What is keeping my phone awake?
Characterizing and Detecting No-Sleep Energy Bugs in
Smartphone Apps

Abhinav Pathak Abhilash Jindal
Purdue University Purdue University
pathaka@purdue.edu jindal0O@purdue.edu
Y. Charlie Hu Samuel P. Midkiff
Purdue University Purdue University

ychu@purdue.edu smidkiff@ecn.purdue.edu

ABSTRACT Keywords

Despite their immense popularity in recent years, smartpb@re Smartphones, Mobile, Energy, Energy-Bug, No-Sleep-Bug.
and will remain severely limited by their battery life. Pees

ing this critical resource has driven smartphone OSes tengiod

a paradigm shift in power management: by default every cempo - INTRODUCTION
nent, including the CPU, stays off or in an idle state, unteesapp . .
explicitly instructs the OS to keep it on! Such a policy entans 1.1 Motivation) . .

app developers to explicitly juggle power control APIs extpd Smartphones have surpassed deskt_op machines in salt_aslln 201
by the OS to keep the components on, during their active use by to become the most prevalent computing platforiis [1]. Tacanr
the app and off otherwise. The resulting power-encumbered p the user experience, modern day smartphones come with afhost
gramming unavoidably gives rise to a new class of softwaesgn hardware I/O components embedded in them. The list of compo-

bugs on smartphones called-sleep bugswhich arise from mis- nents broadly fall into two categorieaditional componentsuch
handling power control APIs by apps or the framework anditesu as CPU, WiFi NIC, 3G radio, memory, screen and storage tieat ar
in significant and unexpected battery drainage. also found in desktop and laptop machines, exaotic components
This paper makes the first advances towards understandihg an such as GPS, camera and various sensors. And they differ from
automatically detecting software energy bugs on smartghort their desktop/laptop counterparts in that power consunyeiddi-
makes the following three contributions: (1) we present fitst vidual I/O components is often comparable to, or higher thiae
comprehensive study of real world no-sleep energy bug ctera ~ power consumed by the CPU.
istics; (2) we propose the first automatic solution to detbese This, along with the fact that smartphones have limitedeogpit
bugs based on the classic reaching definitions dataflow siati life, dictates that energy has become the most criticaluresoof

gorithm; (3) we provide experimental data showing that @al t smartphones. Preserving this prucial.re.source has drivenrts
accurately detected all 12 known instances of no-sleep hngs ~ phone OSes to resort to a paradigm shift in component power ma
found 30 new bugs in the 86 apps examined. agement. On desktop machines, where the CPU accounts for a

majority of the energy consumption, the default energy rgana
ment policy is that the CPU stays on (or runs at a high freqgenc
. - : unless an extended period of low load has been observed.dlhe p
Categones and SUbJeCt Descrlptors icy is consistent with the historical notion that energy egement
D.2.5 [Software Engineering: Testing and Debugging is a second class citizen since machines are plugged intavarpo
sourcel[2]. Smart phones, in sharp contrast, make powergeana
ment policy a first class citizen. In fact, the power managgme

General Terms policy on smartphones has gone to the other extretme default
) i) power management policy is that every component, incluttiag
Design, Experimentation, Measurement CPU, stays off or in an idle state, unless the app explicithtriucts

the OS to keep it on!
In particular, all smartphone OSesg.,Android, 10S, and Win-
dows Mobile, employ an aggressigieeping policywhich put the

Permission to make digital or hard copies of all or part o twork for components of the phone to sleép,, puts them into aidle state
personal or classroom use is granted without fee providadabpies are immediately following a brief period of user inactivity. the idle

not made or distributed for profit or commercial advantage that copies state, the smartphone as a whole draws near zero power, since
bear this notice and the full citation on the first page. Toyooiherwise, to nearly all the components, including CPU, are put to sleaghS

republish, to post on servers or to redistribute to listguies prior specific a sleeping policy is largely responsible for prolonged sptame

permission and/or a fee. b .
MobiSys'12,June 25-29, 2012, Low Wood Bay, Lake District, UK. standby times — smartphones can last dozens of hours wieen idl

