
Preventing Accidental Data Disclosure in
Modern Operating Systems

Adwait Nadkarni

North Carolina State University

Raleigh, North Carolina, USA

anadkarni@ncsu.edu

William Enck

North Carolina State University

Raleigh, North Carolina, USA

enck@cs.ncsu.edu

ABSTRACT
Modern OSes such as Android, iOS, and Windows 8 have
changed the way consumers interact with computing devices.
Tasks are often completed by stringing together a collec-
tion of purpose-specific user applications (e.g., a barcode
reader, a social networking app, a document viewer). As
users direct this workflow between applications, it is di�-
cult to predict the consequence of each step. Poor selection
may result in accidental information disclosure when the
target application unknowingly uses cloud services. This
paper presents Aquifer as a policy framework and system
for preventing accidental information disclosure in modern
operating systems. In Aquifer, application developers de-
fine secrecy restrictions that protect the entire user interface
workflow defining the user task. In doing so, Aquifer pro-
vides protection beyond simple permission checks and allows
applications to retain control of data even after it is shared.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—ac-
cess controls, information flow controls

Keywords
OS security; access control; information flow control

1. INTRODUCTION
Operating system security architectures are currently un-

dergoing a fundamental change. Modern OSes [32, 42], such
as Android, iOS, and Windows 8, take the suggestion of
decades of security research [45, 22, 35, 14] and run each ap-
plication as a unique security principal. While having finer-
grained security principals prevents many obvious attacks,
complete sandboxing [19] is inadequate.

Applications share data with one another, perhaps more
so now than in the past. Consider the Android platform
where applications are designed to work together to perform
a larger, user-defined task. For example, a shopping app

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS’13, November 4–8, 2013, Berlin, Germany.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2477-9/13/11 ...$15.00.

http://dx.doi.org/10.1145/2508859.2516677.

might: 1) invoke a barcode scanner app that uses the camera
to read the UPC from an item, 2) look up that item on the
Web, and then 3) use a social networking app to share the
item and best deal with friends. This modularity strikes a
balance between simple UNIX tools (e.g., sed, grep) and
monolithic GUI applications (e.g., MS O�ce).

A key challenge for modern OS security is controlling this
user-directed workflow between apps and preventing acci-
dental information disclosure. For example, a photo of a
whiteboard containing meeting notes might be inadvertently
uploaded to a social networking site, or a confidential docu-
ment might be inadvertently stored on a cloud server when
viewed. Accidental disclosure is growing concern for con-
sumer privacy, and has been a large concern for companies
and organizations attempting to comply with the many data
security compliance standards, e.g., HIPAA [39], GLBA [38],
PCI DSS [30], and IRS 1075 [40].

Preventing accidental disclosure is not as simple as re-
stricting the set of applications an application with sensi-
tive data can interact with (e.g., Saint [29]). A trusted
application receiving data might share that data with an-
other application that has unexpected disclosure. Hence,
in a collaborative application environment, we must address
the accidental disclosure problem as one of information flow.
Specifically, we identify the data intermediary problem as a
growing concern for modern OSes. The data intermediary
problem is a subtype of secure information flow vulnerabil-
ity that results when user choices dictate data flows between
user-facing apps and apps lose control of the data.

In this paper, we present Aquifer as a policy framework
and system to mitigate accidental information disclosure in
modern operating systems. Aquifer is specifically designed
to protect large, application-specific, user data objects such
as o�ce documents, voice or written notes, and images. In
Aquifer, developers of applications that originate data ob-
jects specify secrecy restrictions based on the runtime con-
text and the purpose of the app. This policy restricts all
apps participating in a user interface workflow that Aquifer
dynamically constructs as the user navigates di↵erent appli-
cations. Aquifer enforces two types of secrecy restrictions:
export restrictions ensure only specific apps can export the
data o↵ the host, and required restrictions ensure that spe-
cific apps are involved in workflows when exporting con-
trolled data objects read from persistent storage. This pol-
icy is specified using a decentralized information flow control
(DIFC) motivated language that allows many data owners
on a workflow to participate in secrecy restrictions. In e↵ect,
Aquifer allows applications to gain control of shared sensi-

tive data, thereby addressing the data intermediary problem
for these large data objects.

This paper makes the following contributions:

• We identify the data intermediary problem as a grow-
ing concern for modern operating systems. While the
data intermediary problem is present in traditional
commodity OSes, the lack of application separation
did not expose it as a concern.

• We propose the Aquifer policy framework for address-
ing accidental disclosures that result from the data in-
termediary problem in modern OSes. Aquifer allows
app developers to contribute DIFC-based secrecy re-
strictions to protect application-specific data objects.
We formally define the policy logic and prove its safety.

• We provide a proof-of-concept implementation of Aquifer
and integrate it with Android. We demonstrate how
Aquifer can be practically realized within an existing
platform, and provide three case studies by modifying
popular open source applications.

The remainder of this paper proceeds as follows. Sec-
tion 2 provides a use case and problem definition. Sec-
tion 3 overviews our approach. Section 4 formally defines
the Aquifer policy logic. Section 5 describes the Aquifer sys-
tem design. Section 6 details the implementation. Section 7
evaluates Aquifer’s policy compatibility and performance.
Section 8 discusses limitations. Section 9 overviews related
work. Section 10 concludes.

2. MOTIVATION AND PROBLEM
Modern operating systems such as Android, iOS, andWin-

dows 8 present a new programming abstraction for software
developers. Instead of placing all functionality into a single
window with multiple dialog boxes, the application’s user in-
terface is separated into multiple screens where each screen
handles a specific task. To complete a task, the user navi-
gates through a series of screens. These screens may be in
the same or di↵erent applications. For example, Android
applications use intents addressed to action strings (see Sec-
tion 2.4) to help the OS find the best application for a task.
Similarly, Windows 8 provides “share charms” to help users
complete tasks with di↵erent applications. Finally, iOS pro-
vides limited sharing and navigation between applications
using URL protocol handlers.

In each of these OSes, applications are treated as sepa-
rate security principles, although the specific security mech-
anisms di↵er. Android separates applications as di↵erent
UNIX user IDs, and Windows 8 uses SUIDs. In contrast,
iOS runs all applications as the mobile user with a generic
sandbox policy. However, digital signatures are used to iden-
tify applications, and permission state (e.g., location access)
is saved per-application.

Throughout the remainder of the paper, we frequently use
Android to simplify discussion and provide concrete exam-
ples. Our choice of Android is motivated by several factors.
Most importantly, Android provides the most flexible shar-
ing model between applications. As the following discussion
will make clear, sharing data between applications under-
lies the security problem. Android is also open source, used
by hundreds of millions of consumers, and well described
in security literature. We believe that other modern OSes

Email app DocuView WordToPDF

DocuSign

co
nt

ra
ct

.d
oc

co
nt

ra
ct

.p
df

signed.pdf

co
nt

ra
ct

.d
oc

contract.pdf

1

2

3

4

Figure 1: Document signing use case with four apps.
A confidential contract received via Email is 1) read
in a viewer, 2) converted to PDF, 3) embedded with
a written signature, and 4) Emailed back to the
sender.

that provide clear sharing abstractions (e.g., share charms
in Windows 8) can benefit from our policy abstractions and
design; however the implementation details will di↵er.

2.1 Use Case: Signing a Document
The following example provides a simple use case of how

a user Alice might physically sign a document using several
applications in a modern OS. Note that this is just one of
many potential ways Alice can execute this task.

Alice receives a confidential contract in her business Email
app. She needs to sign and return the contract, but does
not have access to a printer or a scanner. Therefore, Alice
uses the DocuSign app on her smartphone to digitally at-
tach a written copy of her signature. The task begins by
Alice accessing the message containing contract.doc in the
Email app. Alice reads contract.doc by sharing it with the
DocuView app. After reading contract.doc, Alice wishes to
sign it with DocuSign; however, DocuSign only operates on
PDF files. Therefore, Alice shares contract.doc with the
WordToPDF app to create contract.pdf, which returns the
PDF to DocuView. Alice then shares contract.pdf with
DocuSign, which embeds a copy of her written signature,
creating signed.pdf. The file is then shared with the Email
app to return the signed contract via Email. This task work-
flow is depicted in Figure 1.

2.2 Problem Definition
The document signing use case provides an example of

how a user might combine several applications to accomplish
a task. In the example, the business Email app received a
confidential contract. Based on the email headers, Email
knows contract.doc should not be exported o↵ of the host
by any application except itself. However, Alice needs to
modify contract.doc in ways that Email does not support.
One of the valuable features of modern OSes is the large
collection of third-party applications that act as modules to
perform specific tasks. While these apps provide valuable
functionality, they also present a security risk: once Email
shares contract.doc with another app, it loses control of
it, which may result in accidental disclosures that violate
compliance regulations (e.g., HIPAA [39], GLBA [38], PCI
DSS [30], and IRS 1075 [40]). For example, the WordToPDF
application might perform the PDF conversion on a cloud
server, or DocuView might synchronize viewed documents
with cloud storage. Similarly, signed.pdf containing the
user’s written signature should only be used when the user

intends. The user may be unaware (or not think of) the
sometimes subtle implications of selecting which apps to use.

