebox is deployed as a separate device, these
resources cannot be amortized across applications even
though their workloads offer natural opportunities to do
so. (We elaborate on this in §3). Second, a bottom-up
approach leads to inefficiencies in management. Today,
each type of middlebox application has its own custom
configuration interface, with no hooks or tools that offer
network administrators a unified view by which to man-
age middleboxes across the network.

As middlebox deployments continue to grow in both
scale and variety, these inefficiencies are increasingly
problematic—middlebox infrastructure is on a trajectory
of growing device sprawl with corresponding escalation
in capital and management costs. In §2, we present mea-
sured and anecdotal evidence that highlights these con-
cerns in a real-world enterprise environment.

This paper presents CoMb,1 a top-down design for
middlebox infrastructure that aims to tackle the above
inefficiencies. The key observation in CoMb is that the
above inefficiencies arise because middleboxes are built
and managed as standalone devices. To address this, we
turn to the age-old idea of consolidation and systemati-
cally re-architect middlebox infrastructure to exploit op-
portunities for consolidation. Corresponding to the inef-
ficiencies, CoMb targets consolidation at two levels:
1. Individual middleboxes: In contrast to standalone,

specialized middleboxes, CoMb decouples the hard-
ware and software, and thus enables software-based
implementations of middlebox applications to run on
a consolidated hardware platform.2

2. Managing an ensemble of middleboxes: CoMb con-
solidates the management of different middlebox ap-
plications/devices into a single (logically) centralized
controller that takes a unified, network-wide view—
generating configurations and accounting for policy
requirements across all traffic, all applications, and all
network locations. This is in contrast to today’s ap-
proach where each middlebox application and/or de-
vice is managed independently.
In a general context, the above strategies are not new.

There is a growing literature on centralized network
management (e.g., [21, 31]), and consolidation is com-
monly used in data centers. To our knowledge, however,

1The name CoMb captures our goal of Consolidating Middleboxes.
2As we discuss in §4, this hardware platform can comprise both

general-purpose and specialized components.



there has been no work on quantifying the benefits of
consolidation for middlebox infrastructure, nor any in-
depth attempt to re-architect middleboxes (at both the
device- and network-level) to exploit consolidation.

Consolidation effectively “de-specializes” middlebox
infrastructure since it forces greater modularity and ex-
tensibility. Typically, moving from a specialized ar-
chitecture to one that is more general results in less,
not more, efficient resource utilization. We show, how-
ever, that consolidation creates new opportunities for ef-
ficient use of hardware resources. For example, within
an individual box, we can reduce resource requirements
by leveraging previously unexploitable opportunities to
multiplex hardware resources and reuse processing mod-
ules across different applications. Similarly, consolidat-
ing middlebox management into a network-wide view
exposes the option of spatially distributing middlebox
processing to use resources at different locations.

However, the benefits of consolidation come with
challenges. The primary challenge is that of resource
management since middlebox hardware resources are
now shared across multiple heterogeneous applications
and across the network. We thus need a resource man-
agement solution that matches demands (i.e., what subset
of traffic needs to be processed by each application, what
resources are required by different applications) to re-
source availability (e.g., CPU cycles and memory at var-
ious network locations). In §4 and §5, we develop a hi-
erarchical strategy that operates at two levels—network-
wide and within an individual box—to ensure the net-
work’s traffic processing demands are met while mini-
mizing resource consumption.

We prototype a CoMb network controller leveraging
off-the-shelf optimization solvers. We build a prototype
CoMb middlebox platform using Click [30] running on
general-purpose server hardware. As test applications we
use: (i) existing software implementations of middlebox
applications (that we use with minimal modification) and
(ii) applications that we implement using a modular dat-
apath. (The latter were developed to capture the bene-
fits of processing reuse). Using our prototype and trace-
driven evaluations, we show that:
• At a network-wide level, CoMb reduces aggregate re-

source consumption by a factor 1.8–2.5× and reduces
the maximum per-box load by a factor 2–25×.

• Within an individual box, CoMb imposes little or min-
imal overhead for existing middlebox applications. In
the worst case, we record a 0.7% performance drop
relative to running the same applications indepen-
dently on dedicated hardware.

Roadmap: In the rest of the paper, we begin with a
motivating case study in §2. §3 highlights the new effi-
ciency opportunities with CoMb and §4 describes the de-

Appliance type Number
Firewalls 166

NIDS 127
Conferencing/Media gateways 110

Load balancers 67
Proxy caches 66
VPN devices 45

WAN optimizers 44
Voice gateways 11

Middleboxes total 636
Routers ≈ 900

Table 1: Devices in the enterprise network

sign of the network controller. We describe the design of
each CoMb box in §5 and our prototype implementation
in §6. We evaluate the potential benefits and overheads
with CoMb in §7. We discuss concerns about isolation
and deployment in §8. We present related work in §9
before concluding in §10.

2 Motivation
We begin with anecdotal evidence in support of our claim
that middlebox deployments constitute a vital component
in modern networks and the challenges that arise therein.
Our observations are based on a study of middlebox de-
ployment in a large enterprise network and discussions
with the enterprise’s administrators. The enterprise spans
tens of sites and serves more than 80K users [36].

Table 1 summarizes the types and numbers of differ-
ent middleboxes in the enterprise and shows that the total
number of middleboxes is comparable to the number of
routers! Middleboxes are thus a vital portion of the enter-
prise’s network infrastructure. We further see a large di-
versity in the type of middleboxes; other studies suggest
similar diversity in ISPs and datacenters as well [13, 26].

The administrators indicated that middleboxes repre-
sent a significant fraction of their (network) capital ex-
penses and expressed the belief that processing com-
plexity contributes to high capital costs. They expressed
further concern over anticipated mounting costs. Two
nuggets emerged from their concerns. First, they re-
vealed that each class of middleboxes is currently man-
aged by a dedicated team of administrators. This is in
part because the enterprise uses different vendors for
each application in Table 1; the understanding required
to manage and configure each class of middlebox leads
to inefficient use of administrator expertise and signif-
icant operational expenses. The lack of high-level con-
figuration interfaces further exacerbates the problem. For
example, significant effort was required to manually tune
what subset of traffic should be directed to the WAN op-
timizers to balance the tradeoff between the bandwidth
savings and appliance load. The second nugget of inter-
est was their concern that the advent of consumer devices
(e.g., smartphones, tablets) is likely to increase the need



for in-network capabilities [9]. The lack of extensibil-
ity in middleboxes today inevitably leads to further ap-
pliance sprawl, with associated increases in capital and
operating expenses.

Despite these concerns, administrators reiterated the
value they find in such appliances, particularly in sup-
porting new applications (e.g., teleconferencing), in-
creasing security (e.g., IDS), and improving performance
(e.g., WAN optimizers).