Copyright 2012 ACM 978-1-4503-1301-8/12/06 ...$10.00. The aggressive sleeping policy, however, severely impzaosst-

phone apps, since an app may be performing critical taskstbyi
mittently interacting with the external world using vargsensors.
For example, an app syncing with a remote server over theomketw
may appear to perform no activity when waiting for the sereer

work, including popular appse(g., Facebook) and built-ini.g.,
shipped with) apps and servicesd.,the Android email app). The
bugs are collected by crawling Internet mobile forums, begps-
itories, commit logs of open source Android apps and by mgni

send its reply, and the system may be put to sleep by the aggres our no-sleep bug detector developed in this paper. For eagh b

sive sleeping policy, leaving the remote server with a viéwost
connectivity.

To avoid such disruptions due to the aggressive sleepirigypol
smartphone OSes provide a set of mechanisms for app dexlope
to explicitly notify the OS of their intention to continue using each
component. In particular, the OS exports explicit power agg
ment handles and APIs, typically in the form of power wakk#oc
and acquire and release APIS$ [3], for use by the app devetoper
specify when a particular component needs to stay on, or@wak
until it is explicitly released from duty.

we carefully examine its reported symptoms, corresponsigce
code and related patches (when available), and develatisces-
sions (when available), or the analysis performed by our detg
tector. Our study reveals a taxonomy of three major causes-of
sleep energy bugs, which provide useful guidelines ands it
designing effective detection techniques. Our study atsdicns
the significant burden power-encumbered programming place
app developers. For example, making a single outgoing @niic
ing phone call in Android involves about 40 invocations ofveo
control APIs in the Dialer app and the framework’s Radio inte

We argue such explicit management of smartphone componentsface Layer services to dynamically manage the power coofrol

by app developers has presented to the app developer a pdofou
paradigm shift in smartphone programming that we capaser-
encumbered programming This new programming paradigm
places a significant burden on developers to explicitly imalaie
the power control APIs [E411 details one such example of thie b

the CPU, screen, and other sensors!

(2) The first solution to automatically detect no-sleep gper
bugs: We make the key observation that power control APIs are
explicitly embedded in the app source code by the app desedop
and two out of the three causes for no-sleep energy bugs foom o

den placed on developer due to power encumbrance). This ma-characterization study are because a turn-on API call isingsa

nipulation isrequiredto ensure the correct operation of the apps.
Consequently, power-encumbered programming unavoidpbbs
rise to a new class of software energy bugs on smartphonés] ca

matching turn-off API call before the end of the program exec
tion. We thus propose a compile-time solution based on st
reaching definitions dataflow analysis problérin [6] to autticady

no-sleep bugsNo-sleep bugs are defined as energy bugs resulting infer the possibility of a no-sleep bug in a given app. Ouutoh

from mis-handling power control APIs in an app or framewlbrk,
resulting in the smartphone components staying on for arces:
sarily long period of time. No-sleep bugs form one importzatt
egory of the family ofsmartphone energy bugghich are defined

in [@] as errors in the smartphone system (an app or the framew
the OS, or the hardware) that cause an unexpectedly higlgyener
consumption by the system as a whole.

detects no-sleep bugs in single-threaded and multi-teceagps,
as well as event-based apps which have multiple entry pdirks
all static analysis based tools, our detection tool canesd#flse
positives but has the tremendous advantageofintime overhead
andno false negatives (to the best of our abilities of establighin
the ground truth).

We further present the complete implementation of our ctati

Discussions of energy bugs on numerous Internet forums haveanalysis detection tool for apps written for Android. Thelts

narrowed the causes to mis-handling of power control AP lzdps
and the framework on smartphones OSes, including Andr@8, |
and Windows Mobile. Our recent survel [4] has found that 70%
of all energy problems in apps and frameworks reported byilemob
users were due to no-sleep energy bugs. These and otherafypes
energy bugs have caused a great deal of user frustratiorspitBe
their severityj.e., high battery drain, to the best of our knowledge

capable of running directly on the app installersifk files) and
hence source code is not required. Our implementation bandl
the specifics of event-driven mobile programming and of teJ
language such as runtime null pointer exceptions and olgéet-
ences.