The preceding example demonstrates the data intermedi-
ary problem. This problem occurs whenever the user directs
an application to share sensitive data with another appli-
cation that may not be trusted with that data. From the
Email app’s perspective, all of the other applications are
data intermediaries in performing the user’s task of sign-
ing contract.doc. We have created a specific term for this
subproblem to di↵erentiate it from secure information flow
problems that result from background processing. The data
intermediary problem is specific to information flows that
result from user choices in selecting applications to process
data. Furthermore, the problem is most apparent in modern
OSes, because they 1) distinguish applications as security
principals, and 2) provide modular applications to perform
larger user tasks. We note that the data intermediary prob-
lem has always been present in operating systems; however,
it made little sense to discuss when all user applications ran
with the user’s ambient authority.

For the purposes of this paper, we focus on the data inter-
mediary problem with respect to accidental data disclosure
that results from user selection. We leave the much harder
threat model of a malicious application as the motivation for
future work. However, we note that the primitives described
in this paper can form the basis of a system to defend against
this stronger adversary.

2.3 Threat Model
While our work is motivated by data security compliance

regulations, we do not focus on the specific compliance rules
themselves. Instead, we seek to address the broader chal-
lenge of creating mechanisms that help prevent the acci-
dental disclosure portion of the data intermediary problem.
We are specifically concerned with preventing the acciden-
tal export of large, application-specific, user data. There are
potentially many data owners with di↵erent secrecy require-
ments. Therefore, an application may be both a data owner
and a data intermediary, depending on the policy perspec-
tive, and each data owner’s secrecy requirements must be
met, even if doing so prevents data from being used.

Accidental data disclosure may occur in various ways. The
user may share data with the wrong application (e.g., shar-
ing a photo of whiteboard meeting notes via a social net-
working app). Such data export may not comply with the
owner’s policy, but may still occur through the user’s in-
teraction. Poorly programmed applications may also un-
knowingly leak private data to the cloud. For example, a
document editor might backup documents to the cloud, and
an app might send data as part of targeted advertisements.

The work in this paper does not seek to prevent malicious
data disclosure. That is, we do not address side channels
or collusion between applications. We also do not consider
malicious daemons that operate outside our confinement.
Finally, we are specifically concerned with data on the host
and do not address exposure of data from cloud services once
it is allowed to leave the host.

2.4 Background: Android
Android runs a Linux kernel, but defines its own appli-

cation runtime environment. The Java-based middleware
API forces developers to design their applications within
a component framework. Android defines four component

Workflow Policy

A B C

D E

F

Set Policy

Workflow Policy

ZYXW

Background
Functionality

Tr
ac

ki
ng

Set Policy

Figure 2: Aquifer policy abstraction

types: activity, service, content provider, and broadcast re-
ceiver. Activity components define the application’s user
interface. Each UI screen is defined by a di↵erent activ-
ity component. The other components types run in the
background and are started by the Android middleware as
needed. These component types provide daemon-like func-
tionality. Service components are general purpose daemons;
content provider components act as database daemons, and
broadcast receiver components listen for messages.

Android’s binder framework provides process control and
IPC between components. Applications generally do not
interact with binder directly. Instead, they use intent mes-
sages, which start activity and service components, and send
messages to broadcast receiver components. The key at-
tribute of intent messages is their ability to be sent to im-
plicit addresses. For this, Android uses action strings, such
as ACTION_VIEW and ACTION_SEND. Applications define intent
filters to register to receive messages addressed to specific
action strings. The Android framework then automatically
determines potential intent message destinations (i.e. re-
solves the intent), presenting the user with a list of targets
if a single destination must be chosen from a set.

3. OVERVIEW
Aquifer is designed around the concept of a user interface

workflow. As previously discussed, an emergent property of
modern OS applications is that they are relatively simple,
purpose or service specific, and often combined with other
apps to perform a larger task. When the user performs
a task, the execution transitions between UI screens. The
next UI screen can be in the same or di↵erent application.
Aquifer tracks the specific instances of the UI screens used to
perform the user’s task and abstracts them as a UI workflow.

Security policy is applied to the UI workflow abstraction,
as shown in Figure 2. We choose the UI workflow abstraction
to define security policy, because it approximates the task
at hand. All operations performed as part of this task will
have similar security requirements. Frequently, the task will
be centered around a single data object and its derivative
objects, as demonstrated in the document signing use case.

Note that UI workflows are not necessarily linear. They
are dynamically defined as the user navigates functionality
on the host. This includes branches to perform subtasks.
For example, a user interacting with a shopping applica-
tion may navigate to a barcode scanner to retrieve the UPC
code of a product via a camera. When this branch returns,
the user continues the task. As shown in Figure 2, Aquifer

Kernel

Android
Framework

Applications
App 1 App 2 App 3

Aquifer
API

Aquifer
System

Activity
Manager

Aquifer Kernel
Module File System

Figure 3: Aquifer architecture for Android

allows applications on the branch to contribute to secrecy
restrictions (e.g., UI screen D).

Figure 3 depicts the Aquifer architecture for Android.
Aquifer provides an API for applications to manage pol-
icy. This policy is enforced by the Aquifer System, which
places hooks into Android’s Activity Manager service. Fi-
nally, Aquifer has a small kernel component to monitor file
communication.

Aquifer is built around the following principles:

Decentralized policy specification: Modern OSes in-
creasingly contain application-specific data. Therefore OS
providers cannot practically define security policy. Instead,
Aquifer uses the multiple-owner policy semantics of decen-
tralized information flow control (DIFC) [27]. Since each ap-
plication is a potential stakeholder on data, DIFC provides
a well-founded notion of data ownership and an articulation
in each context of what each principal is trusted to do with
that data.

Developers & Users define policy: The developers of
applications that own data can frequently identify security
sensitive data. Aquifer then infers user intention from the
UI workflow. While this reduces the burden on the user,
it does not entirely eliminate it. Sometimes the application
must distinguish between confidential and public data. This
context can frequently be acquired via preliminary labeling,
which ranges by application. For example, the Email app
in our use case could determine secrecy requirements from
an Email header set by the sender. Applications such as
note apps (e.g., Evernote) already have semantic tags on
data (e.g., business, personal) that can be leveraged. User
data labeling has been shown to be useful for specifying
policy [23]. In other cases (e.g., DocuSign), the policy spec-
ification is inherent to the functionality of the app.

Compatibility with legacy applications: Aquifer fo-
cuses protection on large, application-specific, data objects.
Applications frequently process these data objects locally.
This allows Aquifer to be compatible with most legacy appli-
cations and only requires modifications of applications that
must specify policy (i.e., data owners). If no secrecy restric-
tions are specified, Aquifer uses a default-allow policy.

Minimizing policy violations: Policy violations confuse
users by either prompting the user to make security deci-
sions, or breaking functionality. Aquifer helps minimize pol-
icy violations by allowing applications to influence the func-
tionality available to users. For example, Android uses “ac-
tion strings”(e.g., ACTION_SEND, ACTION_VIEW, ACTION_EDIT)
that help the OS find an appropriate consumer for shared
data. When Android finds multiple possible recipients, the
user is presented a list of targets from which to choose. Sim-
ilar functionality is provided by Windows 8’s share charm.
If the user chooses a target application that attempts to ex-

port data, and the UI workflow export restriction denies the
app to use the network, a security exception will result. Of-
ten, this will break the functionality of the app, resulting in
a poor user experience. Therefore, to prevent such scenarios
from even occurring, Aquifer allows a data owner to specify
a UI workflow filter that limits the potential targets.

Compatibility with background functionality: UI screens
may communicate with daemons (e.g., service and content
provider components in Android). If interaction with a dae-
mon passes sensitive data between two UI workflows, e.g.,
between screens C and Y in Figure 2, Aquifer must propa-
gate the policy restrictions to the receiving workflow. How-
ever, Aquifer cannot simply propagate the workflow security
policy to the daemon process, as this would cause the dae-
mon and subsequent UI workflows to be restricted by all
previous UI workflow policies. Ultimately this would result
in an unusable system. Therefore, Aquifer requires a more
precise method of tracking information within daemons. For
this, Aquifer could leverage systems such as TaintDroid [13]
and CleanOS [37]. However, the primary focus of this paper
is the ability to specify and enforce security policies with
respect to the UI workflow. Therefore, for our prototype
implementation, we use a lighter weight heuristic based on
tracking file descriptors used by daemons (see Section 5.3).

4. AQUIFER POLICY
A key challenge of Aquifer is defining the appropriate pol-

icy semantics for addressing the data intermediary problem
in modern OSes. We first motivate the security policy types
supported by Aquifer and then formally define the logic.

4.1 Policy Types
The primary concern of Aquifer is accidental export of

high-value, application-specific user data. Therefore, our se-
crecy restrictions are defined with respect to export control.
Export restrictions allow any functionality on the host, but
prevent leakage to remote parties that are not mediated by
the framework. As mentioned in Section 3, Aquifer uses a
default-allow policy to ensure compatibility with legacy ap-
plications processing unconstrained data objects. However,
the policy becomes default-deny if restrictions are present.