3 CoMb: Overview and Opportunities
The previous discussion shows that even though middle-
boxes are a critical part of the network infrastructure,
they remain expensive, closed platforms that are diffi-
cult to extend, and difficult to manage. This motivates us
to rethink how middleboxes are designed and managed.
We envision an alternative architecture, called CoMb,
wherein software-centric implementations of middle-
box applications are consolidated to run on a shared
hardware platform, and managed in a logically central-
ized manner.

The qualitative benefits of this proposed architecture
are easy to see. Software-based solutions reduce the cost
and development cycles to build and deploy new mid-
dlebox applications (as independently argued in paral-
lel work [12]). Consolidating multiple applications on
the same physical platform reduces device sprawl; we
already see early commercial offerings in this regard
(e.g., [3]). Finally, the use of centralization to simplify
network management is also well known [31, 21, 15].

While the qualitative appeal is evident, there are prac-
tical concerns with respect to efficiency. Typically, mov-
ing from a specialized architecture to one that is more
general and extensible results in less efficient resource
utilization. However, as we show next, CoMb introduces
new efficiency opportunities that do not arise with to-
day’s middlebox deployments.

3.1 Application multiplexing
Consider a WAN optimizer and IDS running at an enter-
prise site. The former optimizes file transfers between
two enterprise sites and may see peak load at night when
system backups are run. In contrast, the IDS may see
peak load during the day because it monitors users’ web
traffic. Suppose the volumes of traffic processed by the
WAN optimizer and IDS at two time instants t1, t2 are
10,50 packets and 50,10 packets respectively. Today
each hardware device must be provisioned to handle its
peak load resulting in a total provisioning cost corre-
sponding to 2 ∗max{10,50} = 100 packets. A CoMb
box, running both a WAN optimizer and the IDS on the
same hardware can flexibly allocate resources as the load
varies. Thus, it needs to be provisioned to handle the
peak total load of 60 packets or 40% fewer resources.
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Figure 1: Middlebox utilization peak at different times
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Figure 2: Reusing lower-layer software modules across
middlebox applications

Figure 1 shows a time series of the utilization of four
middleboxes at an enterprise site, each normalized by its
maximum observed value. Let NormUtiltapp denote the
normalized utilization of the device app at time t. Now,
to quantify the benefits of multiplexing, we compare the
sum of the peak utilizations ∑app maxt{NormUtiltapp}= 4
and the peak total utilization maxt{∑app NormUtiltapp}=
2.86. For the workload shown in Figure 1, multiplexing
requires 4−2.86

4 = 28% fewer resources.

3.2 Reusing software elements
Each middlebox typically needs low-level modules for
packet capture, parsing headers, reconstructing session
state, parsing application-layer protocols and so on. If
the same traffic is processed by many applications—e.g.,
HTTP traffic is processed by an IDS, proxy, and an appli-
cation firewall—each appliance has to repeat these com-
mon actions for every packet. When these applications
run on a consolidated platform, we can potentially reuse
these basic modules (Figure 2).

Consider an IDS and proxy. Both need to recon-
struct session- and application-layer state before running
higher-level actions. Suppose each device needs 1 unit
of processing per packet. For the purposes of this ex-
ample, let us assume that these common tasks contribute
50% of the overall processing cost. Both appliances pro-
cess HTTP traffic, but may also process traffic unique
to each context; e.g., IDS processes UDP traffic which
the proxy ignores. Suppose there are 10 UDP packets
and 45 HTTP packets. The total resource requirement is
(IDS = 10+45)+ (Proxy = 45) = 100 units. The setup



in Figure 2 with reusable modules avoids duplicating the
common tasks for HTTP traffic and needs 45∗0.5= 22.5
fewer resources.

As this example shows, this reduction depends on the
traffic overlap across applications and the contribution of
the reusable modules. To measure the overlap, we obtain
configurations for Bro [32] and Snort3 and the configura-
tion for a WAN optimizer. Then, using flow-level traces
from Internet2, we find that the traffic overlap between
applications is typically 64–99% [36]. Our benchmarks
in §7.1 show that common modules contribute 26–88%
across applications.

3.3 Spatial distribution
Consider the topology in Figure 3 with three nodes N1–
N3 and three end-to-end paths P1–P3. The traffic on
these paths peaks to 30 packets at different times as
shown. Suppose we want all traffic to be monitored by
IDSes. Today’s default deployment is an IDS at each
ingress N1, N2, and N3 for monitoring traffic on P1, P2,
and P3 respectively. Each such IDS needs to be provi-
sioned to handle the peak volume of 30 units with a total
network-wide cost of 90 units.

N1 

N2 

N3 

P1: N1à N2 
T1 15 
T2 30 
T3 15 

P2: N2à N3 
T1 15 
T2 15 
T3 30 

P3: N3à N1 
T1 15 
T2 15 
T3 30 

P1	   P2	   P3	  
T1	   15	   0	   5	   20	  
T2	   20	   0	   0	   20	  
T3	   15	   0	   5	   20	  

N1’s assignment N2’s assignment N3’s assignment 
P1	   P2	   P3	  

T1	   0	   15	   5	   20	  
T2	   10	   10	   0	   20	  
T3	   0	   20	   0	   20	  

P1	   P2	   P3	  
T1	   0	   0	   20	   20	  
T2	   0	   5	   15	   20	  
T3	   0	   10	   10	   20	  

Figure 3: Spatial distribution as traffic changes

With a centralized network-wide view, however, we
can spatially distribute the IDS responsibilities. That is,
each IDS at N1–N3 processes a fraction of the traffic on
the paths traversing the node (e.g., [37]). For example, at
time T1, N1 uses 15 units for P1 and 5 for P3; N2 uses
15 units for P2 and 5 P3; and N3 devotes all 20 units to
P3. We can generate similar configurations for the other
times as shown in Figure 3. Thus, distribution reduces
the total provisioning cost 90−60

90 = 33% compared to an
ingress-only deployment. Note that this is orthogonal to
application multiplexing and software reuse.

Using time-varying traffic matrices from Internet and
the Enterprise network, we find that spatial distribution
can provide 33–55% savings in practice.

3.4 CoMb Overview
Building on these opportunities, we envision the archi-
tecture in Figure 4. Each CoMb box runs multiple
software-based applications (e.g., IDS, Proxy). These

3www.snort.org
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Figure 4: The network controller assigns processing re-
sponsibilities to each CoMb box.

applications can be obtained from independent vendors
and could differ in their software architectures (e.g., stan-
dalone vs. modular). CoMb’s network controller assigns
processing responsibilities across the network. Each
CoMb middlebox receives this configuration and allo-
cates hardware resources to the different applications.

