
Systematic Detection of Capability Leaks in Stock Android Smartphones

Michael Grace, Yajin Zhou, Zhi Wang, Xuxian Jiang

North Carolina State University
890 Oval Drive, Raleigh, NC 27695

{mcgrace, yajin zhou, zhi wang}@ncsu.edu jiang@cs.ncsu.edu

Abstract

Recent years have witnessed a meteoric increase in the

adoption of smartphones. To manage information and fea-

tures on such phones, Android provides a permission-based

security model that requires each application to explicitly

request permissions before it can be installed to run. In

this paper, we analyze eight popular Android smartphones

and discover that the stock phone images do not properly

enforce the permission model. Several privileged permis-

sions are unsafely exposed to other applications which do

not need to request them for the actual use. To identify

these leaked permissions or capabilities, we have developed

a tool called Woodpecker. Our results with eight phone im-

ages show that among 13 privileged permissions examined

so far, 11 were leaked, with individual phones leaking up

to eight permissions. By exploiting them, an untrusted ap-

plication can manage to wipe out the user data, send out

SMS messages, or record user conversation on the affected

phones – all without asking for any permission.

1 Introduction

Recent years have witnessed a meteoric increase in the

adoption of smartphones. According to data from IDC [24],

smartphone manufacturers shipped 100.9 million units in

the fourth quarter of 2010, compared to 92.1 million units

of PCs shipped worldwide. For the first time in history,

smartphones are outselling personal computers. Their pop-

ularity can be partially attributed to the incredible function-

ality and convenience smartphones offered to end users. In

fact, existing mobile phones are not simply devices for mak-

ing phone calls and receiving SMS messages, but powerful

communication and entertainment platforms for web surf-

ing, social networking, GPS navigation, and online bank-

ing. The popularity of smartphones is also spurred by the

proliferation of feature-rich devices as well as compelling

mobile applications (or simply apps). In particular, these

mobile apps can be readily accessed and downloaded to run

on smartphones from various app stores [2]. For exam-

ple, it has been reported [22] that Google’s Android Mar-

ket already hosts 150,000 apps as of February, 2011 and the

number of available apps has tripled in less than 9 months.

Moreover, it is not only official smartphone platform ven-

dors (e.g., Apple and Google) that are providing app stores

that host hundreds of thousands of apps; third-party vendors

(e.g., Amazon) are also competing in this market by provid-

ing separate channels for mobile users to browse and install

apps.

Not surprisingly, mobile users are increasingly relying

on smartphones to store and handle personal data. Inside

the phone, we can find current (or past) geo-location infor-

mation about the user [3], phone call logs of placed and

received calls, an address book with various contact infor-

mation, as well as cached emails and photos taken with

the built-in camera. The type and the volume of infor-

mation kept in the phone naturally lead to various con-

cerns [13, 14, 27, 42] about the safety of this private in-

formation, including the way it is managed and accessed.

To mediate access to various personal information and

certain advanced phone functions, smartphone platform

vendors have explored a number of approaches. For ex-

ample, Apple uses a vetting process through which each

third-party app must be scrutinized before it will be made

available in the app store. After installing an app, Apple’s

iOS platform will prompt the user to approve the use of

some functions at run-time, upon their first access. From

another perspective, Google defines a permission-based se-

curity model in Android by requiring each app to explicitly

request permissions up-front to access personal information

and phone features. The requested permissions essentially

define the capability the user may grant to an Android app.

In other words, they allow a user to gauge the app’s capa-

bility and determine whether or not to install the app in the

first place. Due to the central role of the permission-based

model in running Android apps, it is critical that this model

is properly enforced in existing Android smartphones.

In this paper, we systematically study eight popular An-

droid smartphones from leading manufacturers, including

HTC, Motorola, and Samsung and are surprised to find

out these stock phone images do not properly enforce the

permission-based security model. Specifically, several priv-

ileged (or dangerous) permissions that protect access to sen-

sitive user data or phone features are unsafely exposed to

other apps which do not need to request these permissions

for the actual use. For simplicity, we use the term capability

leak to represent the situation where an app can gain access

to a permission without actually requesting it. Each such

situation essentially leads to a violation of the permission-

based security model in Android.

To facilitate exposing capability leaks, we have devel-

oped a system called Woodpecker. By employing data flow

analysis on pre-loaded apps, Woodpecker systematically

analyzes each app on the phone to explore the reachability

of a dangerous permission from a public, unguarded inter-

face. To better examine possible capability leaks, our sys-

tem distinguishes two different categories. Explicit capa-

bility leaks allow an app to successfully access certain per-

missions by exploiting some publicly-accessible interfaces

or services without actually requesting these permissions by

itself. Implicit capability leaks allow the same, but instead

of exploiting some public interfaces or services, permit an

app to acquire or “inherit” permissions from another app

with the same signing key (presumably by the same author).

Consequently, explicit leaks represent serious security er-

rors as they subvert the permission-based security model in

Android while implicit leaks could misrepresent the capa-

bilities available to an app.

We have implemented a Woodpecker prototype to un-

cover both types of capability leaks in Android-based smart-

phones. Our current prototype focuses on 13 representa-

tive privileged permissions that protect sensitive user data

(e.g., geo-location) or phone features (e.g., the ability to

send SMS messages). We have used our prototype to ex-

amine eight popular Android phones: HTC Legend/EVO

4G/Wildfire S, Motorola Droid/Droid X, Samsung Epic 4G,

and Google Nexus One/Nexus S. Our results show that

among these 13 privileged permissions, 11 were explicitly

leaked, with individual phones leaking up to eight permis-

sions.1 In particular, by exploiting these leaked capabilities,

an untrusted app on these affected phones can manage to

wipe out the user data on the phones, send out SMS mes-

sages (e.g., to premium numbers), record user conversation,

or obtain user geo-locations – all without asking for any per-

mission.

1Since April, 2011, we have been reporting the discovered capability

leaks to the corresponding vendors. So far, Motorola and Google have

confirmed the discovered vulnerabilities related to their phones. However,

we experienced major difficulties with HTC and Samsung. Our experience

is similar to others [6], echoing “the seven deadly sins of security vulnera-

bility reporting.” [32]

The rest of this paper is organized as follows: Section 2

and Section 3 describe our system design and implementa-

tion, respectively. Section 4 presents the detailed evaluation

results from our study of eight Android smartphones. Sec-

tion 5 discusses the limitations of our approach and suggests

possible improvement. Finally, Section 6 describes related

work and Section 7 summarizes our conclusions.

2 System Design

We aim to identify capability leaks, i.e., situations where

an app can gain access to a permission without actually re-

questing it. Each such situation essentially sidesteps An-

droid’s permission-based security model. In this work, we

choose to focus on those permissions used by the pre-loaded

apps as a part of an Android phone’s firmware, since the

firmware has access to some permissions that are too priv-

ileged to be granted to third-party apps. For simplicity, we

use the terms “permissions” and “capabilities” interchange-

ably.

Figure 1 provides a high-level overview of our system.

To detect the two different kinds of capability leaks (i.e.,

explicit and implicit), our system performs two complemen-

tary sets of analysis. Specifically, to expose explicit leaks of

a capability, our system first locates those (pre-loaded) apps

in the phone that have the capability. For each such app,

our system then identifies whether a public interface is ex-

posed that can be used to gain access to it. (This public

interface is essentially an entry point defined in the app’s

manifest file, i.e., an activity, service, receiver, or content

provider.) In other words, starting from some public inter-

face, there exists an execution path that can reach some use

of the capability. If this public interface is not guarded by

a permission requirement, and the execution path does not

have sanity checking in place to prevent it from being in-

voked by another unrelated app, we consider the capability

leaked. Our system then reports such leaks and further pro-

vides evidence that can be used to fashion input to exercise

the leaked capability.

On the other hand, implicit capability leaks arise from

the abuse of an optional attribute in the manifest file, i.e.,

“sharedUserId.” This attribute, if defined, causes mul-

tiple apps signed by the same developer certificate to share

a user identifier. As permissions are granted to user iden-

tifiers, this causes all the apps sharing the same identifier

to be granted the union of all the permissions requested by

each app. To detect such leaks in an app that shares a user

identifier, our system reports the exercise of an unrequested

capability, which suspiciously has been requested by an-

other app by the same author. We stress that an implicit

leak requires a certain combination of apps to be installed:

an app seeking to gain unauthorized capabilities can only do

so if another app, with the same shared user identifier and

Pre−loaded Apps

Possible Path Identification Capability Leak Report

Other System Images

Infeasible Path Pruning

Android Framework APIs

(e.g., framework.dex)

Figure 1. An overview of Woodpecker

signing key, is installed to grant the additional permission.

In the context of the pre-loaded apps on the phone, we can

identify whether such a colluding app exists. However, due

to the fact that we cannot rule out the possibility of a col-

luding app being installed at a later time, its mere absence

does not indicate such an implicit leak is “safe” and may

not occur later.