Based on a manual survey of Android applications, we
identified the need for the following secrecy restrictions.

Export Restrictions: The most basic type of secrecy re-
striction is a whitelist of applications that are allowed to
send data o↵ the device. Frequently, the whitelist contains
only the application that specifies the export restriction.
For example, in the document signing use case in Section 2,
the Email app wishes to ensure that only it can send con-

tract.doc and derivative files o↵ the host. We allow an
application to specify a list to support suites of applications
or lists of known trusted applications.

Required Restrictions: The second type of secrecy re-
striction is motivated by copies of files left on persistent
storage. Required restrictions ensure that cached copies of
files cannot be later exported without the knowledge of the
data owner. In our document signing use case, DocuSign
may wish to protect the handwritten signature of Alice by
ensuring that a file containing the signature can only be sent
o↵ the device when DocuSign participates in the workflow.
Since DocuSign is the trusted authority for handwritten sig-
nature data, it trusts itself to ensure user approval for using

a workflow that involves sending a signed document o↵ the
host. Required restrictions are particularly useful for appli-
cations that provide a UI for the user to choose and return
a specific file. Finally, while it is likely that applications will
only specify a single required restriction, Aquifer allows a
list. We currently require all applications on the list to be
present on the workflow. In the future, we will explore the
usefulness of “k of” policies.

Filters: A direct consequence of enforcement of export re-
strictions is access control violations, and Aquifer attempts
to reduce these violations through workflow filters. Aquifer
allows applications to define these UI workflow filters specif-
ically to enhance usability. In the case of Android, filters
limit the results of intent resolution shown to the user. Sim-
ilar filters can be constructed for Windows 8’s share charm.

4.2 Policy Logic
Aquifer formalizes the export, required, and filter policy

types into a logic. Our logic is motivated by the decentral-
ized label model (DLM) [27]. We chose DLM over other
DIFC logics [41, 47, 48, 25, 24, 36] due to its clear owner
semantics in the policy label. We extend DLM by replacing
the set of readers with a tuple containing our export, re-
quired, and filter restrictions. Note that Aquifer uses DIFC
to control data export and not interaction between apps.

Aquifer uses applications as security principals. We chose
applications over UI screens, because the fine granularity of
UI screens would be cumbersome to specify and manage.
Developers defining security policy do not necessarily know
the UI screens in other applications.

The UI workflow policy itself is a collection of owner poli-
cies, where each owner is an application. The owner policy
contains an export list, a required list, and a workflow filter:

Definition 1 (Export list). An export list E is a set of
applications that may access the network while participating
in the UI workflow.

Definition 2 (Required list). A required list R is a set
of applications that all must have been present on the UI
workflow at sometime in the past for any application on the
UI workflow to access the network.

Definition 3 (Workflow filter). A workflow filter F is a set
of tuples {(s1, T1), . . . , (sn, Tn)}, each containing an action
string si and a set of targets Ti. If the normal resolution of
an intent message sent to action string si is a set of apps N ,
then the resulting allowed target applications is N \ Ti.

To simplify discussion, we define functions for retrieving
the action string and set of targets from a workflow fil-
ter. For a filter F , actions(F) returns the set of all ac-
tion strings in F . Similarly, for a filter F and an action
string s, targets(F, s) returns the set of target applications
for action string s. Note that for the following logic to be
correct, we assume that there does not exist an s such that
targets(F, s) = ;. If this occurs, Aquifer simply removes
s from actions(F), implying there are no restrictions for s
(default allow).

Having defined export lists, workflow filters, and required
lists, we can now define a workflow label.

Definition 4 (Workflow label). A workflow label L is an
expression L = {O1 : (E1, R1, F1); . . . ;On : (En, Rn, Fn)},
where Oi is an owner (application) and Ei, Ri, and Fi are

an export list, required list, and workflow filter, respectively,
specified by Oi.

A label L contains a set of owners denoted owners(L),
which is the set of all owners that have specified a restriction
for the UI workflow (i.e., O1, . . . , On in Definition 4). To
modify L (i.e., add, remove, or change), an owner Oi must
contain the active UI screen and can only modify its portion
of L (i.e., O1 cannot change E2, R2, or F2).

We define functions for retrieving the parts of an owner’s
policy from a label L. Care is needed to account for Aquifer’s
default allow policy when no restrictions are specified by
an owner. Let the set of all applications be A, and the
set of all possible action strings be S. For each owner Oi,
exports(L,Oi) returns Ei, unless Oi 62 owners(L) or Ei = ;,
in which case exports(L,Oi) returns A. Semantically, this
means Oi does not have any export restrictions. Similarly,
for each owner Oi, filters(L,Oi) returns Fi, unless Oi 62
owners(L) or Fi = ;, in which case it returns {(s,A)|8s 2
S}. In contrast, for each owner Oi, requires(L,Oi) returns
Ri regardless if Oi exists or if Ri is specified.

A useful concept is the e↵ective policy. That is, given
a label L with multiple owners, what policy should be en-
forced. We define the e↵ective export list, required list, and
workflow filter as follows.

Definition 5 (E↵ective export list). For a workflow la-
bel L, the e↵ective export list Ee =

T
exports(L,O), 8O 2

owners(L).

Definition 6 (E↵ective required list). For a workflow label
L, the e↵ective required list Re =

S
requires(L,O), 8O 2

owners(L).

Definition 7 (E↵ective workflow filter). For a workflow la-
bel L, the e↵ective workflow filter Fe is the set of tuples
containing action string and corresponding target applica-
tion set created by taking the union of all action strings
and the intersection of the targets for those action strings.
More precisely, Fe = {(si, Ti) | si 2

S
actions(F) and Ti =T

targets(F, si), 8F 2 filters(L,O), 8O 2 owners(L)}.

There are various scenarios in which Aquifer must com-
bine two workflow labels, e.g., propagating a workflow label
from a file, or through a daemon. When this occurs, we join
the two labels L1 and L2 to create a new label that is the
least restrictive label that maintains all of the restrictions
specified by L1 and L2 [27].

Definition 8 (Label join t). For workflow labels L1 and
L2, the join L = L1tL2 is a new label ensuring the following
for all owners O:

owners(L) = owners(L1) [owners(L2)

exports(L,O) = exports(L1, O) \ exports(L2, O)

requires(L,O) = requires(L1, O) [requires(L2, O)

filters(L,O) = {(si, Ti)|si 2 actions(F1) [actions(F2),

Ti = targets(si, F1) \ targets(si, F2),

where F1 = filters(L1, O),

F2 = filters(L2, O)}

Similar to the definition of an e↵ective workflow filter, the
last rule ensures that the workflow filter for the new label L
contains the union of action strings in L1 and L2, and the
intersection of the target applications for each of those action

strings. Finally, we note that when the above conditions
results in the universal set for one of the restriction lists, our
implementation removes the list to indicate default allow.

5. AQUIFER SYSTEM DESIGN
The Aquifer system enforces the Aquifer policy logic within

a modern operating system. While we try to keep our de-
scription general, we frequently provide concrete examples
using the Android platform.

5.1 Managing UI Workflows
As described in Section 3, Aquifer defines and enforces

policy with respect to a UI workflow. A UI workflow is a
graph that tracks the history of UI screens that comprise the
user’s task. This section discusses how Aquifer identifies and
manages the workflow.

Identifying the Workflow: As the user navigates to new
a new UI screen (e.g., Android activity component instance),
Aquifer adds the screen to the workflow. Aquifer does not
need to store the exact workflow graph to enforce the work-
flow label policy. Aquifer needs to keep track of: 1) WV ,
a list of applications the workflow has visited (for e↵ective
required list Re), and 2) WR, a list of metadata for currently
“running”UI screens (for e↵ective export list Ee). The meta-
data required for WR is dependent on the specific Aquifer
implementation and the information required to enforce the
policy. For this discussion, we assume it contains at least
the app name and process identifier.

Ideally, we would like to start each UI screen in a separate
process. This allows Aquifer to easily enforce the workflow
policy by turning network access on and o↵ for the process.
If the same process is used in two simultaneous UI workflows
with labels L1 and L2, Aquifer must assign both workflows
the label L1tL2 in order to preserve the restrictions on both
workflows. This can lead to overly restrictive policy.

At first, separate processes for UI screens seemed straight-
forward for our Android implementation of Aquifer. An-
droid is designed to allow components to transparently in-
teroperate with components in di↵erent processes. There-
fore, conceptually we could modify the Android framework
to start each activity component instance in a separate pro-
cess. However, we ran into two problems. First, activity
components are simply Java objects that extend the Activity
class and sometimes share global variables with the rest of
the application. In such cases, starting the activity compo-
nent in a new process causes the application to crash when
an uninitialized value of a global object is retrieved. Sec-
ond, in the cases when activity components could be run in
a separate process, Android did not provide an easy mecha-
nism to start multiple processes if multiple instances of that
activity component are needed.