4 CoMb Network Controller
In this section, we describe the design of CoMb’s net-
work controller and the management problem it solves
to assign network-wide middlebox responsibilities.

4.1 Input Parameters
We begin by describing the three high-level inputs that
the network controller needs.
• AppSpec: For each application m (e.g., IDS, proxy,

firewall), the AppSpec specifies: (1) Tm, the traf-
fic that m needs to run on (e.g., what ports and pre-
fixes), and (2) policy constraints that the administra-
tor wants to enforce across different middlebox in-
stances. These constraints specify constraints on the
processing order for each packet [25]. For example,
all web traffic goes through a firewall, then an IDS,
and finally a web proxy. Most middlebox applications
today operate at a session-level granularity and we as-
sume each m operates at this granularity.4

• NetworkSpec: This has two components: (1) a de-
scription of end-to-end routing paths and the loca-
tion of the middlebox nodes on each path and, (2) a
partition T = {Tc}c of all traffic into classes. Each
class Tc can be specified with a high-level descrip-
tion of the form “port-80 sessions initiated by hosts
at ingress A to servers in egress B” or described by
more precise traffic filters defined on the IP 5-tuple
(e.g., srcIP=10.1.∗ .∗, dstIP=10.2.∗ .∗, dstport=80, sr-
cport=*). For brevity, we assume each class Tc has
a single end-to-end path with the forward and reverse
flows within a session following the same path (in op-
posite directions). Each application m subscribes to
one or more of these traffic classes; i.e., Tm ∈ 2T .

4It is easy to extend to applications that operate at per-packet or
per-flow granularity; we do not discuss this for brevity.



• BoxSpec: This captures the hardware capabilities of
the middlebox hardware: Provn,r is the amount of re-
source r (e.g., CPU, memory) that node n is provi-
sioned, in units suitable for that resource. Each plat-
form may optionally support specialized accelerators
(e.g., GPU units or crypto co-processors).

Given the hardware configurations, we also need
the (expected) per-session resource footprint, on the
resource r, of running the application m. Each m may
have some affinity for hardware accelerators; e.g.,
some IDSes use hardware-based DPI. These require-
ments may be strict (i.e., the application only works
with hardware support) or opportunistic (i.e., offload
for better performance). Now, the middlebox hard-
ware at each node n may or may not have such accel-
erators. Thus, we use generalized resource footprints
Fm,r,n that depend on the specific middlebox node to
account for the presence or absence of such hardware
accelerators. Specifically, the footprint will be higher
on a node without an optional hardware accelerator
and the application needs to emulate this feature in
software.5

In practice, these inputs are already available or easy
to obtain. The NetworkSpec for routing and traffic infor-
mation is collected for other network management appli-
cations [20]. The traffic classes and policy constraints in
AppSpec and the hardware capacities Provn,rs are known;
we simply require that these be made available to the net-
work controller. The only component that imposes new
effort is the set of Fm,r,n values in BoxSpec. These can
be obtained by running offline benchmarks similar to §7;
even this effort is required infrequently (e.g., only after
hardware upgrades).

4.2 Problem Formulation
Given these inputs, the controller’s goal is to assign pro-
cessing responsibilities to middleboxes across the net-
work. There are three high-level types of constraints that
this assignment should satisfy:

1. Processing coverage: We need to ensure that each
session of interest to middlebox application m will
be processed by an instance of m along that session’s
routing path.

2. Policy dependencies: For each session, we have to re-
spect the policy ordering constraints (e.g., firewall be-
fore proxy) across middlebox applications that need to
process this session.

3. Reuse dependencies: We need to model the potential
for reusing common actions across middlebox appli-
cations (e.g., session reassembly in Figure 2).

5To capture strict requirements, where some application cannot run
without a hardware accelerator, we set the F values for nodes without
this accelerator to ∞ or some large value.
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Figure 5: Each hyperapp is a single logical task whose
footprint is equivalent to taking the logical union of its
constituent actions.

Given these constraints, we can consider different
management objectives: (1) minimizing the cost to pro-
vision the network, min∑n,r Provn,r, to handle a given set
of traffic patterns, or (2) load balancing to minimize the
maximum load across the network, minmaxn,r{loadn,r},
for the current workload and provisioning regime.

Unfortunately, the reuse and policy dependencies
make this optimization problem intractable.6 So, we con-
sider a practical, but constrained, operating model that
eliminates the need to explicitly capture these dependen-
cies. The main idea is that all applications pertaining to
a given session run on the same node. That is, if some
session i needs to be processed by applications m1 and
m2 (and nothing else), then we force both m1 and m2 to
process session i on the same node. As an example, let us
consider two applications: m1 (say IDS) processes HTTP
and UDP traffic and m2 (say WAN-optimizer) processes
HTTP and NFS traffic. Now, consider a HTTP session i.
In theory, we could run m1 on node n1 and m2 on node
n2 for this session i. Our model constrains both m1 and
m2 for session i run on n1. Note that we can still assign
different sessions to other nodes. That is, for a different
HTTP session i′, m1 and m2 could run on n2.

Having chosen this operational model, for each traf-
fic class c we identify the exact sequence of applications
that need to process sessions belonging to c. We call each
such sequence a hyperapp. Formally, if hc is the hyper-
app for the traffic class c, then ∀m : Tc ∈ Tm ⇔ m ∈ hc.
(Note that different classes could have the same hyper-
app.) Figure 5 shows the three hyperapps for the previ-
ous example: one for HTTP traffic (processed by both m1
and m2), and one each for UDP and NFS traffic processed
by either m1 or m2 but not both. Each hyperapp also stat-
ically defines the policy order across its constituent ap-
plications.

This model has three practical advantages. First, it
eliminates the need to capture the individual actions
within a middlebox application and their reuse depen-
dencies. Similar to the per-session resource footprint
Fm,r,n of the middlebox application m on resource r, we

6We show the precise formulation in a technical report [35].



can define the per-session hyperapp-footprint of the hy-
perapp h on resource r as Fh,r,n. This implicitly ac-
counts for the common actions across applications within
h. Note that the right hand side of Figure 5 does not show
the common action; instead, we include the costs of the
common action when computing the F values for each
hyperapp. Identifying the hyperapps and their F values
requires a pre-processing step that takes exponential time
as a function of the number of applications. Fortunately,
this is a one-time task and there are only a handful (< 10)
of applications in practice.

Second, it obviates the need to explicitly model the
ordering constraints across applications. Because all ap-
plications relevant to a session run on the same node, en-
forcing policy ordering can be implemented as a local
scheduling decision on each CoMb box (§5).

Third, it simplifies the traffic model. Instead of con-
sidering the coverage on a per-session basis, we consider
the total volume of traffic in each class. Thus, we can
consider the management problem in terms of deciding
the fraction of traffic belonging to the class c that each
node n has to process (i.e., run the hyperapp hc). Let
dc,n denote this fraction and let |Tc| denote the volume of
traffic for class c.