In this work, we consider the scenario where a smart-

phone user has installed a third-party app on the phone.

The author of the third-party app has the necessary knowl-

edge of the phone’s system image, and aims to maliciously

perform some high-privilege activities (e.g., recording the

user’s phone conversations) through Android APIs that are

protected by permission checks. To do that, the attacker

chooses to not request the required permissions to elude

detection or these permissions cannot be granted to third-

party apps. (Examples include those permissions defined

as signature or signatureOrSystem [17]). Mean-

while, we limit the attacker’s scope by assuming the An-

droid framework (including the OS kernel) is trusted. Also,

we assume that the signing key to the system image has

not been leaked to the attacker. Given these constraints, a

malicious app will not be able to directly access the high-

privilege APIs. However, since many pre-loaded apps have

the corresponding permissions, the malicious app will have

gained access to a high-privilege capability if it can cause

one of these apps to invoke the desired API on its behalf.

2.1 Explicit Capability Leak Detection

Explicit capability leaks may occur in any pre-loaded

app that has requested a capability of interest in its manifest

file. To detect these leaks, our system analyzes each such

app in two steps. The first step, possible-path identification

builds a control-flow graph to identify possible paths from a

well-defined entry point (in the manifest file) to some use of

the capability. After that, the second step, feasible path re-

finement employs field- and path-sensitive inter-procedural

data flow analysis to determine which of these paths are fea-

sible.

2.1.1 Possible Path Identification

Given a pre-loaded app under inspection, our system first

extracts its Dalvik bytecode, and then builds a control-flow

graph (CFG) to locate possible execution paths. Since con-

structing a CFG is a well-studied topic, we in the following

focus on those Android-specific aspects that make our task

complicated.

The first issue stems from indirect control-flow trans-

fer instructions in Dalvik bytecode. Dalvik targets a hypo-

thetical machine architecture, which does not support most

forms of indirect control-flow transfer. In fact, the only indi-

rect transfer in Dalvik’s machine language is due to the Java

equivalent of pointers: object references. However, object

references are rather commonly passed as arguments within

an app method, and due to inheritance it is often not possible

to unambiguously determine what concrete class a reference

represents. During our analysis, object references will also

naturally require type resolution of related objects. In our

current prototype, we take a conservative approach. Specifi-

cally, when analyzing an app’s Dalvik bytecode, our system

maintains a comprehensive class hierarchy. When an am-

biguous reference is encountered, we consider all possible

assignable classes. This is a straightforward approach, but

one that will not introduce any false negatives (Section 5).

Another problem arises from Android’s event-driven na-

ture. In particular, due to the large number of callbacks

used by the Android framework, app execution often passes

through the framework to emerge elsewhere in the app. For

a concrete example, consider the java.lang.Thread

class. This class is used to implement native threads, which

Android uses in abundance to achieve better UI respon-

siveness. A developer can simply extend this class, im-

plement the run() method, and then call the start()

method to schedule the thread. However, if we analyze

only the code contained within the app, the run() method

does not appear to be reachable (from start()), despite

the fact that after the start() method is called, con-

trol flow goes through the Dalvik VM to the underlying

thread scheduler and eventually to the run() method. In

other words, Android’s event-driven nature will unavoid-

OS Scheduler

Entry Point

Thread.start() Thread.run()

Capability-

Exercising Method

Figure 2. A discontinuity in the control flow
introduced by the Android framework.

ably cause some discontinuity in the CFG construction if

we only focus on analyzing the app code (Figure 2). For-

tunately, beyond CFG construction, this intervening frame-

work code is of no particular value to our analysis, and its

behavior is well-defined in the Android framework APIs.

Therefore, we leverage these well-defined semantics to link

these two methods directly in the control flow graph, re-

solving the discontinuity in the process. We have applied

this strategy to a number of other callbacks, such as those

for message queues, timers, and GPS position updates.

Android’s use of events is so core to the platform that

it is even reflected in the structure of Android apps. This

leads to a final complication, because an Android app does

not necessarily have only one entry point. Instead, rather

than a traditional “main method” of some kind, an Android

app contains one or more components defined in its man-

ifest file. Each component can potentially define multiple

entry points accessible through the Binder IPC mechanism.

To take these factors into account, our prototype iterates

through each entry point defined in the manifest file to build

the CFG. Within each CFG, we then locate possible paths,

each indicating the reachability from a known entry point to

a point that exercises a specific permission of interest.

2.1.2 Feasible Path Refinement

The previous step produces control-flow graphs which may

represent a tremendous number of potential paths. Among

these possible paths, not all of them lead to a dangerous call

that exercises a permission of interest, and of those that do,

not all are feasible. Therefore, we employ inter-procedural

data flow analysis to find paths that are both feasible and

result in a dangerous call.

Specifically, we use symbolic path simulation, a path-

sensitive data flow analysis technique. The underlying in-

tuition is that a path of program execution can be modeled

as a set of program states, each dependent on the last. For

this set of states to be feasible, each program point (or in-

Input: entry points, known method summaries

Output: a set of capability leaks

foreach entry point ∈ entry points do
worklist = initial state: start of the entry point

states = initial state

summaries = known method summaries

foreach state ∈ worklist do
remove state from worklist

if state’s instruction is a method call then
if a summary does not exist for the target

then
summarize(target, summaries);

end

end

worklist+ = δ(state) − states

states+ = δ(state)
end

if a dangerous-call state is flagged then
report the state as a capability leak

end

end

Algorithm 1: Capability leak detection

struction) must follow from the preceding ones. Similar to

other data flow analysis techniques, symbolic path simula-

tion implements an iterative algorithm that converges on a

fix-point. At each program point, the set of input states are

fed through a transfer function (representing the operation

performed by that instruction) to produce a set of output

states. However, before these output states are used as in-

put states for that program point’s successors, we verify that

their constraints are consistent. In this way, infeasible paths

are not fed forward through the analysis.

As a field- and path-sensitive symbolic simulation al-

gorithm (summarized by Algorithm 1), our approach con-

siders multiple similar concrete paths through a program

at once, and condenses methods into parameterized sum-

maries that relate their inputs to their outputs. Each state

in the analysis encodes the value of data fields with con-

straints, allowing some similar states to be joined with one

another. Particularly, the algorithm operates in the stan-

dard fashion for data flow analysis: a worklist is maintained

of actively-considered states, and a transfer function (δ) is

used to generate new states from a given state. Only new

states are added to the worklist, so eventually the algorithm

converges on a solution that represents all the feasible states

reachable from a given entry point.

By considering certain properties of the Android plat-

form, we can optimize our algorithm in a number of as-

pects. For example, we accelerate the process by us-

ing method summaries to avoid recursively considering the

same method-call chains multiple times. To save space,

joining (rather than simply adding) new states to the work-

list and visited-state list make the algorithm scale better

both in terms of time and memory. Our implementation rec-

ognizes the value constraints placed on each memory item,

and will aggressively merge similar states where possible.

As an example, if two states are joined that only differ by

whether a boolean value is true or false, the resulting state

will simply remove any constraint on the boolean value. In

this way, fewer states need to be remembered, and fewer

successors calculated using the transfer function δ.

Moreover, since an Android app can define multiple en-

try points, there is a need to produce a separate set of poten-

tial paths for each. These paths do not include any executed

instructions in the app prior to the entry point, which ex-

cludes such code as any constructors that set the initial state

of the app. Due to the fact that the entry points in an app

can be invoked in any sequence, we opt to take a conser-

vative approach by assuming that a field might contain any

assignable value. As that field is used along a path of execu-

tion, the list of possible values shrinks each time it is used in

a way that renders some candidate values impossible. When

reducing infeasible paths, we also face the same type in-

ference problem experienced in the first step. Fortunately,

the set of inferences built up by symbolic path simulation

naturally mitigates the path explosion caused by our first

step. Specifically, object instances can be tracked during

the path simulation, and some paths will become infeasible

after the system infers the object’s type somewhere along a

path. Certain Dalvik bytecode operations, especially type-

carrying instructions, can also greatly help. For instance,

the check-cast opcode establishes that its operand can

be assigned to the supplied type, or an exception is thrown.

In addition, the execution of our algorithm also involves

handling Android framework APIs or methods that do not

belong to the app. Specifically, the app under inspection

may invoke certain APIs that are exported by the Android

framework. In our algorithm, the transfer function for a

method invocation opcode is a method summary, which es-

sentially phrases the method’s outputs in terms of its inputs.

Without statically analyzing the code for an external method

– and all of its dependencies – we cannot build such a sum-

mary. Yet analyzing the entire Android framework would

easily lead to state explosion and scalability issue. To ad-

dress that, we again leverage the well-defined API seman-

tics of the Android framework. Specifically, it contains a

remarkably robust set of predefined libraries, which reduces

the need for developers to pull in third-party libraries to

support their code. By summarizing these built-in classes

ahead of time, we can avoid paying the time, space, and

complexity costs associated with doing so each time during

application analysis. In our prototype, we find that this ap-

proach allows us to phrase some functions more succinctly

than the algorithm would, as we can trim out unimportant

details from the summaries.