To account for these limitations, we made the following
compromise. When starting an activity component, Aquifer
checks if the process for that component already exists. If
not, a new process is started, and there is no problem. If a
process does exist, Aquifer determines if it is part of the cur-
rent UI workflow. If so, the activity is started in this process.
If not, Aquifer terminates the process. If applications are de-
veloped following Android’s recommended conventions, an
activity should save its state to persistent storage when An-
droid calls the onStop() callback, indicating the activity is
no longer visible. Aquifer then starts a new process for the
activity for this UI workflow.

This approach is less desirable than poly-instantiation (sug-
gested above), because if applications do not save their state,
data loss may result. An undesirable user experience may
also result if an activity component in the middle of a UI
task is terminated, or if activities call each other in a loop.
One way developers can reduce the impact of Aquifer’s need
to terminate processes is to develop their applications such
that each activity starts in a separate process. This can be
easily done using annotations in the app’s manifest file.

Policy Administration: Only the active (i.e., currently
displayed) UI screen can modify the UI workflow policy.
Aquifer exports a policy management API to applications
that includes the ability to query, set, and remove the ex-
port list, required list, and workflow filter for that applica-
tion. We note that a UI screen can only retrieve and modify
the policy for the application that contains it. This keeps
an application from reading the policies set by other appli-
cations, but it does not prevent it from learning the e↵ective
policy, which can be queried by testing network access.

Removing Unrelated Policy: In developing Aquifer for
Android, we identified an opportunity to remove unneces-
sary restrictions from the UI workflow label L. Activity
components can be started in two ways: startActivity() and
startActivityForResult(). The former method never returns
a value, whereas the latter does. Aquifer leverages this ar-
tifact by pruning the workflow label as follows. When UI
workflow branch returns, Aquifer determines if the activity
component was started for a result. If not, Aquifer checks
if owner policy can be removed. An owner policy for appli-
cation O can be removed from L if and only if: 1) no UI
screen of app O exists in the set of running UI screens WR,
and 2) no past UI screen (e.g., activity component instance)
of app O returned a value. To ensure the latter condition,
we modified WV to include an extra bit of information in-
dicating whether or not a UI screen for the application was
started for a result. Note that this heuristic is conservative
and may not remove an owner policy if a value was returned
on a branch that later does not return a value. Once WR is
empty, Aquifer terminates the workflow.

5.2 Enforcing Policy
The Aquifer UI workflow policy restricts which applica-

tions can send data to the network. The workflow label
contains a list of owners and corresponding export lists, re-
quired lists, and workflow filters that are used to calculate
the e↵ective export list Ee, e↵ective required list Re, and
e↵ective workflow filter Fe.

Aquifer enforces Ee and Re by controlling the network
access of the process containing the UI screen. Since ap-
plications are security principals, it does not matter if each
UI screen runs in its own process, or all UI screens for an
application run in the same process. For each process p cor-
responding to application app(p), Aquifer enables network
access if and only if:

(Ee = ; _ app(p) 2 Ee) ^ (8r 2 Re, r 2 WV)

Simply put, this equation implements default allow only if
Ee is empty and all r in Re are satisfied. Otherwise, the
application corresponding to p must be listed in Ee.

Aquifer must re-evaluate the network access control for
each process on a UI workflow whenever: a) an application
on the UI workflow modifies its policy, or b) a new UI screen
is added to the workflow. The latter condition is only neces-

sary when the application for the added UI screen completes
the restriction requirement for satisfying Re.

Finally, as described in Definition 3, Aquifer enforces work-
flow filters by reducing the list of applications shown to the
user on transitions between UI screens.

5.3 Tracking Background Functionality
Aquifer is designed to enforce security policy on user fac-

ing software. However, UI screens sometimes use back-
ground functionality such as daemons and file storage. When
this occurs, Aquifer must carefully propagate policy labels
between UI workflows.

UI Screen Accessing a Daemon: Daemons may be ac-
cessed by multiple workflows. Simply joining labels when-
ever a UI screen accesses a daemon will quickly result in all
workflows having the same overly restrictive label. To avoid
this, Aquifer uses intelligent tracking in daemons.

One method of intelligent tracking is to incorporate fine-
grained tracking (e.g., TaintDroid [13] and CleanOS [37]).
Unfortunately, existing systems would require substantial
retrofitting to enforce Aquifer policy. TaintDroid can only
track 32 distinct identifiers. CleanOS extends TaintDroid
to store identifiers in the taint tag bitvector; however, this
storage cannot be used directly for Aquifer workflow labels.
Furthermore, the source code for CleanOS was not available
at the time of writing. Since the focus of this paper is the
UI workflow security semantics, and not building another
fine-grained data tracking framework, we reduced the scope
of our tracking to OS-visible objects allowing coarse kernel
mediation (i.e., files).

By restricting Aquifer to tracking files, we only need to
track open file descriptors sent between UI screens and dae-
mons. Android applications can pass file descriptors through
binder. This commonly occurs with content provider com-
ponents. Consider an activity component in application A
that wants to read an image file that is owned by application
B. AppB can use a content provider component to share the
image file with other applications without the image file be-
ing world readable. To do this, app B allows app A to query
its content provider for a content URI, or passes the con-
tent URI directly to app A (e.g., content://app_b/img/42).
App A can then open a FileInputStream for app B’s content
provider using this URI. Behind the scenes, app B’s process
will open the image file and pass the open file descriptor to
app A using binder. App A can then read from the image
file as if it opened the file itself.

Aquifer for Android implicitly tracks file descriptors in
daemons by leveraging Linux’s file_permission LSM hook.
This hook is invoked whenever an inode is read or written,
as opposed to the commonly used inode_permission hook,
which is invoked when the file is opened. file_permission
provides Aquifer the file and the process performing the
read or write, regardless of how the process obtained the
file descriptor. Using file_permission also avoids ambigu-
ous read-write file open masks, as well as properly propa-
gating labels when the workflow label changes between file
open and file write. However, these advantages come at the
cost of degraded performance that results from retrieving
the file’s label for each read and write operation.

UI Screen Accessing a File: By using file_permission,
Aquifer leverages the Linux kernel’s tracking of file descrip-
tors. Hence, even when a file is written through a daemon,
Aquifer sees the UI screen accessing the file directly. When

a process in a UI workflow reads or writes a file, Aquifer
propagates the workflow label to and from the file in a stan-
dard way. Let the workflow have label LW and the file have
label LF . If the UI screen writes to a file, the file’s label is
updated to LW tLF . If the UI screen reads from a file, the
UI workflow label becomes LW t LF .

To accomplish these updates, Aquifer relies on a kernel
module and the userspace Aquifer Service. When a file is
read or written, a kernel hook extracts LF from the file
(e.g., from its xattr) and notifies the Aquifer Service via
an upcall, sending LF and the access mode. The Aquifer
Service updates LW (if necessary) and returns a new LF (if
necessary). The kernel module then stores the new LF with
the file (e.g., in its xattr) if necessary.

Finally, propagating labels to persistent storage using file
granularity means that Aquifer cannot handle sub-file data
items such as database records. This limitation is currently
in place for implementation and performance reasons.

6. IMPLEMENTATION
We implemented Aquifer for Android v4.0.3 (ICS) and the

Linux Kernel v3.0.8 (omap). Aquifer adds approximately
2,200 lines of code in the Android Framework, and approxi-
mately 1,000 lines in the kernel. The source code is available
at http://research.csc.ncsu.edu/security/aquifer.

The core userspace implementation is the Aquifer Service,
a new system service responsible for maintaining the work-
flow abstraction and policy language calculus. The Aquifer
Service is invoked by hooks placed in Android’s Activity-
Manager service. These hooks inform Aquifer when system
state changes a↵ect the UI workflow state. The hooks are
also used to filter intent resolution before presenting results
to the user. The Aquifer Service also exposes an API to
applications to safely add and modify their owner policies.

Aquifer uses a Linux security module (LSM) to mediate
file access and a file descriptor transfer between processes.
We use the file_permission LSM hook to only propagate
the label if the data is read or written. The file policy is
stored in extended attributes (xattrs), and the Aquifer LSM
forwards file events and file policy to the Aquifer Service via
a netlink socket. We also ensure that the SDcard is also
formatted to support xattrs.

The final component of our implementation is the Aquifer
device driver, which provides a channel for the userspace
Aquifer Service to communicate with the Aquifer LSM. The
Aquifer Service uses this interface to manipulate the network
access privilege of a process. The Aquifer Service also sets
up the netlink socket with the LSM via this interface to
receive events about file accesses.

7. EVALUATION
We now evaluate Aquifer by accessing the need and appro-

priateness of its protection, proving the safety of label joins,
and measuring the performance overhead. We also provide
three case studies to demonstrate Aquifer in practice.

7.1 Application Survey
To understand the need for Aquifer and addressing the

data intermediary problem, we performed a manual survey
of Android applications.