(3) Detecting new no-sleep bugs in Android apps and framlewor
We have run our no-sleep bug detection tool on 86 Android apps

there has been no study of any kind of smart phone energy bugs,and the framework collected from the Android market. Expei-

much less no-sleep energy bugs. Drawing parallels withareke
on traditional software bug®(g.,concurrency bugs in concurrent
programs([b]), a comprehensive treatment of energy bugearnts
phones will require (1) a good understanding of real worlergn
bug characteristics, learned from common mistakes progiens
make in writing smartphone apps, to lead to effective delmggg
techniques; and (2) developing multi-faceted approachesiimn-
inating energy bugs, including avoiding energy bugs duapg
developmentd.qg.,by providing better programming language sup-
port for power management) and compile and runtime detectio

1.2 Our Contributions

This paper takes the first steps towards understanding dod au
matically detecting software energy bugs on smartphonescif-
cally, our paper makes three concrete contributions:

(1) The first characterization study of no-sleep energy hogs
smartphone appsWe present the first comprehensive real world
no-sleep energy bug characterization study. Our studysedan
no-sleep energy bugs in real world apps and the Android frame

LIn this paper, we use the term framework to refer to both the se
vices in and the apps that are bundled with the Android fraonkew

tal evaluation shows that our tool accurately detectedeglbrted
instances of no-sleep bugs, as well as 30 instances of nexiv pre
ously unreported no-sleep bugs. These include no-sleep ibug
many popular app%.g.,the default Android Email app. Our no-
sleep bug detection incurred false positives in 13 out obthapps

it reported to contain a bug.

2. POWER ENCUMBERED
PROGRAMMING

In this section, we first describe the energy management APIs
and their semantics that are exposed to the developers irthe
droid smartphone OS, and discuss the burden they imposeeon th
app developers. We first discuss programming APlIs for ficdit
components€.g., screen, CPU) and then for exotic components
(e.g.,GPS, Camera). We also discuss the issues arising from event
based programming model of smartphone apps. We then irgeodu
the prominent class of energy bugs studied in this papes|esp
bugs.

AOWN

Table 1: Summary of power operations exported by Android APk.

Component lock/manager name Component(s) Battery Drain | Comments
(API to start/stop) up to (%fhr)
Traditional Components
PARTI AL_WAKE_LOCK (acquire/release) CPU 5% CPU runs despite any timers
SCREEN_DI M WAKE_LOCK (acquire/release) CPU and Screen (DIM) 12% No illumination if shutdown, else
SCREEN_BRI GHT_WAKE_LOCK (acquire/release) CPU and Screen (bright) 25% illuminates till lock release (Flag
FULL_WAKE_LCOCK (acquire/release) CPU, Screen (bright) and Keyt 25% ACQUI RE_CAUSES WAKEUP
board backlight forces illumination in all cases)
Exotic Components
PROXI M TY_SCREEN_OFF WAKE_LOCK (acquire/release) Screen, Proximity Sensor 25% Screen shuts if sensor activates
LocationManager (requestLocationUpdate/removeUpilat¢sGPS 15% Tracks user location
SensorManager (registerListener/unregisterListener) | Accelerometer, Gyro, Proximity Sensormanager class controls
Magnetic Fieldetc. [8] 10% various sensors on phone
MediaRecorder (start/stop) Mic/Camera (for video) 20% Usually stores media on sdcard
Camera (startPreview/stopPreview) Camera (for still pictures) 20% One app at a time registers camefra

Listing 1: An example power wakelock usage.

Power Manager . WakeLock w

PARTI AL_WAKE_LOCK) ;
W .acquire(); [//CPU should not go to sleep
net _sync(); //Performcritical task here
W .release(); //CPUis free to sleep

= pm newMakeLock(Power Manager .