The optimization problem can be expressed by the lin-
ear program shown in Eq(1)—Eq(4). (For brevity, we
show only the load balancing objective.) Eq(2) models
the stress or load on each resource at each node in terms
of the aggregate processing costs (i.e., product of the
traffic volume and the footprints) assigned to this node.
Here, n ∈path c denotes that node n is on the routing path
for the traffic in Tc. Eq(3) simply specifies a coverage
constraint so that the fractional responsibilities across the
nodes on the path for each class c add up to 1.

Minimizemax
r,n
{loadn,r}, subject to (1)

∀n,r : loadn,r = ∑
c:n∈pathc

dc,n|Tc|Fhc,r,n

Provn,r
(2)

∀c : ∑
n∈pathc

dc,n = 1 (3)

∀c,n : 0≤ dc,n ≤ 1 (4)

The controller solves this optimization to find the op-
timal set of dc,n values specifying the per-class responsi-
bilities of each middlebox node. Then it maps these val-
ues into device-level configurations per middlebox. We
defer a discussion of the mapping step to §6.

5 CoMb Single-box Design
We now turn to the design of a single CoMb box. As de-
scribed in the previous section, the output of the network
controller is an assignment of processing responsibilities
to each CoMb box. This assignment specifies:
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• a set of (traffic class, fraction) pairs {(Tc, dc,n)} that
describes what traffic (type and volume) each CoMb
box needs to process.

• the hyperapp hc associated with each traffic class Tc,
where each hyperapp is an ordered set of one or more
middlebox applications.
We start with our overall system architecture and

then describe how we parallelize this architecture over
a CoMb box’s hardware resources.

5.1 System Architecture
At a high level, packet processing within a CoMb box
comprises three logical stages as shown in Figure 6. An
incoming packet must first be classified, to identify what
traffic class Tc it belongs to. Next, the packet is handed
to a policy enforcement layer responsible for steering the
packet between the different applications corresponding
to the packet’s traffic class, in the appropriate order. Fi-
nally, the packet is processed by the appropriate middle-
box application(s). Of these, classification and policy
enforcement are a consequence of our consolidated de-
sign and hence we aim to make these as lightweight as
possible.We elaborate on the role and design options for
each stage next.

Classification: The CoMb box receives a stream of un-
differentiated packets. Since different packets may be
processed by different applications, we must first iden-
tify what traffic class a packet belongs to. There are two
broad design options here. The first is to do the classi-
fication in hardware. Many commercial appliances rely
on custom NICs for sophisticated high-speed classifica-
tion and even commodity server NICs today support such
capabilities [4]. A common feature across these NICs
is that they support a large number of hardware queues
(on the NIC itself) and can be configured to triage in-



coming packets into these queues using certain functions
(typically exact-, prefix- and range-matches) defined on
the packet headers. The second option is software-based
classification—incoming packets are classified entirely
in software and placed into one of multiple software
queues.

The tradeoff between the two options is one of ef-
ficiency vs. flexibility. Software classification is fully
general and programmable but consumes significant pro-
cessing resources; e.g., Ma et al. report general software-
based classification at 15 Gbps (comparable to a com-
modity NIC) on a 8-core Intel Xeon X5550 server [28].

Our current implementation assumes hardware classi-
fication. From an architectural standpoint, however, the
two options are equivalent in the abstraction they expose
to the higher layers: multiple (hardware or software)
queues with packets from a traffic class Tc mapped to
a dedicated queue.

We assume that the classifier has at least as many
queues as there are hyperapps. This is reasonable since
existing commodity NICs already have 128/256 queues
per interface, specialized NICs even more, and software-
based classification can define as many as needed. For
example, with 6 applications, the worst-case number of
hyperapps and virtual queues is 26 = 64, which today’s
commodity NICs can support.
Policy Enforcer: The job of the policy enforcement
layer is to ‘steer’ a packet in the correct order between
the different applications associated with the packet’s hy-
perapp. We need such a layer because the applications on
a CoMb box could come from independent vendors and
we want to run applications such that they are oblivious
to our consolidation. Hence, for a hyperapp comprised of
(say) IDS followed by Proxy, the IDS application would
not know to send the packet to the Proxy for further pro-
cessing. Since we do not want to modify applications,
we introduce a lightweight policy shim (pshim) layer.

We leverage the above classification architecture to de-
sign a very lightweight policy enforcement layer. We
simply associate a separate instance of a pshim with each
output queue of the classifier. Since each queue only
receives packets for a single hyperapp, the associated
pshim knows that all the packets it receives are to be
“routed” through the identical sequence of applications.

Thus, beyond retaining the sequence of applications
for its associated hyperapp/traffic-class, the pshim does
not require any complex annotation of packets or keep
per-session state. In fact, if the hyperapp consists of a
single application, the pshim is essentially a NOP.
Applications: Our design supports two application soft-
ware architectures: (1) standalone software processes
(that run with little or no modification) and (2) ap-
plications built atop an ‘enhanced’ network stack with
reusable software modules for common tasks such as ses-

sion reconstruction and protocol parsing. We currently
assume that applications using custom accelerators ac-
cess these using their own libraries.

5.2 Parallelization on a CoMb box
We assume a CoMb box offers a number of parallel
computation cores—such parallelism exists in general-
purpose servers (e.g., our prototype server uses 8 In-
tel Xeon ‘Westmere’ cores) and is even more prevalent
in specialized networking hardware (e.g., Cisco’s Quan-
tumFlow packet processor offers 40 Tensilica cores). We
now describe how we parallelize the functional layers de-
scribed earlier on this underlying hardware.

Parallelizing the classifier: Since we assumed hard-
ware classification, our classifier runs on the NIC and
does not require parallelization across cores. We refer
the reader to [28] for a discussion of how a software-
based classifier might run on a multi-core system.

Parallelizing a single hyperapp: Recall that a hyper-
app is a sequence of middlebox applications that need to
process a packet. There are two options to map a logical
hyperapp to the parallel hardware (Figure 7):
1. App-per-core: Each application in the hyperapp runs

on a separate core and the pshim steers each packet
between cores.

2. hyperapp-per-core: All applications belonging to the
hyperapp run on the same core. Hence, a given appli-
cation module is cloned with as many instances as the
number of hyperapps in which it appears.
The advantage of the hyperapp-per-core approach is

that a packet is processed in its entirety on a single
core, avoiding the overhead of inter-core communication
and cache invalidations that may arise as shared state
is accessed by multiple cores. (This overhead occurs
more frequently for applications built to reuse process-
ing modules in a common stack.) The disadvantage of
the hyperapp-per-core relative to the app-per-core, is that
it could incur overhead due to context switches and po-
tential contention over shared resources (e.g., data and
instruction caches) on a single core. Which way the scale
tips depends on the overheads associated with inter-core
communication, context switches, etc. which vary across
hardware platforms.