Survey Setup: We selected the top 50 free Android ap-
plications from 10 categories in the Google Play Store (500

content://app_b/img/42
http://research.csc.ncsu.edu/security/aquifer

Table 1: Application Survey Results
Characteristic Number of Apps
Data sources 85 (17%)
Data intermediaries 140 (28%)
Value from Export Policy 70 (14%)
Value from Regulate Policy 78 (15.6%)

apps total). We chose categories based on use of privacy-
sensitive application-specific data or the ability to use such
data. For example, we omitted game-related categories,
news and magazines, etc. We selected the following cate-
gories: Business, Communication, Media and Video, Mu-
sic and Audio, Photography, Personalization, Productivity,
Shopping, Social, and Tools.

Our application survey began by reading the market de-
scription of the application. For example, we identified if it
creates or acquires data from the cloud. If we could iden-
tify a potential need for Aquifer, we studied the applica-
tion manifest and manually ran the application as needed.
Specifically, we looked at the types of interaction an applica-
tion uses, e.g., complete isolation, data sharing in workflows,
storing data in shared storage, as well as the type of data
that was shared, i.e., we ignored data with no security or
privacy value. Finally, we created a list of workflows that
each app can be a part of to gain insight into how Aquifer’s
policies could enhance application security.

Results: Table 1 provides the statistics from our study. We
found a number of data sources that produced and shared
data. Apps that did not produce any data, but processed
data from other apps, were classified as intermediaries. We
identified a larger number of intermediaries, which suggests
more applications provide data services than produce data.
This motivates the need to address the data intermediary
problem. We also categorized applications based on the use-
fulness of Aquifer’s export and required restriction policies.
These results motivate the appropriateness of Aquifer policy.

The application study also identified many interesting use
cases. For example, some applications facilitate business
meetings by sharing of files during meetings. Aquifer can be
used to help protect confidential business files against inad-
vertent exposure. We also identified many free applications
that provide value-add capabilities, e.g., image transforma-
tion. There are reasons why users may wish to edit pho-
tographs on the phone. The user may wish to ensure the
intermediary does not export copies, particularly if the user
is a professional photographer.

7.2 Security Evaluation
Aquifer specifically seeks to protect application-specific

data that cannot be enforced by system security policy. The
security and privacy sensitivity of application-specific data
is often only known to the developer and the user. We seek
to reduce the onus on the user by having developers specify
security policy. We note that app developers already partic-
ipate in policy by specifying which permissions an app uses,
and assigning permissions to restrict app interfaces.

Aquifer allows app developers to specify host export re-
strictions on data used by a UI workflow. The policy for a UI
workflow is maintained in a workflow label L (Definition 4).
When information from one UI workflow is propagated to
another UI workflow via files, Aquifer merges the two work-
flow labels using the join (t) operator (Definition 8). Sec-

Table 2: Microbenchmark Results
Benchmark Android Aquifer Overhead
App load 188.49±5.36 ms 192.07±6.30 ms 1.9%
App filter 194.12±7.91 ms 195.22±7.52 ms 0.55%
Net access 108.60±6.48 ms 109.64±6.31 ms 0.53%
Policy change - 1.98±1.27 ms -
File Read (1MB) 4.76±0.09 ms 5.23±0.22 ms 9.87%
File Write (1MB) 23.89±0.45 ms 25.44±0.86 ms 6.49%

tion 4 claimed the join operation ensures the resulting label
is at least as restrictive as both the original labels.

We formally prove the safety of the join operation and
hence of the Aquifer policy language. We do this in two
parts. First, we define an e↵ective restriction relation that
ensures the evaluated policy is more restrictive. Then, we
define an owner restriction relation that ensures that all of
an owner’s restrictions are maintained. This is important,
because while L2 may be e↵ectively more restrictive than
L1, an owner’s restrictions may be changed at a later time
by another owner such that L2 is no longer more restrictive
than L1. With these two definitions, we can define an over-
all restriction relation that is needed to prove the safety of
Aquifer. The formal proof is provided in Appendix A.

7.3 Performance Evaluation
To understand the performance overhead of Aquifer, we

performed several microbenchmarks. The experiments were
performed on a Samsung Galaxy Nexus (maguro) running
Android v4.0.3 and Aquifer built on the same version. We
performed each experiment at least 50 times. Average re-
sults with 95% confidence intervals are shown in Table 2.

App load time: Aquifer initializes its UI workflow struc-
tures when the first application is loaded. This consists of
creating a new label and data structures for WV and WR to
maintain the workflow state. We compared the time to start
the first application of a UI workflow in Aquifer to a baseline
application load time in Android. The average overhead is
3.58 ms, which is negligible.

App filtering: Aquifer filters the potential target appli-
cations when Android uses an implicit intent to start an
activity component. We measured the time between send-
ing an intent message and the resolution of the final list of
applications presented to the user. Aquifer only causes a
negligible delay of 1.1 ms.

Network access check: Aquifer places a hook in the ker-
nel that is called every time a process attempts to access
the network. For this experiment, we created an applica-
tion with an activity component that attempts to access
the network repeatedly. Since Android already performs a
similar check to enforce its INTERNET permission, Aquifer’s
additional checks have negligible impact.

Workflow policy change: An application with an active
activity can modify the UI workflow policy label, which re-
quires recalculation of the e↵ective policy and reassignment
of network privileges to all workflow participants. This pol-
icy re-evaluation only takes 1.98 ms.

Label propagation on read and write: Each file read
operation requires Aquifer to retrieve the file’s label from
its xattr and join it to the workflow’s label. Each file write
operation requires Aquifer to retrieve the file’s label, mod-
ify it, and store the new label. For this experiment, we
measured the overhead of reading and writing a 1MB file

 0

 2

 4

 6

 8

 10

No
 Policy

148 200 300 400 500 600 700 800 900 1000

Ti
m

e
(m

ill
is

ec
on

ds
)

Policy Size (bytes)

Aquifer Read
Android Read

(a) File Read

 0

 10

 20

 30

 40

 50

No
 Policy

148 200 300 400 500 600 700 800 900 1000

Ti
m

e
(m

ill
is

ec
on

ds
)

Policy Size (bytes)

Aquifer Write
Android Write

(b) File Write

Figure 4: Aquifer File Label Propagation Time. Er-
ror bars indicate 95% confidence intervals

with a small workflow policy. We performed each read and
write 50 times, flushing after each write, and sleeping 500
ms between consecutive measurements. Table 2 shows an
overhead of 6.49% for writes and 9.87% for reads. Note that
while Aquifer writes are more complex than reads, the read
overhead is greater, because the read time is significantly
less than the write time. Furthermore, a production version
of Aquifer could cache policies in memory to avoid unneces-
sary xattr operations.

To further investigate the read and write overhead, we
performed a more detailed study of the time required. We
repeated the previous experiment, but used a range of work-
flow label sizes and complexities. We started with a simple
single owner label containing an owner policy of 148 bytes
and increased gradually to a fairly complex label contain-
ing multiple owners and occupying 1KB. Figure 4 shows
the time required for Aquifer to perform the read and write
label propagation based on the policy size. The horizon-
tal line shows the time to perform the read and write in
Android without Aquifer modifications. There are four con-
tributors to this overhead: 1) context switches when trans-
porting labels from kernel space to user space and vice versa;
2) performing the xattr operations, 3) marshalling and un-
marshalling the policy to and from the binary form; and 4)
copying the data itself.

Figure 4 shows a relatively constant overhead, indicating
that the setup cost of context switches and xattr operations
overwhelms the cost of marshalling data and copying data
between bu↵ers. Finally, the overhead for reading and writ-

1 AquiferList exportList = new AquiferList ();
2 exportList.add(this.getPackageName ());
3

4 AquiferFilter filter = new AquiferFilter ();
5 filter.addTarget(android.intent.ACTION_SEND , this.

getPackageName ());
6

7 AquiferPolicy policy = new AquiferPolicy ();
8 policy.setExportList(exportList);
9 policy.setFilter(filter);

10

11 IAquiferService aquifer = IAquiferService.Stub.
asInterface(ServiceManager.getService("Aquifer"));

12 aquifer.addPolicy(policy);

Listing 1: Aquifer policy modifications to K-9E Mail

ing empty labels is negligible, as we avoid propagating empty
labels.

7.4 Case Studies
To demonstrate how Aquifer works in practice, we per-

formed three case studies involving open source Android ap-
plications such as K-9 Mail, OI File Manager, and PDFView.

7.4.1 Case Study 1 (Confidential PDF)

K-9 Mail is an open source fork of the original Email client
in the Android Open Source Project (AOSP). We modified
K-9 Mail to create K-9E Mail, an enterprise email client for
use by the employees of a fictional enterprise. We also used
the open source PDFView application, which we modified
to emulate an intermediary that backs up the files accessed
by the user to the user’s account in the cloud.

Our modifications of PDFView include 1) sending the
PDF file to a network server, and 2) saving a version of a
PDF file, and then on a later invocation of PDFView, open-
ing the saved file and sending it to the network. PDFView
does not go out of its way to collect data, rather data is
collected only as a consequence of using it.