During this infeasible path pruning step, we also need

to account for explicit permission checks within the identi-

fied path. An app might allow any caller to invoke its en-

try points, yet deny unprivileged callers access to danger-

ous functionality by explicitly checking the caller’s creden-

tials before any dangerous invocations. Such an arrange-

ment would not constitute a capability leak, and so should

not be reported. A naı̈ve solution would be to mark any

path encountering an interesting permission check as infea-

sible. However, our approach does not know what kind of

dangerous call lies at the end of the path beforehand. Al-

lowing unrelated permission checks to mark whole paths

as infeasible would therefore introduce false negatives. In-

stead, we model the permission system within our artificial

method summaries. Explicit permission checks set a flag

along their “true” branch; if that path of execution later en-

counters a corresponding dangerous call, it is not reported

as a capability leak.

A side benefit of performing this kind of analysis is that

it models all data flow assignments, not just those relating to

branch conditions. As a result, we can trace the provenance

of any arguments to the dangerous method. With such in-

formation, we can characterize the severity of the capability

leak. A capability leak that directly passes through argu-

ments from the external caller is obviously worse than one

that only allows invocation with constant values, and this

design can distinguish between the two. Given that path

feasibility is undecidable, our design errs on the side of cau-

tion: it will not claim a feasible path is infeasible, but might

claim the reverse is true. As a result, this argument infor-

mation is valuable, as it can be used to generate a concrete

test case that verifies the detected capability leak.

2.2 Implicit Capability Leak Detection

When detecting explicit capability leaks, we focus on

those apps that request permissions of interest in their man-

ifest files. If an app has a sharedUserId in its manifest

but does not request a certain (dangerous) permission, we

also need to investigate the possibility of an implicit capa-

bility leak.

To detect implicit capability leaks, we employ a simi-

lar algorithm as for explicit leaks with necessary changes

to reflect a fundamental difference in focus. Specifically,

explicit capability leak detection assumes the caller of an

app’s exposed API is malicious, while implicit capability

leak detection assumes the app itself might be malicious.

Accordingly, instead of only starting from the well-defined

entry points in the explicit leak detection, there is a need to

broaden our search to include the app’s initialization.

Unfortunately, modeling the initialization process in an

Android app is somewhat complicated. Specifically, there

are two kinds of constructors to handle: (1) Instance con-

structors that are explicitly invoked in the Dalvik byte-

code with the new-instance bytecode operation and (2)

Class constructors or static initialization blocks that are

implicitly invoked the first time a class is used. Accord-

ingly, instance constructors are relatively straightforward to

handle as they need to be explicitly invoked. However, class

constructors are more complicated. In particular, a class

constructor may be invoked in a number of scenarios: it

is instantiated with the new keyword, a static member

of the class is referenced, or one of its subclasses is like-

wise initialized. This means that this type of initialization

can occur in a variety of orders. In our prototype, we treat

all of the relevant instructions as branches, and take into

account the class loading order to determine the path fea-

sibility. Also, in our system, we consider a capability to

have been implicitly leaked if there is any way to exercise

it, which is different from explicit capability leak detection.

(This has implications in changing method summaries used

for pruning infeasible paths – Section 2.1.2.)

Finally, once we have identified that an implicit capabil-

ity leak exists, we can perform an additional step to deter-

mine whether that leak may actually be exercised. In the

context of a phone’s system image, we can determine the

runtime permissions granted to each shared user identifier

by crawling the manifest files of all the packages in the im-

age. We union the permissions granted to each application

with a given shared user identifier, which yields the set of

permissions given to each of them. We report any implicitly

leaked permissions contained within that set.

3 Implementation

We have implemented a Woodpecker prototype that con-

sists of a mixture of Java code, shell scripts and Python

scripts. Specifically, our static analysis code was developed

from the open-source baksmali disassembler tool (1.2.6).

We could have developed Woodpecker as a set of extensions

to an existing Java bytecode analysis tool (e.g., Soot [4] or

WALA [5]). Given concerns over the accuracy of existing

Dalvik-to-Java bytecode translators, we opted to operate di-

rectly on baksmali’s intermediate representation. To de-

tect possible capability leaks in an Android phone, our sys-

tem first leverages the Android Debug Bridge (adb) tool

[1] to obtain access the phone’s system image, mainly those

files in the /system/app and /system/framework

directories. These directories contain all of the pre-installed

apps on the device, as well as any dependencies they need

to run.

After obtaining the phone image, we then enumerate

all pre-installed apps. For each app, our system decom-

presses the related Android package (apk) file to extract its

manifest file (AndroidManifest.xml) and then pairs it

with the app’s bytecode (either classes.dex or its odex

variant). A standalone script has been developed to extract

all the pre-installed apps and disassemble them to extract

their bytecode for subsequent analysis. Depending on the

number of apps installed on the device and the complex-

ity or functionality implemented in these apps, this process

typically takes on the order of ten minutes per smartphone

image.

After extracting the app manifest files, we further comb

through them for two things: requests for any permis-

sions of interest and the optional sharedUserId at-

tribute. Apps that are granted related permissions are

checked for explicit capability leaks, while those with the

sharedUserId attribute set are checked for implicit ca-

pability leaks. Naturally, we also compute the actual set

of permissions granted to each pre-loaded app by com-

bining all the permission requests made with the same

sharedUserId.

3.1 Control­Flow Graph Construction

We iterate through each selected pre-loaded app to detect

possible capability leaks. As there are tens of dangerous

permissions defined in the Android framework, instead of

building a specific control-flow graph (CFG) for each per-

mission, we choose to first build a generic CFG to assist our

static analysis.

In particular, we start from each entry point and build

the respective CFG. The generic whole-program CFG will

be the union of these CFGs. There is some subtlety in

Android involved in mapping the components defined in

the manifest file to their actual entry points. Some en-

try points are standard and can be readily determined by

the type of components contained within the app. Specif-

ically, there are in total four types, and each has a pre-

defined interface to the rest of the system. For instance,

any “receiver” defined in the manifest file must subclass

android.content.BroadcastReceiver. In such

cases, inspecting the class hierarchy allows to determine

that the “onReceive(Context, Intent)” method is

an entry point (as per the specification).

Moreover, among these four types, three of them solely

take data objects as inputs through their entry points, but

services can be different. In particular, Android defines

a CORBA-like binding language, the Android Interface

Definition Language (AIDL), which allows services to ex-

pose arbitrary methods to other apps. aidl files are used

at compile-time to manufacture Binder stubs and skele-

tons that encapsulate the necessary IPC functionality. At

run-time, the component’s onBind(Intent) method is

called by the system, which returns an android.os.-

Binder object. The methods contained within this object

are then exported to callers that have a compatible skele-

ton class. Since we only analyze the bytecode and do not

Table 1. The list of 13 representative permissions in our study (†: we omit android.permission. prefix in
each permission)

Permission† Capability

ACCESS COARSE LOCATION Access coarse location (e.g., WiFi)

ACCESS FINE LOCATION Access fine location (e.g., GPS)

CALL PHONE Initiate a phone call (without popping up an UI for confirmation.)

CALL PRIVILEGED Similar to CALL PHONE, but can dial emergency phone numbers (e.g., 911)

CAMERA Access the camera device

DELETE PACKAGES Delete existing apps

INSTALL PACKAGES Install new apps

MASTER CLEAR Remove user data with a factory reset

READ PHONE STATE Read phone-identifying info. (e.g., IMEI)

REBOOT Reboot the device

RECORD AUDIO Access microphones

SEND SMS Send SMS messages

SHUTDOWN Power off the device

have access to the original aidl files used to define the

interface, there is a need to further parse and infer the in-

ternal structure of the Binder object. Each such object

contains an onTransact() method that is passed a par-

cel of data that encodes which method to call. We can then

treat this method as an entry point in order to build our

CFG. However, once the graph has been built, it is more

semantically accurate to treat the embedded method calls

in onTransact() as entry points for the purposes of our

feasible path refinement stage.

From another perspective, Android apps essentially ex-

pose a set of callbacks to the system instead of a single

“main method.” Our system leverages the knowledge of

how these callbacks are defined in Android to identify them.

In addition, the Android framework defines many other call-

backs at run-time, which will similarly cause discontinu-

ities in the CFG generation. One example is the previous

Thread.start()→run() scenario. In our prototype,

instead of statically analyzing the entire Android frame-

work, we opt to use knowledge of the framework’s seman-

tics to connect the registration of a callback to the callback

itself. To automate this process, we provide a boilerplate file

that represents knowledge about the framework. This file

contains simplified definitions for any explicitly-modelled

method in the framework, written in the dex format; it is

fed into our system alongside the app’s code to facilitate

CFG construction.