2.1 Managing Traditional Components

The Android framework exports wakelock functionality thgh
Power Manager . Wakel ock H class, with 4 different options and
associated APIs for managing several traditional compsn&PU,
screen, and the keyboard backlight. A wakelock isirmstance
(object in Java) of the wakelock class, instantiated using of
4 options, and each option has a different effect on the hamelw
component, as summarized in Table 1. For example, oftihn

WAKE_LOCK instantiates a lock that when acquired both keeps the

acqui re() on areleased or fresh instance of wakelock wakes up
the corresponding component (#heQUI RE_CAUSES_WAKEUP flag
wakes up the screen), or keeps the component awake if ieadir

so. In other words, aacqui re() called on an already acquired
wakelock is treated asm@op. Similarly, ar el ease() called on

an acquired wakelock sets the component free to sleep as faea
perspective of this wakelock is concerned, irrespectivi@ihum-

ber of times amcqui re() has been called on the lock. In this
sense, a non-reference counted wakelock is like a condraon
able.

In contrast, reference counted wakelocks are like semaphor
Eachacqui re() of a wakelock increments the internal counter as-
sociated with the (instance of) wakelock, andeh ease() decre-
ments the internal counter. It only lets the component s{éem
the perspective of this wakelock) if the internal countdugaeaches
0. Areleaseis anopll in other cases.

To make matters even more complicated,aaqui r e can also

CPU and screen on at full brightness and turns on the keyboardbe called with a timei[10], which instructs the system teask it

backlight.
Listing[illustrates a basic wakelock usage: how to enshaé t

automatically once the timeout interval expires.
Third, the above power control semantics are from the perspe

the CPU does not sleep during some critical phase. The app de-tive of one wakelock. Unlike traditionahutual exclusiorocks,

clares a wakelockpmis an instance of PowerManager) and then
acquiresit, which instructs the OS not to put the CPU to sleep,
irrespective of user activity, since it intends to perforome criti-

cal task. Once the critical task (in this case a remote ndtaync
net _sync()) is completed the apmeleaseghe wakelock, indi-
cating to the OS that CPU can now sleep according to its sigepi
policies.

Semantics: The above simple usage of a wakelock is just like a
conventional mutual exclusion locke.,an app explicitlyacquires
andreleasest to instruct the OS to switch the component on and
off, respectively. Like an object a wakelock can be sharedram
several threads of a process. The semantics of wakelocks, ho
ever, are quite different from those of conventional muesalu-
sion locks.

First, as shown in Tab@ 1, a single wakelock (instantiatét w
one of the four options) controls one or more components.- Sec
ond, the power control effect of a single wakelock dependghen
configuration of that wakelock: a wakelock can be configuodakt
reference counted][9]. In an almost peculiar sense, it ierike
a condition variable when configured not to be reference teoljn
and a semaphore when configured to be reference counted.

We first consider non-reference counted wakelocks. An

2Apps need android.permission.WAKE_LOCK permission from
users to use this class.

different wakelocks (even instantiated with differentiops) on the
same component can be held by multiple entiteg.(processes
and threads) in the system at the same time. Even a singtg enti
may hold multiple (instances of) wakelocks on the same cempo
nent. The power control effect on a component must take ioto a
count the state of all wakelocks. The component is switched o
when the first wakelock is held. Only when all the wakeloclksrfr
all the entities for the component ardeased taking into account
the reference counting semantics for each, can the compgoen
to sleep, subject to higher level sleeping policies (adstémed by
framework processes,g.,sleep after 5 seconds of user inactivity.
This demonstrates the new programming burden inflicted pn ap
developers: power management is no longer just a trandpafen
or driver task; the developers now need to perform explioier
management in the app layer.

2.2 Managing Exotic Components

In addition to traditional components, modern smartphacoese
with several “exotic” components embedded in them. These in
clude GPS, camera, several sensors such as an accelergrster
imity sensor, and gyroscope. Some of these components are th

3Newer Android APIs throw an exception wheslease()is called
on an unacquired wakelock. Hence, a release is usuallydcatter
testing if the lock is currently held (using ARlakelock.isHeld{)

biggest energy consumers in smartphoreeg,, GPS and camera,
and drain the battery at a high rafe][IT] 2, 13].

