
COMS E6998-8
Software Defined Networking

Homework 2 Prof. Li Erran Li
September 24, 2013

Frenetic Controller Implementation Using Automatic Sequential Composition.
Due Date: 10/12/2013 18:00:00 EST

1 Overview

In this homework, you are asked to write a set of Frenetic modules and compose them to implement
a Frenetic controller. [1].

2 Background Concepts

Frenetic [1] is a functional reactive programming language for SDN operating at a packet level of
abstraction. Frenetic is designed to solve a major OpenFlow/NOX programming issue, a difficulty
on compositing controller module features. This is achieved by abstracting the details of Openflow
protocols, providing a simplified syntax, and enabling modular program development. Its syntax
incorporates high-level, programmer-centric packet-processing operators, which makes composition
easy.
A monitor is a feature that periodically watches how many packets or how long data have been
transfered to a specified target (e.g. all the packets from a host 1). In frenetic, the monitor function,
as most other primitive features, can be called easily. For example, monitorLoad(10, “Packets From
H1”) will print the monitor result every 10 seconds along with the given message. For more details,
please use this as reference (https://github.com/frenetic-lang/frenetic/wiki/A-NCManual).

3 Question Specification

We have 5 questions. Each solution should be located in Qx where x is the question number. Use
a MAC address of 00:00:00:00:00:0x to recognize host x.

Q1 Write a simple hub that floods all packets.
sudo mn−−topo single, 4 −−controller remote−−mac

Q2 Copy Q1 and expand it to work as a hub and a simple monitor that counts all packets going
to or leaving hosts with a odd number for the last digit of their MAC address.
sudo mn−−topo linear, 6 −−controller remote−−mac

Q3 Copy Q1 file and modify to block HTTP (port 80) traffic between hosts 2 and 4.
sudo mn−−topo single, 4 −−controller remote−−mac

Q4 Make Q3’s firewall feature an independent module (file). Write a main module that “include”s
the module and works as a firewalling repeater by composition.
sudo mn−−topo linear, 3 −−controller remote−−mac

Q5 Implement a firewalling and monitoring learning switch. For the firewall feature : 1) block all
arp packets, 2) block any HTTP packets among host 3,4,5, and 3) allow all the rest packets.
For monitor, show the overall status (i.e. all the packets under the network). Use ‘learn’
function to call the learning switch.
sudo mn−−topo tree, depth = 2, fanout = 3 −−controller remote−−mac



4 Preparation Steps

1. Download a VM image from “http://www.cs.umass.edu/ arjun/download/frenetic.ova”.

2. Open the image from your VM environment (VMWare, VirtualBox, or etc.) and power on.

3. After the image finishes booting, login with frenetic / frenetic.

4. Change password ASAP.

5. Follow Frenetic Tutorial [2] Section 6 to 9.

6. Clone hw2 git repo by typing ‘git clone https://github.com/jcybha/SDN hw2.git’.

5 Work Steps

1. Since Frenetic follows OCaml syntax, if you have not programmed in OCaml before please
read this “http://ocaml.org/tutorials/basics.html”
and this “http://ocaml.org/tutorials/structure of ocaml programs.html”.

2. It is also recommended to go over this interactive tutorial on OCaml “http://try.ocamlpro.com”

3. Change working directory by ‘cd SDN hw2’.

4. Modify the files in ‘Q1’ according to the specification above and launch Frenetic ‘frenetic
Main.nc’ in the directory Q1.

5. Test your code by launching mininet. Please use the give mininet command for each question.

6. Finish all the questions on Qx directories.

7. Create an archive by typing ‘./make archive.sh’. You should be able to see an archive file,
named ‘sdn-hw2-UNI.bz2’ (Note that it will include Qx directory only.)

8. Upload the archive file to the courseworks’ hw2 page.

6 Grading Rules

Maximum Grade: 100
Minimum Grade: 0

Implementation for each question +20

Coding style -1 per case
Use case failure -5 per case

Late submission -
d∑

i=1
50/i, where d is the round-up number of days beyond the deadline.

7 Late Policy

Follows the late submission guide in Grading Rules Section.

2



References

[1] Nate Foster et al. Frenetic: a network programming language. SIGPLAN Not., 46(9):279–291,
September 2011.

[2] https://github.com/frenetic-lang/frenetic/wiki/Frenetic Tutorial. Frenetic tutorial. 2013.

3


	Overview
	Background Concepts
	Question Specification
	Preparation Steps
	Work Steps
	Grading Rules
	Late Policy