3.2 Capability Leak Detection

With the constructed CFG and the set of entry points, we

then aim to identify possible execution paths from one of

the entry points to some use of an Android API that exer-

cises a permission of interest. If the path is not protected

by the appropriate permission checks and its entry point is

publicly accessible, an explicit capability leak is detected.

Due to the large number of sensitive permissions defined in

the Android framework, our study chooses thirteen repre-

sentative permissions marked dangerous, signature

or signatureOrSystem. These permissions are sum-

marized in Table 1 and were chosen based on their potential

for abuse or damage. For example, the SEND SMS permis-

sion is a favorite of malware authors [18]: it can be used to

send messages to costly premium numbers, which pay the

culprit for each such text.

For each chosen permission, our first step is to iden-

tify the list of related Android APIs that might exercise the

permission. However, such a list is not easy to come by.

In fact, we found out that though Android’s permission-

based security model might be comprehensive enough in

specifying the permissions required to access sensitive data

or features, the available API documentation is incomplete

about which APIs a permission grants access to. Specif-

ically, when dealing with various apps in the system im-

age, we encountered numerous permissions not meant for

general consumption – and that therefore do not even have

formally specified APIs. One example is “android.-

permission.MASTER CLEAR,” which allows an app to

perform a factory reset of the smartphone. This permis-

sion is marked as signatureOrSystem, so only apps

included in the system image can request it; it is intended to

be implemented by the vendor and only used by the vendor,

so none of the APIs listed in the API documentation check

this permission.

For each related permission and the associated Android

APIs, our next step then reduces the generic CFG to a

permission-specific CFG. Within the reduced CFG, we can

then apply the Algorithm 1 to locate possible execution

paths from an entry point to the associated Android APIs.

For each identified path, we further look for the presence

of certain permission checks. Our experience indicates

that some permission checks are already defined in the

manifest file (and thus automatically enforced by the

Android framework). However, many others will explicitly

check their caller’s permissions. In our prototype, we

resort to the Android Open Source Project (AOSP) to find

explicit permission checks in the framework. There are also

some cases that do not fall under the AOSP. For them we

have to apply baksmali to representative phone images

and then manually examine each explicit permission

check. Using the previous example of “android.-

permission.MASTER CLEAR,” Android provides an

interface, android.os.ICheckinService that de-

clares the masterClear() method. The Samsung Epic

4G’s factory reset implementation contains a class com.-

android.server.FallbackCheckinService.

This class implements this Android interface, whose

masterClear() method explicitly checks the

“android.permission.MASTER CLEAR” per-

mission.

To facilitate our static analysis, our prototype also in-

cludes a fictitious dangerous class that has many static

permission-associated member fields. Each identified An-

droid API call, if present in an execution path being an-

alyzed, will update the member field related to the asso-

ciated permission. As a result, we can detect dangerous

calls by simply listing the related member fields in this

class. Similarly, to model the impact a caller’s permissions

have on whether a dangerous call can succeed, we use an-

other fictitious permission class. This class contains

a number of member fields and an artificial method defi-

nition for Context.checkCallingPermission().

This method sets these member fields dependent upon the

permission it is called with. In other words, each member

field flags whether a path of execution has checked a partic-

ular permission. During an explicit capability leak analysis

run, we only consider a capability to have been leaked if a

state exists that contains a dangerous-call field modification

(maintained in dangerous class) and does not have the

corresponding permission-check flag set (in permission

class). Implicit capability leak analysis does not need to

be concerned about the value of the permission-check flags.

Instead, it is sufficient to have a dangerous call field modi-

fication (in dangerous class).

4 Evaluation

In this section, we present the evaluation results of apply-

ing Woodpecker to eight smartphones from four vendors,

including several flagship phones billed as having signifi-

cant additional bundled functionality on top of the standard

Android platform. We describe our methodology and tab-

ulate our results in Section 4.1. In Section 4.2, we present

Table 2. Eight studied Android smartphones
Vendor Model Android Version # Apps

HTC

Legend 2.1-update1 125

EVO 4G 2.2.2 160

Wildfire S 2.3.2 144

Motorola
Droid 2.2.2 76

Droid X 2.2.1 161

Samsung Epic 4G 2.1-update1 138

Google
Nexus One 2.3.3 76

Nexus S 2.3.3 72

a case study for each type of capability leak, explicit and

implicit. Lastly, Section 4.3 consists of a performance mea-

surement of our system, both in terms of the accuracy of its

path-pruning algorithm and its speed.

4.1 Results Overview

In order to assess capability leaks posed in the wild, we

selected phones representing a variety of manufacturers and

feature sets. Table 2 shows the phone images and their ver-

sions we analyzed using Woodpecker. These phones span

most of the 2.x version space, and as shown by the app

count for each phone image, some are considerably more

complex than others.

Running Woodpecker on each phone image produces a

set of reported capability leak paths. For each reported path,

we then manually verify the leak by tracing the path through

the disassembled Dalvik bytecode. For explicit capability

leaks whose paths seem plausible, we then craft a test ap-

plication and run it on the actual device, where possible.

The results are summarized in Table 3.

After identifying these capability leaks, we spent a con-

siderable amount of time on reporting them to the corre-

sponding vendors. As of this writing, Motorola and Google

have confirmed the reported vulnerabilities in the affected

phones. HTC and Samsung have been really slow in re-

sponding to, if not ignoring, our reports/inquiries. Though

the uncovered capabilities leaks on the HTC and Samsung

phones have not been confirmed by their respective ven-

dors, we have developed a test app to exercise and confirm

all the discovered (explicit) capability leaks on the affected

phones.

We believe these results demonstrate that capability

leaks constitute a tangible security weakness for many An-

droid smartphones in the market today. Particularly, smart-

phones with more pre-loaded apps tend to be more likely

to have explicit capability leaks. The reference implemen-

tations from Google (i.e., the Nexus One and Nexus S)

are rather clean and free from capability leaks, with only

a single minor explicit leak (marked as 3
2in Table 3) due

to an app com.svox.pico. This app defines a receiver,

which can be tricked to remove another app, com.svox.-

Table 3. Capability leak results of eight Android­based smartphones (E: explicit leaks; I: implicit leaks)

HTC Motorola Samsung Google

Permission Legend EVO 4G Wildfire S Droid Droid X Epic 4G Nexus One Nexus S

E I E I E I E I E I E I E I E I

ACCESS COARSE LOCATION 3 3 3 3 · 3 · · 3 · · · · · · ·

ACCESS FINE LOCATION 3 · 3 · · 3 · · 3 · · · · · · ·

CALL PHONE · · · · · · · · · · 3 3 · · · ·

CALL PRIVILEGED · · · · · 31
· · · · · · · · · ·

CAMERA 3 · 3 · 3 · · · · · · · · · · ·

DELETE PACKAGES 32
· 32

· 32
· 32

· 32
· 32

· 32
· 32

·

INSTALL PACKAGES · · · · · · · · · · · · · · · ·

MASTER CLEAR · · · · · · · · · · 3 · · · · ·

READ PHONE STATE · 3 · 3 · 3 · · 3 · · 3 · · · ·

REBOOT · · 3 · · · · · · · · · · · · ·

RECORD AUDIO 3 · 3 · 3 · · · · · · · · · · ·

SEND SMS 3 · 3 · 3 · · · · · · · · · · ·

SHUTDOWN · · 3 · · · · · · · · · · · · ·

Total 6 2 8 2 4 4 1 0 4 0 3 2 1 0 1 0

langpack.installer by any other third-party app.2

Our data also show that these capability leaks are not evenly

distributed among smartphones – at least for the 13 permis-

sions we modelled. For example, those smartphones with

system images (i.e., the Motorola Droid) close to the ref-

erence Android design (i.e., the Nexus One and Nexus S)

seem to be largely free of capability leaks, while some of

the other flagship devices have several. Despite this general

trend, we caution against drawing any overly broad conclu-

sions, as some devices (e.g., the Motorola Droid X) with

higher app counts nevertheless contained fewer capability

leaks than substantially simpler smartphones (e.g., the HTC

Legend).

4.2 Case Studies

To understand the nature of capability leaks and demon-

strate the effectiveness of our system, we examine three sce-

narios in depth. These scenarios were selected to illustrate

some of the patterns we encountered in practice, as well as

how our system was able to handle them.

4.2.1 Explicit Capability Leaks (Without Arguments)

The simplest scenario, from Woodpecker’s perspective, in-

volves an entry point calling a dangerous capability that is

not influenced by any arguments. These capabilities tend

to have simpler control flows, as there are no arguments to

validate or parse. The Samsung Epic 4G’s MASTER CLEAR

2This com.svox.pico app implements a text-to-speech engine

that the accessibility APIs use to talk. However, it exports a pub-

lic receiver interface, com.svox.pico.LangPackUninstaller

for android.speech.tts.engine.TTS DATA INSTALLED in-

tents. If such an intent is received, this app will blindly remove another

app, com.svox.langpack.installer, whose name is hard-coded

in the implementation.

explicit capability leak is of this type, which once exploited,

allows for unauthorized wiping of user data on the phone.