We ran several tests across different hyperapp sce-
narios on our prototype server (§7) and found that the
hyperapp-per-core approach offered superior or compa-
rable performance [35]. These results are also con-
sistent with independent measurements on software
routers [17]. In light of these results, we choose the
hyperapp-per-core model because it simplifies how we
parallelize the pshim (see below) and ensures core-local
access to reusable modules and data structures.
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Figure 8: CoMb box: Putting the pieces together

Parallelizing the pshim layer: Recall that we have a
separate instance of a pshim for each hyperapp. Given
the hyperapp-per-core approach, parallelizing the pshim
layer is easy. We simply run the pshim instance on the
same core as its associated hyperapp.

Parallelizing multiple hyperapps: We are left with one
outstanding question. Given multiple hyperapps, how
many cores, or fraction of a core, should we assign each
hyperapp? For example, the total workload for some hy-
perapp might exceed the processing capacity of a single
core. At the same time, we also want to avoid a skewed
allocation across cores. This hyperapp-to-core mapping
problem can be expressed as a simple linear program that
assigns a fraction of the traffic for each hyperapp h to
each core. (We do not show it for brevity; please refer our
technical report [35].) In practice, this calculation need
not occur at the CoMb box as the controller can also run
this optimization and push the resulting configuration.

5.3 Recap and Discussion
Combining the previous design decisions brings us to the
design in Figure 8. We see that:
• Incoming packets are classified at the NIC and placed

into one of multiple NIC queues; each traffic class is
assigned to one or more queues and different traffic
classes are mapped to different queues.

• All applications within a hyperapp run on the same
core. Hyperapps whose load exceeds a single core’s
capacity are instantiated on multiple cores (e.g., Hy-
perApp3 in Figure 8). Each core may be assigned one
or more hyperapps.

• Each hyperapp instance has a corresponding pshim in-
stance running on the same core and each pshim reads
packets from a dedicated virtual NIC queue. For ex-
ample, HyperApp3 in Figure 8 runs on Core2 and
Core3 and has two separate pshims.7

The resulting design has several desirable properties con-
ducive to achieving high performance:
• A packet is processed in its entirety on a single core

(avoiding inter-core synchronization overheads).

7The traffic split between the two instances of HyperApp3 also oc-
curs in the NIC using filters as in §6.1.

• We introduce no shared data structures across cores
(avoiding needless cache invalidations).

• There is no contention for access to NIC queues
(avoiding the overhead of locking).

• Policy enforcement is lightweight (stateless and re-
quiring no marking or modification of packets).

6 Implementation
Next, we describe how we prototype the different com-
ponents of the CoMb architecture.

6.1 CoMb Controller
We implement the controller’s algorithms using an off-
the-shelf solver (CPLEX). The controller runs a pre-
processing step to generate the hyperapps and their effec-
tive resource footprints taking into account the affinity of
applications for specific accelerators. The controller pe-
riodically runs the optimization step that takes as inputs
the current per-application-port traffic matrix (i.e., per
ingress-egress pair), the traffic of interest to each appli-
cation, the cross-application policy ordering constraints,
and the resource footprints per middlebox module.

After running the optimization, it maps the dc,n values
to device-level configurations as follows. If the CoMb
box supports in-hardware classification (like our proto-
type server) and has a sufficient number of filter entries,
the controller maps the dc,n values into a set of non-
overlapping traffic filters. As a simple example, sup-
pose c denotes all traffic from sources in 10.1.0.0/16
to destinations in 10.2.0.0/16, and dc,n1 = dc,n2 = 0.5.
Then the filters for n1 : 〈10.1.0.0/17,10.2.0.0/16〉 and
n2 : 〈10.1.128.0/17,10.2.0.0/16〉.8 One subtle issue is
that it also installs filters corresponding to traffic in the
reverse direction. Note that if each CoMb box is off-
path, these filters can be pushed to the upstream router or
switch.

If the NIC does not support such expressive filters, or
has a limited number of filter entries (e.g., if the number
of prefix pairs is very high in a large network), the con-
troller falls back to a hash-based configuration [37]. In
this case, the basic classification to identify the required
hyperapp (say based on the port numbers) still happens at
the NIC. The subsequent decision on whether this node
is responsible for processing this session happens in the
software pshim. Each device’s pshim does a fixed-length
(/16) prefix lookup, computes a direction-invariant hash
of the IP 5-tuple [39], and checks if this hash falls in its
assigned range. For the above example, the configuration
will be n1 : 〈10.1.0.0/16,10.2.0.0/16,hash ∈ [0,0.5]〉
and n2 : 〈10.1.0.0/16,10.2.0.0/16,hash ∈ [0.5,1]〉.

8This simple example assumes a uniform distribution of traffic per
prefix block. In practice, the prefixes can be weighted by expected
traffic volumes inferred from past measurements.
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Figure 9: Our modular middlebox implementation

6.2 CoMb box prototype
We prototype a CoMb box on a general-purpose server
(without accelerators) with two Intel(R) Xeon(R) ‘West-
mere’ CPUs each with four cores at 3.47GHz (X5677)
and 48GB memory, configured with four Intel(R) 82599
10 GigE NIC ports [4] each capable of supporting up to
128 queues, running Linux (kernel v.2.6.24.7).

Classification: We leverage the classification capabili-
ties on the NIC. The NIC demultiplexes packets into sep-
arate in-hardware queues per hyperapp based on the fil-
ters from the controller. The 82599 NIC supports 32K
classification entries over: src/dst IP addresses, src/dst
ports, protocol, VLAN header, and a flexible 2-byte tu-
ple anywhere in the first 64 bytes of the packet [4]. We
use the address and port fields to create filter entries.

Policy Enforcer: We implement the pshim in kernel-
mode SMP-Click [30] following the design in §5. In
addition to the policy routing, the pshim implements
two additional functions: (1) creating interfaces for the
application-level processes to receive and send packets
(see below) and (2) the optional hash-based check to de-
cide whether to process a specific packet.

6.3 CoMb applications
Our prototype supports two application architectures:
modular middlebox applications written in Click and
standalone middlebox processes (e.g., Snort, Squid).

Modular middlebox applications: As a proof-of-
concept prototype, we implement several canonical mid-
dlebox applications: signature-based intrusion detection,
flow-level monitoring, a caching proxy, and a load bal-
ancer as (user-level) modules in Click as shown in Fig-
ure 9. As such, our focus is to demonstrate the feasibility
of building modular middlebox applications and estab-
lish the potential for reuse. We leave it to future work to
explore the choice of an ideal software architecture and
an optimal set of reusable modules.