K-9E Mail allows the user to view attachments in other
applications. For our case study, we use an Email with the
file contract.pdf attached. When the user selects to view
contract.pdf, K-9E Mail creates an intent message with the
implicit address ACTION_VIEW and the datatype set to ap-

plication/pdf. When K-9E Mail uses this intent to start an
activity, Android displays a chooser allowing the user to se-
lect the viewer. In our case study, this chooser contains the
default DocumentViewer app and our modified PDFView
app. We verified that the PDF could be viewed by both Doc-
umentViewer and PDFView while running in the Aquifer
enhanced Android framework, without any modification to
either app. When we viewed contract.pdf, PDFView suc-
cessfully exported the PDF as designed.

We then modified K-9E Mail to be Aquifer-aware. For
the case study, we included logic to identify a PDF as con-
fidential if the filename contains strings such as “contract,”
“confidential,” “secret,” etc. Note that we used this classi-
fication scheme purely for demonstration purposes. A pro-
duction version of an Aquifer-aware Email client could be
much more intelligent (e.g., scan the subject and body for
keywords, use predefined X-Headers, etc.). The Email client
should also provide the user visual clues that the attachment
is treated as confidential, and potentially a method to de-
classify an attachment in the event of false labeling.

Our second modification was to set the owner policy for
the UI workflow before a confidential attachment is viewed.

(a) Without Filter Policy (b) With Filter Policy

Figure 5: Aquifer Workflow Filter, a) Without pol-
icy and b) With Policy that allows only K-9E Mail

We used the following owner policy.

E = {K9EMail}
R = {}
F = {(ACTION SEND, {K9EMail})}

This policy ensures that only K-9E Mail can export the
data, and if any application in the UI workflow uses the AC-
TION_SEND action string to start an activity, only K-9E Mail
will be displayed, filtering out other options (e.g., YahooMail,
HotMail), as shown in Figure 5. Adding this policy to K-
9 Mail required very few changes, as shown in Listing 1.

We then re-performed our previous experiment. This time,
when PDFView attempted to send contract.pdf, it could
not reach the network. Furthermore, when PDFView saved
a copy of contract.pdf, the workflow label was copied with
it. When we later invoked PDFView as part of an un-
restricted UI workflow, it read contract.pdf (due to our
changes) and the workflow was successfully labeled, again
keeping PDFView from exporting the document.

7.4.2 Case Study 2 (Choosers)

The previous case study shows how K-9E Mail can share
data while ensuring that only it can export the data o↵ the
device. In this case study, we demonstrate how K-9E Mail
can allow a larger set of applications to export the data only
if the user’s consent is provided.

For this case study, K-9E Mail trusts all other applications
to send confidential documents o↵ the host, but only if the
user selects the file as part of a workflow. This policy is
valuable to prevent accidental backup to cloud storage by
other applications the user might have installed. This policy
goal is accomplished using a trusted chooser application and
a require restriction. For example, if K-9E Mail trusts the
OI File Manager, the following policy can protect documents
saved to the SDcard from accidental disclosure.

E = {ALL}
R = {OI File Manager}
F = {}

Using this policy, Aquifer allows the original K-9 Mail app
to send the saved attached document when both, 1) starting
the OI File Manager from K-9 Mail to choose an attachment,
and 2) starting OI File Manager first and sharing the docu-
ment with K-9 Mail.

7.4.3 Case Study 3 (Document Viewers)

Our final case study evaluates whether or not Aquifer poli-
cies are compatible with popular data intermediaries. We
downloaded 25 of the most popular free document and im-
age viewers and editors. Each was shared a file that has an
Aquifer policy that prevents the intermediary from opening
network connections. For the 25 applications, we encoun-
tered 0 application crashes due to access control failures. We
found that seven of the applications (e.g., KingSoft O�ce,
Olive o�ce) contain advertisement libraries that immedi-
ately make network connections, before displaying the doc-
ument. However, when Aquifer denies these network connec-
tions, the applications handle the denied connection without
error and without usability impact (except for the absence
of the ad). This use case supports our hypothesis that many
data intermediary applications are built with modularity in
mind and have limited dependencies on the Internet.

8. DISCUSSION
Aquifer policy specification may lead to usability failures if

application developers do not predict all of the ways in which
the user might construct a UI workflow. One potential case
is when regulate restrictions can conflict with filters. Regu-
late restrictions require an app to participate on a workflow.
However, if that app is not included in a workflow filter, the
user may never be able to navigate through it. This example
demonstrates a need for developers to coordinate on Aquifer
policy at some level.

Another type of unexpected usability failure due to Aquifer
policy results when a user clicks on a hyperlink in a protected
document. If the Web browser is not in the export list, it will
fail to navigate to the URL when launched from the work-
flow containing the document. Technically, the URL was
part of the document and should not be exported. However,
a policy may wish to include a trusted Web browser in the
export list to ensure hyperlink functionality.

Finally, as discussed in our first case study, there are vari-
ous situations when the app developer may need to indicate
to the user that data is classified in order to avoid user con-
fusion that may lead to access control violations. Such situ-
ations must be addressed on an application-specific basis.

9. RELATED WORK
Modern OSes, such as Android, iOS, and Windows 8, take

the suggestion of decades of security research [45, 22, 35,
14] and run each application as a unique security princi-
pal. In these systems, security policy is defined with respect
to permissions, which are granted to apps and restrict ac-
cess to APIs and other applications. Research has criticized
Android’s permission framework for being both too coarse
grained [3, 16] and too confusing for users [17]. Researchers
have built enhanced security frameworks around Android
permissions [15, 29, 7, 28, 6], some of which ease policy
specification, while others make it more complicated.

Ultimately, permissions lack transitive semantics, which
make them insu�cient to express the security goals of mod-

ern OSes, as demonstrated by Android permission privilege
escalation attacks [9, 20]. IPC Inspection [18] adds tran-
sitivity by reducing app permissions at runtime, similar to
Biba low watermark [5]. Unfortunately, this requires apps to
request extra permissions to operate, resulting in permission
bloat. In contrast, Quire [11] adds IPC provenance records
to help developers prevent confused deputy attacks. From
the secrecy perspective, TaintDroid [13] and AppFence [21]
use dynamic taint analysis to determine when privacy sen-
sitive values such as location and phone identifiers are sent
to the network. However, they lack the necessary policy
semantics to address the data intermediary problem.

Traditionally, OS protection systems provide transitive
protection semantics using information flow control (IFC) [10,
4, 5]. IFC labels subjects and objects, and uses a lattice to
define a relation between the labels. Original IFC systems
(e.g., MLS [4]) use a central definition of security labels,
which does not meet the needs of software that defines new
types of information (i.e., apps in modern operating sys-
tems). Myers and Liskov [27] defined a decentralized label
model (DLM) that has formed the policy model for several
decentralized information flow control (DIFC) operating sys-
tems (e.g., Asbestos [41], HiStar [47], Flume [25, 24], Lam-
inar [33], and Fabric [26, 2]). DIFC allows applications to
define their own label types.

Aquifer’s policy is based on DIFC semantics, but it is
optimized for the specific needs of the data intermediary
problem. Traditional DIFC regulates interaction between
processes and access to data objects. In modern OSes like
Android, apps are frequently purpose specific and complex
tasks are performed in user-driven workflows. Strict restric-
tions on communication and data sharing among applica-
tions would disrupt these workflows and limit the user to
using only specific applications. Therefore, we relax DIFC
constraints to enable greater inter-app data sharing, provid-
ing applications with a mechanism to control exfiltration of
their data o↵ the device instead.

Previous systems have controlled accidental data disclo-
sure. Compartmented Mode Workstations (CMW) [8] as-
sign and propagate sensitivity labels to data objects and
processes (e.g. a screenshot has the label of the highest
secrecy level of the data windows captured in it). A user ac-
tion that leads to a flow from a high secrecy to a low secrecy
level is met with a dialog box, confirming if the action was
intended. Trusted Window Systems [31, 34] prevent acci-
dental cut-and-paste actions by the user from a high-secrecy
document to a low-secrecy document altogether.

Other factors leading to accidental data exposure, such as
missing access control checks and poor programming have
also motivated research. Resin [46] allows the programmer
to configure application level data assertions to prevent ac-
cidental information leaks in Web applications. Resin is de-
signed to help programmers detect vulnerabilities and bugs
in their own applications, but does not provide Aquifer-like
information flow guarantees in a multi-application environ-
ment. Liquid Machines [44] provides enterprise support for
policy compliant remote content access using encryption.
The use of encryption may restrict the user from using third
party applications.

Finally, we are not the first to consider the challenges
of modern operating systems. The ServiceOS project at Mi-
crosoft Research, which includes MashupOS [42] and Gazelle [43],
considers similar problems, but focuses on Web browsers.

Also under this umbrella project is Access Control Gadgets
(ACG) [32], which uses trusted UI widgets to infer user in-
tentions when accessing sensors (e.g., camera, microphone).
ACGs are a generalization of the much earlier concept of
a “powerbox,” which is a trusted dialog box originally used
by CapDesk [12] and DarpaBrowser [1] to grant a process
access to a file based on the user’s natural file selection pro-
cess. Along these lines, Aquifer infers data access based on
the UI workflow as the user performs a task.