To understand how Woodpecker detects this explicit

capability leak, we first explain the normal sequences

when the MASTER CLEAR capability is invoked. Specif-

ically, the Samsung Epic 4G’s phone image has a pre-

loaded app, com.sec.android.app.Selective-

Reset, whose purpose is to display a confirmation screen

that asks the user whether to reset the phone. The normal

chain of events has another system app broadcast the cus-

tom android.intent.action.SELECTIVE RESET

Intent, which the SelectiveResetReceiver class

(defined in the pre-loaded app) listens for. When this

class receives such an intent, it opens the user inter-

face screen (SelectiveResetApp) and waits for the

user to confirm their intentions. Once this is done, the

SelectiveResetService is started, which eventu-

ally broadcasts an intent android.intent.action.-

SELECTIVE RESET DONE. The original Selective-

ResetReceiver class listens for this Intent and then

calls CheckinService.masterClear().

Our system detects the last part of the above chain start-

ing after the broadcasted intent android.intent.-

action.SELECTIVE RESET DONE is received in the

same pre-loaded app. In particular, the intent arrives

at one entry point defined in the app’s manifest file

(i.e., the onReceive(Context, Intent) method

within SelectiveResetReceiver), which then

executes a rather straightforward Intent-handling code

sequence: (1) determines that the received Intent is an

android.intent.action.SELECTIVE RESET DONE

operation; (2) gets the CheckinService that contains

the master clear functionality; (3) checks whether it

was retrieved successfully; and (4) calls Checkin-

Service.masterClear() in a worker thread. Since

CheckinService.masterClear() takes no argu-

ments, no additional dataflow analysis needs be performed

to characterize the capability leak.

In our experiments, we also found other capability leaks

of the same nature, including the REBOOT and SHUTDOWN

leaks on the HTC EVO 4G. On the same phone, we also

found a new vendor-defined capability FREEZE exposed by

a system app, which disables the phone’s touchscreen and

buttons until the battery is removed. In those cases, there is

literally no control flow involved, making these capability

leaks trivial to exploit. We point out that analyzing explicit

capability leaks that involve arguments works in much the

same fashion. Regardless, another explicit capability leak

case study is included (Section 4.2.2) that accounts for the

presence of arguments.

4.2.2 Explicit Capability Leaks (With Arguments)

Looking beyond simple imperative capability leaks, we

consider more complicated cases that involve argument-

taking capabilities. For example, Android’s SMS API con-

sists of three methods, each of which takes five or six ar-

guments. The HTC phones have an explicit leak of this

capability that entails significant preprocessing of these ar-

guments, which we examine as an additional case study to

illustrate how our system works.

On these phones, the general com.android.mms

messaging app has been extended to include a non-

standard service, com.htc.messaging.service.-

SmsSenderService, which is used by other vendor

apps to simplify sending SMS messages. This service can

be started with an Intent that contains a number of ad-

ditional data key-value pairs, known as Extras. Each

Extra contains some data about the SMS to be sent, such

as the message’s text, its call-back phone number, the desti-

nation phone number, and so on.

The SmsSenderService service (Figure 4.2.2) pro-

cesses these fields in its onStart(Intent, int) entry

point, ensuring that the mandatory key-value pairs exist, in-

cluding the message body and destination phone number.

If they do, the Intent is bundled into a Message and

sent to the SmsSenderService$ServiceHandler

class via the Android message-handling interface. This

interface is designed to allow different threads of ex-

ecution to communicate using a queue of Messages.

The typical paradigm uses a subclass of android.-

os.Handler to poll for new Message objects, us-

ing a handleMessage(Message) method. Such

android.os.Handler objects also expose meth-

ods to insert Messages into their queue, such as

sendMessage(Message).

When building possible paths and pruning in-

feasible paths, our system will diligently resolve

the super- and sub-class relationships that bracket

the message-passing code. In this case, the ini-

SmsSenderService .onStar t (Intent , in t)

SmsSenderService$ServiceHandler .sendMessage(Message)

android.os.Handler.sendMessage(Message)

resolves to

android.os.Handler.handleMessage(Message)

SmsSenderService$ServiceHandler.handleMessage(Message)

resolves to

SmsSenderService .sendSms(Intent)

com.android.mms.transact ion.SmsMessageSender.sendMessage(long)

android.telephony.SmsManager.sendMultipartTextMessage(. . .)

Figure 3. The SEND SMS capability leak as a

call graph.

tial SmsSenderService$ServiceHandler.-

sendMessage(Message) call fully specifies the class

that sendMessage(Message) will be called upon, but

SmsSenderService$ServiceHandler does not

contain a definition for that method. Looking to its super-

class, android.os.Handler, Woodpecker finds an ar-

tificial method definition of the appropriate signature. This

definition in turn calls the android.os.Handler.-

handleMessage(Message) method, which is

extended by the SmsSenderService$Service-

Handler class. In this case, our design has no difficulty

resolving these relationships, because the first call fully

specifies the SmsSenderService$ServiceHandler

class. This type information is then carried forward through

the call chain as a constraint on the arguments to each

call, as a class’ methods are associated with an object

instantiating that class via an implicit argument (the this

keyword).

Ultimately, the app execution flow will reach Sms-

Manager.sendMultipartTextMessage(), a

method that exercises the dangerous SEND SMS permis-

sion. The arguments by this point have been transformed:

the destination address remains the same, but the call-back

number may not have been provided by the Intent’s

data, and the message body might have been chunked into

SMS-sized pieces if it is too long. When processing this

execution path, Woodpecker reports this path as feasible

and thus exposing the exercised permission SEND SMS.

Since the exercised capability took a number of arguments,

our system also reports the provenance of each related

argument to the Android API, which allows for straight-

forwardly linking the API arguments back to the original

Intent passed to the entry point at the very beginning. In

other words, by simply including a premium number in the

intent, the built-in app will start sending SMS messages to

this premium number!

Our experience indicates most capability leaks we de-

tected are of this form. For example, the explicit leak

of CALL PHONE capability in Samsung Epic 4G involves

passing a component a “technical assistance” phone num-

ber, which it calls after considerable processing. Simi-

larly, all the tested HTC phones export the RECORD AUDIO

permission, which allows any untrusted app to specify

which file to write recorded audio to without asking for the

RECORD AUDIO permission.

4.2.3 Implicit Capability Leaks

Explicit leaks seriously undermine the permission-based

security model of Android. Implicit leaks from an-

other perspective misrepresent the capability requested by

an app. In the following, we choose one representa-

tive implicit leak and explain in more detail. Specif-

ically, the HTC Wildfire S has a built-in MessageTab

app, com.android.MessageTab, which uses the

CALL PRIVILEGED capability (marked as 3
1in Table 3)

without declaring it in its manifest. This MessageTab app

is intended to manage the phone’s SMS messages, allow-

ing the user to review sent messages and send new ones.

For the sake of convenience, this app links messages sent

to contacts with the appropriate contact information, al-

lowing the user to dial contacts directly through a “con-

tact details” screen. However, this app does not declare the

correct permissions to call phone numbers, as it only re-

quests SMS-related permissions: neither the CALL PHONE

nor CALL PRIVILEGED permission occur in its mani-

fest. On the other hand, MessageTab does declare a

sharedUserId attribute: “android.uid.shared.”

This user identifier is used by a number of core Android

apps, including com.android.htcdialer – which has

both phone-dialing permissions.

When analyzing this app, Woodpecker reports an

implicit leak in the com.android.MessageTab.-

ContactDetailMessageActivity2 activity com-

ponent. Specifically, this component has a onResume()

method – an entry point called when the activity is dis-

played on the screen. In this case, it is used to instruct on

how to build a list of contacts to display on the screen, by

calling com.htc.widget.HtcListView.setOn-

CreateContextMenuListener() with a callback

object (ContactDetailMessageActivity2$3).

When the user long-presses one of these contacts, that

callback object’s onCreateContextMenu() method

is called. This method then calls ContactDetail-

MessageActivity2.addCallAndContactMenu-

Items() to make the contacts’ context menus. A call to a

helper method, android.mms.ui.MessageUtils.-

getMakeCallDirectlyIntent(), builds the

Intent to send to dial a contact. This helper method

builds the actual android.intent.action.-

CALL PRIVILEGED Intent, which will be broadcasted

when the user clicks on the contact. From the disassem-

bled code, the addCallAndContactMenuItems()

method also registers an ContactDetailMessage-

Activity2$MsgListMenuClickListener object

as a callback for the click-able contact. This object’s

onMenuItemClick(MenuItem) method is then

called, which takes the Intent associated with the contact

and calls com.android.internal.telephony-

ITelephony.dialWithoutDelay(Intent) with

it, which immediately dials a phone number.