To implement these applications, we port the logic for
session reconstruction and protocol parsers (e.g., HTTP
and NFS) from Bro [32]. We implement a custom flow
monitoring system. Our signature-based IDS uses Bro’s
signature matching module. We also built a custom Click
module for parsing TFTP traffic. The load balancer is

Application Dependency chain Contribution (%)
Flowmon Session 73
Signature Session 26

Load Balancer HTTP,Session 88
Cache HTTP,Session 54
Cache NFS,Session 50
Cache TFTP,Session 36

Table 2: Contribution of reusable modules

a layer-7 application that assigns HTTP requests to dif-
ferent backend servers by rewriting packets. The cache
mimics actions in a caching proxy (i.e., storing and look-
ing up requests in cache), but does not rewrite packets.

While Bro’s modular design made it a very useful
starting point, its intended use is as a standalone IDS
while CoMb envisions reusing modules across multiple
applications from different vendors. This leads to one
key architectural difference. Modules in Bro are tightly
integrated; lower layers are aware of the higher layers
using them and “push” data to them. We avoid this tight
coupling between the modules and instead implement a
“pull” model where lower layers expose well-defined in-
terfaces using which higher-layer functions obtain rele-
vant data structures.

Supporting standalone applications: Last, we focus
on how a CoMb box supports standalone middlebox ap-
plications (e.g., Snort, Squid). We run standalone appli-
cations as separate processes that can access packets in
one of two modes. If we have access to the application
source, we modify the packet capture routines; e.g., in
Snort we replace libpcap calls with a memory read
to a shared memory region into which the pshim copies
packets. For applications where we do not have access to
the source, we simply create virtual network interfaces
and the pshim writes to these interfaces. The former
approach is more efficient but requires source modifica-
tions; the latter is less efficient but allows us to run legacy
software with no modifications.

7 Evaluation
Our evaluation addresses the following high-level ques-
tions regarding the benefits and overheads of CoMb:
• Single-box benefits: What reuse benefits can consol-

idation provide? (§7.1)
• Single-box overhead: Does consolidating applica-

tions affect performance and extensibility? (§7.2)
• Network-wide benefits: What benefits can network

administrators realize using CoMb? (§7.3)
• Network-wide overhead: How practical and efficient

is CoMb’s controller? (§7.4)

7.1 Potential for reuse
First, we measure the potential for processing reuse
achievable by refactoring middlebox applications. As



§3.2 showed, the savings from reuse depend both on
the processing footprints of reusable modules and the
expected amount of traffic overlap. Here, we focus
only on the former and defer the combined effect to
the network-wide evaluation (§7.3). We use real packet
traces with full payloads for these benchmarks.9 Because
we are only interested in the relative contribution, we
run these benchmarks with a single userlevel thread in
Click. We use PAPI10 to measure the number of CPU
cycles per-packet each module uses. Note that an appli-
cation like Cache uses different processing chains (e.g.,
Cache-HTTP-session vs. Cache-NFS-session); the rela-
tive contribution depends on the exact sequence. Table 2
shows that the reusable modules contribute 26–88% of
the overall processing across the different applications.

7.2 CoMb single-box performance
We tackle three concerns in this section: (1) What over-
head does CoMb add for running individual applica-
tions? (2) Does CoMb scale well as traffic rates increase?
and (3) Does application performance suffer when ad-
ministrators want to add new functionality?

For the following experiments, we report throughput
measurements using the same full-payload packet traces
from §7.1 on our prototype CoMb server with two In-
tel Westmere CPUs each with four cores at 3.47GHz
(X5677) and 48GB memory. The results are consistent
with other synthetic traces as well.

7.2.1 Shim Overhead
Recall from §6 that CoMb supports two types of middle-
box software: (1) standalone applications (e.g., Snort),
and (2) modular applications in Click. Table 3 shows
the overhead of running a representative middlebox ap-
plication from each class on a single core in our plat-
form. We show two scenarios, one where all classifica-
tion occurs in hardware (labeled shim-simple) and when
the pshim runs an additional hash-based check as dis-
cussed in §6 (labeled shim-hash). For middlebox mod-
ules in Click, shim-simple imposes zero overhead. Inter-
estingly, the throughput for Snort is better than its native
performance. The reason is that Click’s packet capture
routines are more efficient than native Snort (libpcap
or daq). We also see that shim-hash adds only a small
overhead over shim-simple. This result confirms that run-
ning applications in CoMb imposes minimal overhead.

7.2.2 Performance under consolidation
Next, we study the effect of adding more cores and
adding more applications. For brevity, we only show
results for shim-simple. For these experiments, we use

9From https://domex.nps.edu/corp/scenarios/2009-m57/net/; we
are not aware of other traces with full payloads.

10http://icl.cs.utk.edu/papi/

Application architecture Overhead (%)
(instance) Shim-simple Shim-hash

Standalone (Snort) -61 -58
Modular (IPSec) 0 0.73

Modular (RE [11]) 0 0.62

Table 3: Performance overhead of the shim layer for dif-
ferent middlebox applications
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Figure 10: Throughput vs. number of cores

a standalone application process using the Snort IDS. To
emulate adding new functionality, we create duplicate in-
stances of Snort. (We find similar results with heteroge-
neous applications too.) At a high-level, we find that con-
solidation in CoMb does not introduce contention bottle-
necks across applications.

As a point of comparison, we also evaluate a virtual
appliance architecture [22], where each Snort instance
runs in a separate VM on top of the Xen hypervisor. To
provide high I/O throughput to the VM setup, we use the
SR-IOV capability in the hardware [8] and the vSwitch-
ing capability of the NIC to transfer packets between
application instances [4]. We confirmed that I/O was
not a bottleneck; we were able to achieve a throughput
of around 7.8 Gbps on a single VM with a single CPU
core which is consistent with state-of-art VM I/O bench-
marks [40]. As in §5.2, we need to decide between the
app-per-core vs. hyperapp-per-core design for the VM
setup. We saw that app-per-core is roughly 2× better for
the VM case because context switches between VMs are
expensive and packet switching between VMs is in hard-
ware (i.e. vSwitching). Thus, we conservatively use the
app-per-core design for the VM setup.