10. CONCLUSION
Modern operating systems have changed both the way

users use software and the underlying security architecture.
These two changes make accidental data disclosures easier.
To address this problem, we presented the Aquifer security
framework that assigns host export restrictions on all data
accessed as part of a UI workflow. Our key insight was that
when applications in modern operating systems share data,
it is part of a larger workflow to perform a user task. Each
application on the UI workflow is a potential data owner,
and therefore can contribute to the security restrictions. The
restrictions are retained with data as it is written to storage
and propagated to future UI workflows that read it. In doing
so, we enable applications to sensibly retain control of their
data after it has been shared as part of the user’s tasks.

Acknowledgements
This work was supported in part by an NSA Science of Se-
curity Lablet grant at North Carolina State University and
NSF grants CNS-1222680 and CNS-1253346. Any opinions,
findings, and conclusions or recommendations expressed in
this material are those of the authors and do not necessarily
reflect the views of the funding agencies. We would also like
to thank Patrick McDaniel, Patrick Traynor, Kevin Butler,
Tsung-Hsuan Ho, Ashwin Shashidharan, Vasant Tendulkar,
and the anonymous reviewers for their valuable feedback
during the writing of this paper.

11. REFERENCES
[1] A Capability Based Client: The DarpaBrowser.

http://www.combex.com/papers/darpa-report/html/.
[2] O. Arden, M. D. George, J. Liu, K. Vikram, A. Askarov,

and A. C. Myers. Sharing Mobile Code Securely With
Information Flow Control. In Proceedings of the IEEE
Symposium on Security and Privacy, 2012.

[3] D. Barrera, H. G. Kayacik, P. C. van Oorshot, and
A. Somayaji. A Methodology for Empirical Analysis of
Permission-Based Security Models and its Application to
Android. In Proceedings of the ACM Conference on
Computer and Communications Security, Oct. 2010.

[4] D. E. Bell and L. J. LaPadula. Secure Computer Systems:
Mathematical Foundations. Technical Report MTR-2547,
Vol. 1, MITRE Corp., Bedford, MA, 1973.

[5] K. J. Biba. Integrity considerations for secure computer
systems. Technical Report MTR-3153, MITRE, Apr. 1977.

[6] S. Bugiel, L. Davi, A. Dmitrienko, T. Fischer, A.-R.
Sadeghi, and B. Shastry. Toward Taming
Privilege-Escalation Attacks on Android. In Proceedings of
Network and Distributed System Security Symposium, 2012.

[7] M. Conti, V. T. N. Nguyen, and B. Crispo. CRePE:
Context-Related Policy Enforcement for Android. In
Proceedings Information Security Conference, 2010.

[8] P. T. Cummings, D. A. Fullam, M. J. Goldstein, M. J.
Gosselin, J. Picciotto, J. P. Woodward, and J. Wynn.
Compartimented Mode Workstation: Results Through

http://www.combex.com/papers/darpa-report/html/

Prototyping. In In the IEEE Symposium on Security and
Privacy. IEEE, 1987.

[9] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy.
Privilege Escalation Attacks on Android. In Proceedings of
the 13th Information Security Conference (ISC), Oct. 2010.

[10] D. E. Denning. A Lattice Model of Secure Information
Flow. Comm. of the ACM, 19(5):236–243, May 1976.

[11] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S.
Wallach. Quire: Lightweight Provenance for Smart Phone
Operating Systems. In Proceedings of the 20th USENIX
Security Symposium, August 2011.

[12] E and CapDesk. http://www.combex.com/tech/edesk.html.
[13] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung,

P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime Privacy
Monitoring on Smartphones. In Proceedings of the 9th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), Oct. 2010.

[14] W. Enck, P. McDaniel, and T. Jaeger. PinUP: Pinning
User Files to Known Applications. In Proceedings of
Annual Computer Security Applications Conference, 2008.

[15] W. Enck, M. Ongtang, and P. McDaniel. On Lightweight
Mobile Phone Application Certification. In Proceedings of
the 16th ACM Conference on Computer and
Communications Security (CCS), Nov. 2009.

[16] A. P. Felt, K. Greenwood, and D. Wagner. The
E↵ectiveness of Application Permissions. In Proceedings of
the USENIX Conference on Web Application Development
(WebApps), 2011.

[17] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and
D. Wagner. Android Permissions: User Attention,
Comprehension and Behavior. In Proceedings of the
Symposium on Usable Privacy and Security, 2012.

[18] A. P. Felt, H. J. Wang, A. Moshchuk, S. Hanna, and
E. Chin. Permission Re-Delegation: Attacks and Defenses.
In Proceedings of USENIX Security Symposium, 2011.

[19] I. Goldberg, D. Wagner, R. Thomas, and E. Brewer. A
Secure Environment for Untrusted Helper Applications:
Confining the Wily Hacker. In Proceedings of the USENIX
Security Symposium, 1996.

[20] M. Grace, Y. Zhou, Z. Wang, and X. Jiang. Systematic
Detection of Capability Leaks in Stock Android
Smartphones. In Proceedings of the Network and
Distributed System Security Symposium, Feb. 2012.

[21] P. Hornyack, S. Han, J. Jung, S. Schechter, and
D. Wetherall. These Aren’t the Droids You’re Looking For:
Retrofitting Android to Protect Data from Imperious
Applications. In Proceedings of the ACM Conference on
Computer and Communications Security (CCS), 2011.

[22] S. Ioannidis, S. Bellovin, and J. Smith. Sub-Operating
Systems: A New Approach to Application Security. In
Proceedings of ACM SIGOPS European workshop, 2002.

[23] P. F. Klemperer, Y. Liang, M. L. Mazurek, M. Sleeper,
B. Ur, L. Baur, L. F. Cranor, N. Gupta, and M. K. Reiter.
Tag, You Can See It! Using Tags for Access Control in
Photo Sharing. In Proceedings of the ACM SIGCHI
Conference on Human Factors in Computing Systems
(CHI), 2012.

[24] M. Krohn and E. Tromer. Noninterference for a Practical
DIFC-Based Operating System. In Proceedings of the IEEE
Symposium on Security and Privacy, 2009.

[25] M. Krohn, A. Yip, M. Brodsky, N. Cli↵er, M. F. Kaashoek,
E. Kohler, and R. Morris. Information Flow Control for
Standard OS Abstractions. In Proceedings of ACM
Symposium on Operating Systems Principles, 2007.

[26] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and
A. C. Myers. Fabric: A Platform for Secure Distributed
Computation and Storage. In Proceedings of the ACM
Symposium on Operating Systems Principles (SOSP), 2009.

[27] A. C. Myers and B. Liskov. A Decentralized Model for
Information Flow Control. In Proceedings of the ACM
Symposium on Operating Systems Principles, 1997.

[28] M. Nauman, S. Khan, and X. Zhang. Apex: Extending
Android Permission Model and Enforcement with
User-defined Runtime Constraints. In Proceedings of
ASIACCS, 2010.

[29] M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel.
Semantically Rich Application-Centric Security in Android.
In Proceedings of the 25th Annual Computer Security
Applications Conference, 2009.

[30] Payment Card Industry (PCI). Data Security Standard:
Requirements and Security Assessment Procedures, Version
2.0, Oct. 2010. Available at
https://www.pcisecuritystandards.org/security_
standards/documents.php.

[31] J. Picciotto. Towards trusted cut and paste in the X
Window System. In Proceedings of the Seventh Annual
Computer Security Applications Conference. IEEE, 1991.

[32] F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J.
Wang, and C. Cowan. User-Driven Access Control:
Rethinking Permission Granting in Modern Operating
Systems. In Proceedings of the IEEE Symposium on
Security and Privacy, 2012.

[33] I. Roy, D. E. Porter, M. D. Bond, K. S. McKinley, and
E. Witchel. Laminar: Practical Fine-Grained Decentralized
Information Flow Control. In Proc. of the Conference on
Programming Language Design and Implementation, 2009.

[34] J. S. Shapiro, J. Vanderburgh, E. Northup, and
D. Chizmadia. Design of the EROS trusted window system.
In Proceedings of the USENIX Security Symposium, 2004.

[35] P. Snowberger and D. Thain. Sub-Identities: Towards
Operating System Support for Distributed System Security.
Technical Report 2005-18, University of Notre Dame,
Department of Computer Science and Engineering, 2005.

[36] D. Stefan, A. Russo, D. Mazieres, and J. C. Mitchell.
Disjunctive Category Labels. In Proc. of NordSec, 2011.

[37] Y. Tang, P. Ames, S. Bhamidipati, A. Bijlani,
R. Geambasu, and N. Sarda. CleanOS: Limiting Mobile
Data Exposiure with Idle Eviction. In Proceedings of the
USENIX Symposium on Operating Systems Design and
Implementation (OSDI), 2012.