Note that this implicit capability leak traversed a num-

ber of callbacks that either require user intervention or are

very visible to the user. These callbacks would normally not

be considered useful for an explicit capability leak, which

assumes a malicious caller. However, as implicit capabil-

ity leaks assume that the app itself may be malicious, our

algorithm simply reports them by not making such value

judgments when considering possible execution paths.

4.3 Performance Measurement

Next, we evaluate the performance of our prototype, in

terms of both the effectiveness of its path pruning algorithm

and the amount of time it takes to process a smartphone’s

system image.

To measure how well Woodpecker’s path pruning

algorithm eliminates infeasible paths, we consider its

output from the experiments with a single permission,

android.permission.SEND SMS. In particular, we

run only the possible-paths portion of the algorithm (i.e.,

with no pruning) and identify how many paths may possi-

bly leak a dangerous capability. Our results show that for

each phone, Woodpecker will report more than 8K possible

paths. This surprisingly large number is due to the conser-

vative approach we have taken in resolving an ambiguous

reference to assignable classes. Fortunately, our re-run of

the full system by pruning the infeasible paths immediately

brings the number to the single digits. Specifically, our sys-

tem only reports capability leaks in the HTC phones, espe-

cially 2, 3, 2 for the HTC Legend, EVO 4G, and Wildfire

S respectively. Among the reported leaks, we then manu-

ally verify the correctness of the pruned paths. The results

show they are all valid with no false positives. Note that the

presence of one single path is sufficient to leak the related

capability. We do not measure false negatives due to the

lack of ground truth in the tested phone images. However,

because of the conservative approach we have been taking

in our prototype, we are confident in its low false negatives.

For the processing time, we measure them directly by

running our system multiple times over the tested smart-

phone images. We analyze each image ten times on an

Table 4. Processing time of examined smart­

phone images

Vendor Model Processing Time # Apps

HTC

Legend 3366.63s 125

EVO 4G 4175.03s 160

Wildfire S 3894.37s 144

Motorola
Droid 2138.38s 76

Droid X 3311.94s 161

Samsung Epic 4G 3732.56s 138

Google
Nexus One 2059.47s 76

Nexus S 1815.71s 72

AMD Athlon 64 X2 5200+ machine with 2GB of memory

and a Hitachi HDP72502 7200 rpm hard drive. The mean of

these results are summarized in Table 4. Each phone image

took at most a little over an hour to process. We believe the

average time (∼ 51.0 minutes) per image to be reasonable

given the offline nature of our tool, which has not yet been

optimized for speed.

5 Discussion

Our system has so far uncovered a number of serious

capability leaks in current smartphones from leading man-

ufacturers. Given this, it is important to examine possible

root causes and explore future defenses.

First of all, capability leaks essentially reflect the classic

confused deputy attack [21] where one app is tricked by an-

other into improperly exercising its privileges. Though one

may easily blame the manufacturers for developing and/or

including these vulnerable apps on the phone firmware,

there is no need to exaggerate their negligence. Specifi-

cally, the permission-based security model in Android is a

capability model that can be enhanced to mitigate these ca-

pability leaks. One challenge however is to maintain the

integrity of those capabilities when they are being shared

or opened to other unrelated apps. In other words, ei-

ther the capability-leaking app needs to ensure that it will

not accidently expose its capability without checking the

calling app’s permission, or the underlying Android frame-

work needs to diligently mediate app interactions so that

they do not inappropriately violate the integrity of a ca-

pability. However, such inter-app interactions are usually

application-specific, so it is hard for the Android framework

to infer the associated semantics.

Second, to avoid unsafely exposing capabilities, we can

also develop a validator tool and release it together with the

Android SDK. Note that such a validator tool needs to han-

dle the various ways an app can interact with the Android

permission model. Specifically, Android uses string identi-

fiers to represent permissions, and permission information

can be encoded in either the app’s manifest or code, which

indicates that the permission model cannot be considered

type-safe. Accordingly, conventional Java source code anal-

ysis tools are not aware of the impact permissions have on

program execution.

Woodpecker represents our first step towards such a val-

idator tool for capability leak detection. Though it has iden-

tified serious capability leaks in current Android phones, it

still has a number of limitations that need to be addressed.

For example, other than tightening the underlying imple-

mentation and incorporating latest development of accurate,

scalable points-to analysis [8, 34, 35], our current proto-

type now handles only Dalvik bytecode and needs to be

extended to accommodate native code. In doing so, the

issue of dynamically loaded code would be raised, which

is a limitation for purely static approaches. Also, our cur-

rent prototype only handles 13 permissions that are defined

by the framework itself. However, many more exist, and

apps are free to define new ones. Extending the system to

handle more predefined permissions is expected to produce

much the same results, but adding support for app-defined

permissions would lead to another class of capability leaks:

chained capability leaks. To illustrate, consider three apps:

A, B, and C. C has the CALL PHONE capability, which it

safely exposes to B by defining a new MY CALL PHONE

permission. This new permission is acquired by B. For a

chained leak to occur, B opens up the new permission un-

safely to A. As a result, there is a call chain A→B→C, which

could leak the CALL PHONE capability. Since the new per-

mission MY CALL PHONE can be arbitrary and specific to

a particular implementation, we need to explore innovative

ways to extend our prototype to accommodate such chained

capability leaks.

Finally, our study only examines capability leaks among

pre-loaded apps in the phone firmware. We also expect the

leaks could occur among third-party user apps. Note that

phone images are relatively homogeneous and static with

usually a somewhat infrequent update schedule. Capability

leaks, especially explicit ones, on phone images are of great

interest to malicious third parties. Implicit leaks, on the

other hand, appear to be relatively rare, which we assume

are more software engineering defects than a real security

threat. However, for third-party apps, implicit leaks could

constitute collusion attacks that directly undermine the app

market model. Specifically, app markets do not report the

actual permissions granted to an app. Instead they report

only the permissions an app requests or embodied in the

manifest file. As a result, a cohort of seemingly innocuous

apps could conspire together to perform malicious activities

and the user may not be informed of the true scope of their

permissions within the system. Meanwhile, we hypothesize

that explicit leaks in user-installed apps may be less com-

mon and useful, as an app must have both a sizable installed

base and unwittingly expose some interesting functionality

in order for an attacker to derive much benefit from exploit-

ing the leaked capabilities. In future work, we plan to apply

Woodpecker to assess the threat posed by capability leaks

in user apps.

6 Related Work

Smartphones have recently attracted considerable at-

tention, especially in the context of privacy. Accord-

ingly, much work has been devoted to analyzing smart-

phone apps, either statically or dynamically. For exam-

ple, TaintDroid [14] applies dynamic taint analysis to mon-

itor information-stealing Android apps. Specifically, by ex-

plicitly modeling the flow of sensitive information through

Android, TaintDroid raises alerts when any private data

is going to be transmitted from the device. A follow-up

work [15] developed a Dalvik decompiler ded to statically

uncover Java code from the Dalvik bytecode of popular free

Android apps. The uncovered Java code is then fed into ex-

isting static analysis tools to understand or profile the app’s

behavior. DroidRanger [41] uses both static and dynamic

analysis techniques to develop behavior profiles for scalable

malware detection, with a focus on scanning large numbers

of third-party apps (i.e., a whole market) for malicious be-

havior. DroidMOSS [40] detects repackages apps in third-

party Android marketplaces. Woodpecker is different from

these efforts with its unique focus on statically analyzing

pre-loaded apps in smartphone firmware to uncover possi-

ble capability leaks.

From another perspective, researchers have also devel-

oped static analysis tools for privacy leak detection. For

example, PiOS [13] is a representative example, which

constructs a control-flow graph for an iOS app and then

looks for the presence of information-leaking execution

through that graph. Specifically, PiOS tries to link sources

of private information to network interfaces. In compari-

son, Woodpecker was developed for the Android platform

and thus needs to overcome platform-level peculiarities for

the control-flow construction and data flow analysis (e.g.,

control-flow discontinuities in Section 2). Most impor-

tantly, Woodpecker has a different goal in uncovering un-

safe exposure of dangerous capability uses, including both

explicit and implicit ones. In particular, implicit leaks do

not make use of any public interfaces to “inherit” the per-

missions. In the same vein, work by Chaudhuri et al. [9, 20]

formalizes data flow on Android so that a data flow pol-

icy can be formally specified for an Android app, which

can then be checked against the app code to ensure compli-

ance. A SCanDroid system [20] has been accordingly de-

veloped to extract such specifications from the app’s mani-

fests that accompany such applications, and check whether

data flows through the app are consistent with the specifica-

tion. Note that SCanDroid requires accessing the app’s Java

source code for the analysis, which is not available in our

case for capability leak detection.