Figure 10 shows the effect of adding more cores to the
platform with a fixed hyperapp consisting of two Snort
processes in sequence. We make three main observa-
tions. First CoMb’s throughput with this real IDS/IPS
is ≈ 10 Gbps on a 8-core platform which is comparable
to vendor datasheets [2]. Second, CoMb exhibits a rea-
sonable scaling property similar to prior results on multi-
core platforms [14]. This suggests that adapting CoMb to
higher traffic rates simply requires more processing cores
and does not need significant re-engineering. Finally,
CoMb’s throughput is 5× better than the VM case. This
performance gap arises out of a combination of three
factors. First, Snort atop the pshim runs significantly
faster than native Snort because Click offers more effi-



cient packet capture as we saw in Table 3. Second, run-
ning Snort inside a VM has roughly 30% lower through-
put than native Snort. Third, our hyperapp model amor-
tizes the fixed cost of copying packets into the applica-
tion layer whereas the VM-based setup incurs multiple
copies. While the performance of virtual network appli-
ances is under active research, these results are consistent
with benchmarks for virtual appliances [1].

We also evaluated the impact of running more appli-
cations per-packet. The ideal degradation when we run k
applications is a 1

k curve because running k applications
needs k-times as much work. We found that both CoMb
and the VM-based setup have a near-ideal throughput
degradation (now shown). This confirms that CoMb al-
lows administrators to easily add new middlebox func-
tionality in response to policy or workload changes.

7.3 Network-wide Benefits

Setup: Next, we evaluate the network-wide benefits that
CoMb offers via reuse, multiplexing, and spatial distri-
bution. For this evaluation, we use real topologies from
educational backbones and the Enterprise network, and
PoP-level AS topologies from Rocketfuel [38]. To obtain
realistic time-varying traffic patterns, we use the follow-
ing approach. We use traffic matrices for Internet211 to
compute empirical variability distributions for each ele-
ment in a traffic matrix; e.g., the probability that the vol-
ume is between 0.6 and 0.8 the mean. Then, using these
empirical distributions, we generate time-varying traffic
matrices for the remaining AS-level topologies using a
gravity model to capture the mean volume [34]. For the
Enterprise network, we replay real traffic matrices.

In the following results, we report the benefits that
CoMb provides relative to today’s standalone middle-
box deployments with the four applications from Table 2:
flow monitoring, load balancer, IDS, and cache. To em-
ulate current deployments, we use the same applications
but without reusing modules. For each application, we
use public configurations to identify the application ports
of traffic they process. To capture changes in per-port
volume over time, we replay the empirical variability
based on flow-level traces from Internet2. We begin with
a scenario where all four applications can be spatially
distributed and then consider a scenario when two of the
applications are topologically constrained.

Provisioning: We consider a provisioning exercise
to minimize the resources needed to handle the time-
varying traffic patterns generated as described earlier
across 200 epochs. The metric of interest here is the rela-
tive savings that CoMb provides vs. today’s deployments
where all applications run as independent devices only at

11http://www.cs.utexas.edu/˜yzhang/research/AbileneTM
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Figure 11: Reduction in provisioning cost with CoMb
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Figure 12: Impact of spatial distribution on CoMb’s re-
duction in provisioning cost

the ingress: Coststandalone,ingress
CostCoMb

. The Cost term here repre-
sents the total cost of provisioning the network to handle
the given set of time-varying workloads (i.e., ∑n,r Provn,r
from §4).

We try two CoMb configurations: with and without
reusable modules. In the latter case, the middlebox ap-
plications share the same hardware but not software. Fig-
ure 11 shows that across the different topologies CoMb
with reuse provides 1.8–2.5× savings relative to today’s
deployment strategies. For the Enterprise setting, CoMb
even without reuse provides close to 1.8× savings.

Figure 12 studies the impact of spatial distribution by
comparing three strategies for distributing middlebox re-
sponsibilities: full path (labeled Path), either ingress or
egress (labeled Edge), or only the Ingress. Interestingly,
Edge is very close to Path. To explore this further, we
also tried a strategy of picking a random second node
for each path. We found that this is again very close to
Path (not shown). In other words, for Edge the egress is
not special; the key is having one more node to distribute
the load. We conjecture that this is akin to the “power
of two random choices” observation [29] and plan to ex-
plore this in future work.

Load balancing: CoMb also allows middlebox deploy-
ments to better adapt to changing traffic workloads under
a fixed provisioning strategy. Here, our metric of interest
is the maximum load across the network, and we measure
the relative benefit as: MaxLoadstandalone,ingress

MaxLoadCoMb
. We consider

two network-wide provisioning strategies where each lo-
cation is provisioned with the same resources (labeled
Uniform) or proportional to the average volume it sees
(labeled Volume). For the standalone case, we assume
resources are split between applications proportional to
their workload. Note that the combination of volume and
workload proportional provisioning likely reflects cur-
rent practice. We also consider the Uniform case be-
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Topology Unconstrained Two-step Ingress-only
Internet2 1.81 1.62 1.41

Geant 2.20 1.71 1.42
Enterprise 2.58 1.76 1.45
AS1221 2.17 1.69 1.41
AS3257 1.85 1.63 1.42
AS1239 2.11 1.69 1.43

Table 4: Relative savings in provisioning when Cache
and Load balancer are spatially constrained

cause it is unclear if the proportional allocation strategy
is always better for today’s deployments; e.g., it could be
better on average, but have worse “tail” performance as
shown in Figure 13.

As before, we generate time-varying traffic patterns
over 200 epochs and measure the above relative load
metric per epoch. For each topology, Figure 13 shows
the distribution of this metric (across epochs) using a
box-and-whiskers plot with the 25th, 50th, and 75th per-
centiles, and the minimum and maximum values. The
result shows that CoMb reduces the maximum load by
> 2× and the reduction can be as high as 25×, confirm-
ing that CoMb can better handle traffic variability com-
pared to current middlebox deployments.

Topological constraints: Next, we consider a scenario
when some applications cannot be spatially distributed.
Here, we constrain Cache and the Load balancer to run
at the ingress for each path. One option in this scenario
is to pin all middlebox applications to the ingress (to ex-
ploit reuse) but ignore spatial distribution. While CoMb
provides non-trivial savings (1.4×) even in this case, this
ignores opportunities for further savings. To this end, we
extend the formulation from §4.2 to perform a two-step
optimization. In the first step, we assign the topologically
constrained applications to their required locations. In
the second, we assign the remaining applications, which
can be distributed, with a slight twist. Specifically, we re-
duce the hyperapp-footprints on locations where they can
reuse modules with the constrained applications. For ex-
ample, if we have the hyperapp Cache-IDS, with Cache
pinned to the ingress, we reduce the IDS footprint on
the ingress. Table 4 shows that this two-step procedure
is able to improve the savings 20–30% compared to an
ingress-only solution. This preliminary analysis suggests
that CoMb can work even when some applications are

Topology Path Edge Ingress
Internet2 0.87 0.87 0.54

Geant 1.49 1.25 0.55
Enterprise 1.02 1.02 0.54
AS1221 1.33 1.33 0.54
AS3257 0.68 0.68 0.55
AS1239 1.26 1.26 0.55

Table 5: Relative size of the largest CoMb box. A higher
value here means that the standalone case needs a larger
box compare to CoMb

Topology #PoPs Time (s)
Strawman-LP hyperapp

Internet2 11 687.68 0.05
Geant 22 3455.28 0.24

Enterprise 23 2371.87 0.25
AS3257 41 1873.32 0.78
AS1221 44 3145.77 1.08
AS1239 52 9207.78 1.58

Table 6: Time to compute the optimal solution

topologically constrained. As future work, we plan to ex-
plore a detailed analysis of such topological constraints.