[38] US Congress. Gramm-Leach-Bliley Act, Finiancial Privacy
Rule. 15 USC §6801-§6809, Nov. 1999. Available at
http://www.law.cornell.edu/uscode/usc_sup_01_15_10_
94_20_I.html.

[39] US Congress. Health Insurance Portability and
Accountability Act of 1996, Privacy Rule. 45 CFR 164,
Aug. 2002. Available at http://www.access.gpo.gov/nara/
cfr/waisidx_07/45cfr164_07.html.

[40] US Internal Revenue Service (IRS). Publication 1075:
Safeguards for Protecting Federal Tax Returns and Return
Information, 2010. Available at
http://www.irs.gov/pub/irs-pdf/p1075.pdf.

[41] S. Vandebogart, P. Efstathopoulos, E. Kohler, M. Krohn,
C. Frey, D. Ziegler, F. Kaashoek, R. Morris, and
D. Mazières. Labels and Event Processes in the Asbestos
Operating System. ACM Transactions on Computer
Systems (TOCS), 25(4), December 2007.

[42] H. J. Wang, X. Fan, J. Howell, and C. Jackson. Protection
and Communication Abstractions for Web Browsers in
MashupOS. In Proceedings of the ACM Symposium on
Operating Systems Principles (SOSP), 2007.

[43] H. J. Wang, C. Grier, A. Moshchuk, S. T. King,
P. Choudhury, and H. Venter. The Multi-Principle OS
Construction of the Gazelle Web Browser. In Proceedings of
the USENIX Security Symposium, 2009.

[44] B. Week. Company Overview of Liquid Machines, Inc.
http://investing.businessweek.com/research/stocks/
private/snapshot.asp?privcapId=3079632.

http://www.combex.com/tech/edesk.html
https://www.pcisecuritystandards.org/security_standards/documents.php
https://www.pcisecuritystandards.org/security_standards/documents.php
http://www.law.cornell.edu/uscode/usc_sup_01_15_10_94_20_I.html
http://www.law.cornell.edu/uscode/usc_sup_01_15_10_94_20_I.html
http://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr164_07.html
http://www.access.gpo.gov/nara/cfr/waisidx_07/45cfr164_07.html
http://www.irs.gov/pub/irs-pdf/p1075.pdf
http://investing.businessweek.com/research/stocks/private/snapshot.asp?privcapId=3079632
http://investing.businessweek.com/research/stocks/private/snapshot.asp?privcapId=3079632

[45] D. Wichers, D. Cook, R. Olsson, J. Crossley, P. Kerchen,
K. Levitt, and R. Lo. PACL’s: An Access Control List
Approach to Anti-viral Security. In Proceedings of the 13th
National Computer Security Conference, 1990.

[46] A. Yip, X. Wang, N. Zeldovich, and M. F. Kaashoek.
Improving application security with data flow assertions. In
Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, 2009.

[47] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and
D. Mazières. Making Information Flow Explicit in HiStar.
In Proceedings of the 7th symposium on Operating Systems
Design and Implementation (OSDI), pages 263–278, 2006.

[48] N. Zeldovich, S. Boyd-Wickizer, and D. Mazieres. Securing
Distributed Systems with Information Flow Control. In
Proceedings of the USENIX Symposium on Networked
Systems Design and Implementation, 2008.

APPENDIX
A. AQUIFER POLICY SAFETY PROOF

We now prove the safety of the join operation in the Aquifer
policy logic. Before proving the join operation ensures policy
restriction, we must define a restriction relation. We do this in
two parts. First, we define an e↵ective restriction relation that
ensures the evaluated policy is more restrictive. Then, we define
an owner restriction relation that ensures that all of an owner’s
restrictions are maintained. This is important, because while L2
may be e↵ectively more restrictive than L1, an individual owner’s
restrictions may be changed at a later time by another owner such
that L2 is no longer more restrictive than L1. With these two
definitions, we can define an overall restriction relation that is
needed to prove the safety of Aquifer.

Definition 9 (E↵ective restriction relation ve). Let L1 and L2
be workflow labels with e↵ective export lists, required lists, and
workflow filters E1e, E2e, R1e, R2e, F1e, and F2e, respectively.
L2 is e↵ectively more restrictive than L1, denoted L1 ve L2, if
and only if:

E1e ◆ E2e

R1e ✓ R2e

actions(F1e) ✓ actions(F2e)

8s 2 actions(F1e), targets(F1e, s) ◆ targets(F2e, s)

Conceptually, Definition 9 ensures that (1) L2 has less ex-
porters than L1, (2) L2 has more required apps on the workflow
than L1, and (3) any workflow filters in L1 are enforced by L2
with targets that are more restrictive (less than) those in L1.

Definition 10 (Owner restriction relation vO). Let L1 and L2
be workflow labels, O be the owner for which the relation is eval-
uated, F1 = filters(L1, O), and F2 = filters(L2, O). L2 is more
restrictive than L1 for owner O, denoted L1 vO L2, if and only
if:

exports(L1, O) ◆ exports(L2, O)

requires(L1, O) ✓ requires(L2, O)

actions(F1) ✓ actions(F2)

8s 2 actions(F1), targets(F1, s) ◆ targets(F2, s)

Conceptually, Definition 10 ensures the same properties as Def-
inition 9, but with respect to owner O.

Definition 11 (Restriction relation v). Let L1 and L2 be work-
flow labels. L2 is more restrictive than L1, denoted L1 v L2, if
and only if L1 ve L2 and 8O 2 owners(L1), L1 vO L2.

We now prove the safety of the Aquifer policy language.

Theorem 1. The Aquifer policy language is safe.

Proof. We prove the safety of the Aquifer policy language by
construction. Let L1 and L2 be workflow labels. Workflow policy
propagation creates a new label L1 t L2. We must show that
L1 v L1 t L2 and L2 v L1 t L2.

Based on Definition 11, L1 v L1 t L2 i↵ (a) for all O 2

owners(L1), L1 vO L1 t L2 and (b) L1 ve L1 t L2.
Condition (a) is satisfies Definition 10 by expanding L1 t L2

using Definition 8, as follows. For all owners O 2 owners(L1),
let F1 = filters(L1, O) and F2 = filters(L2, O), then

exports(L1, O) ◆ exports(L1, O) \ exports(L2, O)

requires(L1, O) ✓ requires(L1, O) [requires(L2, O)

actions(F1) ✓ actions(F1) [actions(F2)

8s 2 actions(F1), targets(F1, s)

◆ targets(F1, s) \ targets(F2, s)

Condition (b) is satisfies Definition 9 by expanding L1 t L2
using Definition 8 and applying Definitions 5-6 to determine the
e↵ective policy.

Export list: for L1, E1e =
T

exports(L1, O) for allO 2 owners(L1).
For L1 t L2, E12e =

T
(exports(L1, O) \ exports(L2, O)) for all

O 2 (owners(L1)[owners(L2)). To satisfy Definition 9, we must
show E1e ◆ E12e. If an export list exists for an owner Oi in L2
but not L1, exports(L1, O) will return the set of all applications
(see Section 4) and the intermediate stage will be exports(L2, O).
However, if this contains an application that was not in E1e it
will be removed in the outer intersection. Therefore, E1e ◆ E12e.

Required list: for L1, R1e =
S

requires(L1, O) for all O 2

owners(L1). For L1tL2, R12e =
S
(requires(L1, O)[requires(L2, O))

for all O 2 (owners(L1) [owners(L2)). Clearly, R1e ✓ R1e2,
which satisfies Definition 9.

Workflow Filters: for L1,

F1e ={(s, T) | s 2

[
actions(F) and T =

\
targets(F, s),

8F 2 filters(L1, O), 8O 2 owners(L1)}

For L1 t L2,

F12e ={(s, T) | s 2

[
(actions(F1) [actions(F2))

and T =
\

(targets(F1, s) \ targets(F2, s)),

8F1 2 filters(L1, O), 8F2 2 filters(L2, O),

8O 2 (owners(L1) [owners(L2))}

Definition 9 first requires showing that actions(F1e) ✓ actions(F12e).
This is true, because F12e contains all of the action strings in
the filters for both L1 and L2. Second, we must show that
8s 2 actions(F1e), targets(F1e) ✓ targets(F12e). This is en-
sured by the intersection of targets when generating F12e. This
completes the conditions needed to satisfy Definition 9, as well
as Definition 11 for L1 v L1 t L2. The proof that L2 v L1 t L2
follows similarly and is not shown for brevity.

	Introduction
	Motivation and Problem
	Use Case: Signing a Document
	Problem Definition
	Threat Model
	Background: Android

	Overview
	Aquifer Policy
	Policy Types
	Policy Logic

	Aquifer System Design
	Managing UI Workflows
	Enforcing Policy
	Tracking Background Functionality

	Implementation
	Evaluation
	Application Survey
	Security Evaluation
	Performance Evaluation
	Case Studies
	Case Study 1 (Confidential PDF)
	Case Study 2 (Choosers)
	Case Study 3 (Document Viewers)

	Discussion
	Related Work
	Conclusion
	References
	Aquifer Policy Safety Proof