Felt et al. [19] propose the notion of permission re-

delegation in the generalized contexts applicable for both

web and smartphone apps. Our work is different from it

in three key aspects. First, permission re-delegation is re-

lated to the explicit capability leak, but not implicit capa-

bility leak (that does not make use of any public interface

for permission inheritance). Second, in order to identify ca-

pability leaks, our system needs to address both object in-

heritance and control-flow discontinuity through callbacks,

which are not being handled in [19]. Third, we apply our

system in stock smartphone images rather than third-party

apps, which reflect the difference of focus on Android per-

missions (such as systemOrSignature permissions) as

well as the evaluation results (Table 3). Another related

work, Stowaway [17], is designed to detect overprivilege

in Android apps, where an app requests more permissions

than it needs to function. The implicit capability leak de-

tection in Woodpecker instead focuses on underprivilege in

Android apps, which pose a more direct threat to security

and privacy.

On the defensive side, TISSA [42] argues for a pri-

vacy mode in Android to tame information-stealing apps.

AppFence [23] couples such a privacy mode with taint

tracking to allow for expressive policies. Kirin [16] at-

tempts to block the installation of apps that request certain

combinations of permissions with deleterious emergent ef-

fects. A development of that system, Saint [30], empow-

ers the app developer to specify additional constraints on

the assignment of permissions at install-time and their use

at runtime. Apex [28] modifies the permission framework

to allow for selectively granting permissions and revoking

permissions at runtime. MockDroid [7] allows privacy-

sensitive calls to be rewritten to return “failure” results. In

the .NET framework, Security by Contract [11] allows an

application’s behavior to be constrained at runtime by a con-

tract. Such contract-based systems might represent a de-

fense against implicit capability leaks, though none of these

share the same goal of exposing capability leaks in smart-

phone firmware.

As discussed earlier, capability leaks essentially reflect

the confused deputy attack [21]. Other researchers also

warn of similar attacks in Android [10, 12, 29]. For exam-

ple, Davi et al. [10] show a manually-constructed confused

deputy attack against the Android Scripting Environment.

QUIRE [12] allows apps to reason about the call-chain and

data provenance of requests, which could be potentially

helpful in mitigating this attack. Nils [29] manually ana-

lyzed the HTC Legend’s system image looking for possible

permission abuses. The problem is certainly not unique to

the Android platform; for example, in 1999, Smith found

that PC manufacturers bundled vulnerable ActiveX controls

in their custom Windows installations [33]. In comparison

to these previous efforts, our work aims to systematically

detect such capability leaks. More importantly, by address-

ing the challenges for possible path identification (Section

2.1.1) and feasible path refinement (Section 2.1.2), our sys-

tem automates the majority of necessary tasks to explore

and discover potential capability leaks. In fact, the only

manual effort comes from the need to verify the detected

leaks. Meanwhile, note that some Android malware such

as Soundcomber [31] were developed by requesting cer-

tain Android permissions. Our research shows that these

requests could be potentially avoided as the permissions

might have already been leaked (e.g., RECORD AUDIO).

More generally, a number of systems that target desktop

apps have been developed to detect system-wide informa-

tion flow or confine untrusted app behavior. For example,

TightLip [38] treats a target process as a black box. When

the target process accesses sensitive data, TightLip instanti-

ates a sandboxed copy, gives fuzzed data to the sandboxed

copy and runs the copy in parallel with the target for output

comparison and leak detection. Privacy Oracle [26] applies

a differential testing technique to detect the correlation or

likely leaks between input perturbations and output pertur-

bations of the application. Also, system-level approaches

such as Asbestos [36], HiStar [39], Process Coloring [25],

and PRECIP [37] instantiate information flow at the process

level by labeling running processes and propagating those

labels based on process behavior. While we expect some of

these approaches will be applicable on resource-constrained

mobile phone environments, they are more focused on de-

tecting information leaks instead of capability leaks (and

their applicability to the smartphone setting still remains to

be demonstrated).

7 Conclusions

In this paper, we present a system called Woodpecker

to examine how the Android-essential permission-based se-

curity model is enforced on current leading Android-based

smartphones. In particular, Woodpecker employs inter-

procedural data flow analysis techniques to systematically

expose possible capability leaks where an untrusted app can

obtain unauthorized access to sensitive data or privileged

actions. The results are worrisome: among the 13 privileged

permissions examined so far, 11 were leaked, with individ-

ual phones leaking up to eight permissions. These leaked

capabilities can be exploited to wipe out the user data, send

out SMS messages (e.g., to premium numbers), record user

conversation, or obtain the user’s geo-location data on the

affected phones – all without asking for any permission.

Acknowledgements The authors would like to thank

the anonymous reviewers for their insightful comments that

helped improve the presentation of this paper. This work

was supported in part by the US Army Research Office

(ARO) under grant W911NF-08-1-0105 managed by NCSU

Secure Open Systems Initiative (SOSI) and the US Na-

tional Science Foundation (NSF) under Grants 0855297,

0855036, 0910767, and 0952640. Any opinions, findings,

and conclusions or recommendations expressed in this ma-

terial are those of the authors and do not necessarily reflect

the views of the ARO and the NSF.

References

[1] Android Debug Bridge. http://developer.

android.com/guide/developing/tools/adb.

html.
[2] Apple App Store. http://www.apple.com/iphone/

apps-for-iphone/.
[3] IPhone Stored Location in Test Even if Dis-

abled. http://online.wsj.com/article/

SB10001424052748704123204576283580249161342.

html.
[4] Soot: a Java Optimization Framework. http://www.

sable.mcgill.ca/soot.
[5] T.J. Watson Libraries for Analysis (WALA). http://

wala.sourceforge.net.
[6] Vulnerability in HTC Peep: Twitter Credentials Disclo-

sure. http://seclists.org/fulldisclosure/

2011/Feb/49.
[7] A. R. Beresford, A. Rice, N. Skehin, and R. Sohan. Mock-

Droid: Trading Privacy for Application Functionality on

Smartphones. In Proceedings of the Twelfth Workshop on

Mobile Computing Systems & Applications, HotMobile ’11,

May 2011.
[8] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and

X. Jiang. Mapping Kernel Objects to Enable Systematic In-

tegrity Checking. In Proceedings of the 16th ACM Confer-

ence on Computer and Communications Security, CCS ’09,

November 2009.
[9] A. Chaudhuri. Language-Based Security on Android. In Pro-

ceedings of the 4th ACM SIGPLAN Workshop on Program-

ming Languages and Analysis for Security, February 2009.
[10] L. Davi, A. Dmitrienko, A.-R. Sadeghi, and M. Winandy.

Privilege Escalation Attacks on Android. In Proceedings of

the 3rd Information Security Conference, October 2010.
[11] L. Desmet, W. Joosen, F. Massacci, P. Philippaerts,

F. Piessens, I. Siahaan, and D. Vanoverberghe. Security-by-

contract on the .NET platform. Information Security Techni-

cal Report, 13:25–32, January 2008.
[12] M. Dietz, S. Shekhar, Y. Pisetsky, A. Shu, and D. S. Wallach.

QUIRE: Lightweight Provenance for Smart Phone Operating

Systems. In Proceedings of the 20th USENIX Security Sym-

posium, USENIX Security ’11, August 2011.
[13] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS: De-

tecting Privacy Leaks in iOS Applications. In Proceedings

of the 18th Annual Network and Distributed System Security

Symposium, NDSS ’11, February 2011.
[14] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-

Daniel, and A. N. Sheth. TaintDroid: An Information-Flow

Tracking System for Realtime Privacy Monitoring on Smart-

phones. In Proceedings of the 9th USENIX Symposium on

http://developer.android.com/guide/developing/tools/adb.html
http://developer.android.com/guide/developing/tools/adb.html
http://developer.android.com/guide/developing/tools/adb.html
http://www.apple.com/iphone/apps-for-iphone/
http://www.apple.com/iphone/apps-for-iphone/
http://online.wsj.com/article/SB10001424052748704123204576283580249161342.html
http://online.wsj.com/article/SB10001424052748704123204576283580249161342.html
http://online.wsj.com/article/SB10001424052748704123204576283580249161342.html
http://www.sable.mcgill.ca/soot
http://www.sable.mcgill.ca/soot
http://wala.sourceforge.net
http://wala.sourceforge.net
http://seclists.org/fulldisclosure/2011/Feb/49
http://seclists.org/fulldisclosure/2011/Feb/49

Operating Systems Design and Implementation, OSDI ’10,

February 2010.
[15] W. Enck, D. Octeau, P. McDaniel, and S. Chaudhuri. A

Study of Android Application Security. In Proceedings of the

20th USENIX Security Symposium, USENIX Security ’11,

August 2011.
[16] W. Enck, M. Ongtang, and P. McDaniel. On Lightweight

Mobile Phone Application Certification. In Proceedings of

the 16th ACMConference on Computer and Communications

Security, CCS ’09, February 2009.
[17] A. P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. An-

droid Permissions Demystified. In Proceedings of the 18th

ACM Conference on Computer and Communications Secu-

rity, CCS ’11, October 2011.
[18] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner. A

Survey of Mobile Malware In The Wild. In Proceedings of

the ACM CCS Workshop on Security and Privacy in Smart-

phones and Mobile Devices, October 2011.
[19] A. P. Felt, H. Wang, A. Moschuk, S. Hanna, and E. Chin.