Unlike some of the traditional componenesg., WiFi NIC, the
new exotic components are used in an explicit on-off fashior
example, the GPS is explicitly turned on, using the OS expbort
API, to acquire the smartphone location and in this stateiit- ¢
sumes battery at a high rate. Once the location is determthed
component is explicitly turned off, triggering the compaoheo re-
turn to a low power state.

Like wakelocks, the explicit power management of exotic €eom
ponents places a significant programming burden on appaevel
ers. An incorrect or inefficient use of these APIs can easiadl
to poor utilization of these components, wasting signifi¢zattery
energy (seel€2.4).

Semantics: Table[1 lists the APIs exported by Android for access-
ing the exoticcomponents. Their semantics of power control of
these components is similar to the plain wakelockd1nl§21 nho
reference counting or timer-based release.

In summary, the developers are burdened with explicitlyipran
ulating power control APIs for both traditional and exotioast-

phone components to ensure the correct operations of the app

We call this new smartphone programming paradignpewer-
encumbered programming

2.3 Issues from Event-based Programming

The complexity of power-encumbered programming is exacer-
bated by the event-based nature of smartphone apps. Cainpare

to programming in desktop/server environments, smartphmo-
gramming is event-oriented because of the inherit interaaoature
of phone apps. A typical user-facing smartphone app isewris
a set of event handlers with events being user or externaltae.
The developer needs to keep track of each possible eventlagn w
it may be triggered, and manipulate the wakelocks accolyling
We illustrate how the level of complexity introduced by powe
encumbered programming is exacerbated by event-basechprog

ming through a concrete example from the Dialer dpd [14] that

comes with the Android framework.
The Dialer app implements the dialing functionality of the

phone. The app is triggered when the user receives an ingomin
call or when the user clicks the phone icon to make an outgo-

ing call. To implement its functionality, the app expligitmain-
tains three wakelocksULL_WAKE_LOCK for keeping the screen on
(e.g..in situations like when the user is dialing the numbers tb) cal
PARTI AL_WAKE_LOCK for keeping the CPU ore(g.,in case of an
incoming call when the phone is switched off), aPROXI M TY
_SCREEN_OFF_WAKE_LOCK which switches the proximity sensor
on and off (to detect user’s proximity to the phone).

To manage the three wakelocks, the app explicitly maintains
state machine where the states represent the lock behaeior,

tracing through an instrumented Android framework runnmga
Google Nexus One handset, we observed that performing Esing
outgoing or incoming call in Android resulted in 30-40 disti in-
stances of wakelock acquires and releases!

2.4 No-Sleep Bugs

The new burden of explicit component power manipulatiomfro
power-encumbered programming, combined with the conmyiexi
of handling events in the app behavior, can easily overwidgm
velopers and lead to programming mistakes in manipulatireg t
power control APIs. Incorrect or inefficient usage of sucHs*\¢an
lead to an unexpected drain of the phone battery, known ateep-
bugs [4].

A “no-sleep bug” is a condition where at least one componént o
the phone is woken up and is not put to sleep due to a mistake in
manipulating power control APIs in an app. The component tha
is woken up continues to drain the battery for a prolongedder
of time, resulting insevereandunexpectedbattery drain. Typically
the battery drain continues until the app is forcefullyed or the
system is rebooted.

No-sleep bugs form one of the most important categoriesfof so
wareenergy bugsn smartphone appBl[4]. Unlike regular software
bugs in apps, energy bugs do not lead to an app crash or OS blue
screen of deathi]4]. An app hit by an energy bug continuesde pr
vide the intended functionality, with a single differentiee phone
suffers a severe, unexpected battery drain. The severityeoén-
ergy drain due to the bug depends on the component that is not
put to sleep. As shown in Tablg 1, for each of the 3 components
(GPS, Screen with full or low brightness and camera), thearhp
of a no-sleep bug can be severe with the battery draining aea r
of 10-25% every hofirwithout any user interaction.