Does CoMb need bigger boxes? A final concern is that
consolidation may require “beefier” boxes; e.g., in the
network core. To address this concern, Table 5 compares
the processing capacity of the largest standalone box
needed across the network to that of the largest CoMb
box: Largeststandalone

LargestCoMb
. We see that the largest standalone

box is actually larger than CoMb for many topologies.
Even without distribution, the largest CoMb box is only

1
0.55 = 1.8×, which is quite manageable.

7.4 CoMb controller performance
Last, we focus on two key concerns surrounding the per-
formance of the CoMb network controller: (1) Is the op-
timization fast enough to respond to traffic dynamics (on
the order of a few minutes)? and (2) How close to the
theoretical optimal is our formulation from §4.2?

Table 6 shows the time to run the optimization from
Section 4 using the CPLEX LP solver on a single core
Intel(R) Xeon(TM) 3.2GHz CPU. To put our formulation
in context, we also show the time to solve an LP relax-
ation for a precise model that captures reuse and policy
dependencies on a per-session and per-action basis [35].
(The precise model is an intractable discrete optimiza-
tion problem; we use its LP relaxation as a proxy.) The
result shows that our formulation is almost four orders
of magnitude faster than the precise model. Given that
we expect to recompute configurations on the order of a
few minutes [20], the compute times (1.58s for a 52-node
topology) are reasonable.

We also measured the optimality gap between the pre-
cise formulation [35] and our practical approach over a



range of scenarios. Across all topologies, the optimal-
ity gap is ≤ 0.19% for the load balancing and ≤ 0.1%
for the provisioning (not shown). Thus, our formulation
provides a tractable, yet near-optimal, alternative.

8 Discussion
The consolidated middlebox architecture we envision
raises two deployment concerns that we discuss next.

First, CoMb changes existing business and operating
models for middlebox vendors as it envisions vendors
that decouple middlebox software and hardware and also
those who refactor their applications to exploit reuse.
We believe that the qualitative (i.e., extensibility, re-
duced sprawl, and simplified management) and quanti-
tative (i.e., lower provisioning costs and better resource
management) advantages that CoMb offers will motivate
vendors to consider product offerings in this space. Fur-
thermore, evidence suggests vendors are already rethink-
ing the software-hardware coupling and starting to offer
software-only “virtual appliances” (e.g., [7]). We also
speculate that some middlebox vendors may already in-
ternally have modular middlebox stacks. CoMb simply
requires one or more of these vendors to provide open
APIs to these modules to encourage further innovation.

Second, running multiple middlebox applications on
the same platform raises concerns about isolation with
respect to performance (e.g., contention for resources),
security (e.g., the NIDS/firewall must not be compro-
mised), and fault tolerance (e.g., a faulty application
should not crash the whole system). With respect to
performance, concurrent work shows that contention has
minimal impact on throughput on x86 hardware for
the types of network processing workloads we envi-
sion [16]. In terms of fault tolerance and security, pro-
cess boundaries already provide some degree of isolation
and techniques such as containers can give stronger prop-
erties [5]. There are two challenges with such sandbox-
ing. The first is ensuring the context switching overheads
are low. Second, even though CoMb without reusing
modules provides significant benefits, it would be use-
ful to provide isolation without sacrificing the benefits
of reuse. We also note that running applications in user
space can further insulate misbehaving applications. In
this light, recent results showing the feasibility of high
performance network I/O in the user space are promis-
ing [33].

9 Related Work
Integrating middleboxes: Previous work discusses
mechanisms to better expose middleboxes to administra-
tors (e.g., [6]). Similarly, Joseph et al. describe a switch-
ing layer for integrating middleboxes in datacenters [26].
CoMb focuses on the orthogonal problem of consolidat-
ing middlebox deployments.

Middlebox measurements: Studies have measured the
end-to-end impact of middleboxes [10] and interactions
with transport protocols [24]. The measurements in §2
and high-level opportunities in §3 appeared in an earlier
workshop paper [36]. This work goes beyond the moti-
vation to demonstrate a practical design and implementa-
tion and quantifies the single-box and network-wide ben-
efits of a consolidated middlebox architecture.

General-purpose network elements: There are many
efforts to build commodity routers and switches using
x86 CPUs [18, 19, 22], GPUs [23], and merchant switch
silicon [27]. CoMb can benefit from these advances as
well. It is worth noting that the challenges we address in
CoMb also apply to these efforts, if the extensibility they
enable leads to diversity in traffic processing.

Rethinking middlebox design: CoMb shares the
motivation of rethinking middlebox design with Flow-
stream [22] and xOMB [12]. FlowStream presents a
high-level architecture using OpenFlow for policy rout-
ing and runs each middlebox as a VM [22]. Unlike
CoMb, a VM approach precludes opportunities for reuse.
Further, as §7.2 shows today’s VM-based solutions have
considerably lower throughput. xOMB presents a soft-
ware model for extensible middleboxes [12]. CoMb ad-
dresses network-wide and platform-level resource man-
agement challenges that arise with consolidation that nei-
ther FlowStream nor xOMB seek to address. CoMb also
provides a more general management framework to sup-
port both modular and standalone middlebox functions.

Network management: CoMb’s controller follows in
the spirit of efforts showing the benefits of centralization
in routing, access control, and monitoring (e.g., [21, 31,
15]). The use of optimization arises in other network
management applications. However, reuse and policy
dependencies that arise in the context of consolidating
middlebox management create new challenges for man-
agement and optimization unique to our context.

10 Conclusions
We presented a new middlebox architecture called
CoMb, which systematically explores opportunities for
consolidation, both in building individual appliances and
in managing an ensemble of these across a network. In
addition to the qualitative benefits with respect to ex-
tensibility, ease of management, and reduction in de-
vice sprawl, consolidation provides new opportunities
for resource savings via application multiplexing, soft-
ware reuse, and spatial distribution. We addressed key
resource management and implementation challenges in
order to leverage these benefits in practice. Using a pro-
totype implementation in Click, we show that CoMb re-
duces the network provisioning cost by up to 2.5×, de-



creases the load skew by up to 25×, and imposes mini-
mal overhead for running middlebox applications.
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