Permission Re-Delegation: Attacks and Defenses. In Pro-

ceedings of the 20th USENIX Security Symposium, USENIX

Security ’11, August 2011.
[20] A. P. Fuchs, A. Chaudhuri, and J. S. Foster. SCan-

Droid: Automated Security Certification of Android Applica-

tions. http://www.cs.umd.edu/˜avik/papers/

scandroidascaa.pdf.
[21] N. Hardy. The Confused Deputy, or Why Capabilities Might

Have Been Invented. In ACM Operating Systems Review,

volume 22, pages 36–38, 1988.
[22] J. Hildenbrand. 150,000 apps in Android Market, tripled

in 9 months. http://www.androidcentral.

com/150k-apps-android-market-tripled-9-

months.
[23] P. Hornyack, S. Han, J. Jung, S. Schechter, and D. Wetherall.

“These Aren’t the Droids You’re Looking For”: Retrofitting

Android to Protect Data from Imperious Applications. In

Proceedings of the 18th ACM Conference on Computer and

Communications Security, CCS ’11, October 2011.
[24] IDC. Android Rises, Symbian 3 and Windows Phone

7 Launch as Worldwide Smartphone Shipments In-

crease 87.2% Year Over Year. http://www.

idc.com/about/viewpressrelease.jsp?

containerId=prUS22689111.
[25] X. Jiang, A. Walters, D. Xu, E. H. Spafford, F. Buchholz, and

Y.-M. Wang. Provenance-Aware Tracing of Worm Break-

in and Contaminations: A Process Coloring Approach. In

Proceedings of the 26th IEEE International Conference on

Distributed Computing Systems, ICDCS ’06, July 2006.
[26] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maga-

nis, and T. Kohno. Privacy Oracle: A System for Finding

Application Leaks with Black Box Differential Testing. In

Proceedings of the 15th ACM Conference on Computer and

Communications Security, CCS ’08, October 2008.
[27] K. Mahaffey and J. Hering. App Attack-Surviving the

Explosive Growth of Mobile Apps. https://media.

blackhat.com/bh-us-10/presentations/

Mahaffey_Hering/Blackhat-USA-2010-

Mahaffey-Hering-Lookout-App-Genome-

slides.pdf.
[28] M. Nauman, S. Khan, and X. Zhang. Apex: Extending An-

droid Permission Model and Enforcement with User-Defined

Runtime Constraints. In Proceedings of the 5th ACM Sympo-

sium on Information, Computer and Communications Secu-

rity, ASIACCS ’10, April 2010.
[29] Nils. The Risk you carry in your Pocket. https://

media.blackhat.com/bh-ad-10/Nils/Black-

Hat-AD-2010-android-sandcastle-slides.

pdf.
[30] M. Ongtang, S. E. McLaughlin, W. Enck, and P. D. Mc-

Daniel. Semantically Rich Application-Centric Security in

Android. In Proceedings of the 25th Annual Computer Secu-

rity Applications Conference, ACSAC ’09, December 2009.
[31] R. Schlegel, K. Zhang, X. Zhou, M. Intwala, A. Kapa-

dia, and X. Wang. Soundcomber: A Stealthy and Context-

Aware Sound Trojan for Smartphones. In Proceedings of the

18th Annual Network and Distributed System Security Sym-

posium, NDSS ’11, February 2011.
[32] R. Siles. The Seven Deadly Sins of Security Vulnerability

Reporting. http://blog.taddong.com/2010/08/

seven-deadly-sins-of-security.html.
[33] R. M. Smith. Accidental Trojan Horses. http://www.

computerbytesman.com/acctroj/.
[34] M. Sridharan and R. Bodı́k. Refinement-Based Context-

Sensitive Points-To Analysis for Java. In Proceedings of

the 2006 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI ’06, June 2006.
[35] B. Steensgaard. Points-to Analysis in Almost Linear Time.

In Proceedings of the 23rd ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages), POPL ’96,

January 1996.
[36] S. Vandebogart, P. Efstathopoulos, E. Kohler, M. Krohn,

C. Frey, D. Ziegler, F. Kaashoek, R. Morris, and D. Mazières.

Labels and Event Processes in the Asbestos Operating Sys-

tem. ACM Transactions on Computer Systems 25(4), De-

cember 2007.
[37] X. Wang, Z. Li, J. Y. Choi, and N. Li. PRECIP: Prac-

tical and Retrofittable Confidential Information Protection

Against Spyware Surveillance. In Proceedings of the 16th

Network and Distributed System Security Symposium, NDSS

’08, February 2008.
[38] A. R. Yumerefendi, B. Mickle, and L. P. Cox. TightLip:

Keeping Applications from Spilling the Beans. In Proceed-

ings of the 4th Symposium on Networked Systems Design and

Implementation, NSDI ’07, April 2007.
[39] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Mazières.

Making Information Flow Explicit in HiStar. In Proceedings

of the 7th USENIX Symposium on Operating Systems Design

and Implementation, OSDI ’06, November 2006.
[40] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. DroidMOSS: De-

tecting Repackaged Smartphone Applications in Third-Party

Android Marketplaces. In Proceedings of the 2nd ACM Con-

ference on Data and Application Security and Privacy, CO-

DASPY’12, 2012.
[41] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, You, Get

Off My Market: Detecting Malicious Apps in Alternative

Android Markets. In Proceedings of the 16th Network and

Distributed System Security Symposium, NDSS ’12, Febru-

ary 2012.
[42] Y. Zhou, X. Zhang, X. Jiang, and V. Freeh. Tam-

ing Information-Stealing Smartphone Applications (on An-

droid). In Proceedings of the 4th International Conference on

Trust and Trustworthy Computing, TRUST ’11, June 2011.

http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf
http://www.cs.umd.edu/~avik/papers/scandroidascaa.pdf
http://www.androidcentral.com/150k-apps-android-market-tripled-9-months
http://www.androidcentral.com/150k-apps-android-market-tripled-9-months
http://www.androidcentral.com/150k-apps-android-market-tripled-9-months
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22689111
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22689111
http://www.idc.com/about/viewpressrelease.jsp?containerId=prUS22689111
https://media.blackhat.com/bh-us-10/presentations/Mahaffey_Hering/Blackhat-USA-2010-Mahaffey-Hering-Lookout-App-Genome-slides.pdf
https://media.blackhat.com/bh-us-10/presentations/Mahaffey_Hering/Blackhat-USA-2010-Mahaffey-Hering-Lookout-App-Genome-slides.pdf
https://media.blackhat.com/bh-us-10/presentations/Mahaffey_Hering/Blackhat-USA-2010-Mahaffey-Hering-Lookout-App-Genome-slides.pdf
https://media.blackhat.com/bh-us-10/presentations/Mahaffey_Hering/Blackhat-USA-2010-Mahaffey-Hering-Lookout-App-Genome-slides.pdf
https://media.blackhat.com/bh-us-10/presentations/Mahaffey_Hering/Blackhat-USA-2010-Mahaffey-Hering-Lookout-App-Genome-slides.pdf
https://media.blackhat.com/bh-ad-10/Nils/Black-Hat-AD-2010-android-sandcastle-slides.pdf
https://media.blackhat.com/bh-ad-10/Nils/Black-Hat-AD-2010-android-sandcastle-slides.pdf
https://media.blackhat.com/bh-ad-10/Nils/Black-Hat-AD-2010-android-sandcastle-slides.pdf
https://media.blackhat.com/bh-ad-10/Nils/Black-Hat-AD-2010-android-sandcastle-slides.pdf
http://blog.taddong.com/2010/08/seven-deadly-sins-of-security.html
http://blog.taddong.com/2010/08/seven-deadly-sins-of-security.html
http://www.computerbytesman.com/acctroj/
http://www.computerbytesman.com/acctroj/

	1 Introduction
	2 System Design
	2.1 Explicit Capability Leak Detection
	2.1.1 Possible Path Identification
	2.1.2 Feasible Path Refinement

	2.2 Implicit Capability Leak Detection

	3 Implementation
	3.1 Control-Flow Graph Construction
	3.2 Capability Leak Detection

	4 Evaluation
	4.1 Results Overview
	4.2 Case Studies
	4.2.1 Explicit Capability Leaks (Without Arguments)
	4.2.2 Explicit Capability Leaks (With Arguments)
	4.2.3 Implicit Capability Leaks

	4.3 Performance Measurement

	5 Discussion
	6 Related Work
	7 Conclusions