For other component®.g.,the CPU and proximity sensor, the
battery drains at a relatively low rate - up to 5% every houhew
a CPU wakelock FARTI AL_WAKE_LOCK) is held, it prevents the
CPU from ‘freezing’, a state where it would consume zero powe
(IDLE state). In a wakelock held state, the CPU draws minimal
power (depending on the CPU specifications of the handsety- H
ever, as the CPU remains on, other activities continue tpeugn,
WiFi NIC chatters, background periodic OS processes, harelw
interrupts handling by OStc. These activities together consume,
as measured on Google Nexus One, about 5% of the battery every
hour. Any additional user activity is not accounted for irsthAs
a result, over a long period of time, say 12 hours, an only-CPU
wakelock bug can drain about 50-60% of the battery withoyt an
user interaction or performing necessary activities.

3. METHODOLOGY

To characterize the root cause of no-sleep bugs observed-in c
rent mobile apps, we collected no-sleep bugs in smartphpps a

which lock needs to be acquired and which needs to be releasedin four ways. (a) Mobile forums: We crawled 4 popular mobile

and the “condition” of the phone represents the state tiansi
The conditions are diverse and include events such as (agif t
phone gets a call, (b) if the phone is pressed against thés wser
in which case the proximity sensor triggers the screen toffjo o
(c) if the call ends, (d) if a wired or bluetooth headset isgojed
in (e.g.,in the middle of a call), (e) if the phone speaker is turned
on, () if the phone slider is opened in between calls, andf (e
user clicked home button in the middle of a call. For each e$¢h
triggering events, the phone changes the state of wakekat& s
machine, acquiring one and releasing another.

In addition to wakelocks in the Dialer app, the Radio Integfa
Layer (RIL) in Android maintains additional 5 wakelocks tarh
dle incoming and outgoing calls. Using explicit componertess

Internet forums (the same as [d [4]): one general forum wigh d
cussions covering all mobile devices and OSes, and threeo®S/
pany specific mobile forums. In total we crawled 1.2M pogisyf
which we filtered out posts related to no-sleep bugs in srharte
apps. For each app reported by the user to contain a no-slegp b
we downloaded the binary installers of the version of the thap
was reported to contain the bug and the first version whichtmad

“In Android, apps (esp. background services) are not killleely

run in background once a user stops interacting with theneyTh
are usually killed by the system only in case of memory pnessu
*These rates were calculated using HTC nexus and magic handse
running Android. A fully charged battery holds between 1H@MH

to 1500mAH of charge.

problem solved. We then decompiled the app from binary lilesta

to Java source code usimtedl] [I6]. For apps that were suc-
cessfully decompilede(g., FaceBook), we studied the root causel
of no-sleep bugs.(b) Bug lists: We crawled mobile bug repos-
itories of open source mobile frameworks like Andrdidi[1Tida 4
Maemo [18]. We extracted bugs reported with no-sleep cimdit 5
and extracted the source code (open source) of the verdians t6
actually contained the bugs.{.,no-sleep bug in Android SIP Ser-
vice [19]) and its patch (if availablejc) Open source code repos-
itories: We scraped the commit logs of open-source Android apps
hosted on online code repositories like githlibl [20]. We aoted

the commit logs of no-sleep bug fixes and downloaded theomssi
both before and after the fiXd) Running our no-sleep bug de-
tection tool: Finally, we ran our solution of automatically detecting
no-sleep bugs developed in this paper on 86 Android appshend t
stock framework and discovered 42 apps with no-sleep catlesp

as detailed in[86,[37 and189 (labeled with “*” in Talile 2). Tées
apps are used in the characterization studydn §4.

4. CHARACTERIZING NO-SLEEP BUGS

Using the bug-collection methodology described above, ave n
present a case-study of no-sleep bugs observed in smaetppps.

Listing 2: No-sleep bug: different code paths.

71} finally {
8|} //End try-catch block

try{
w .acquire(); //CPU should not sleep
net _sync(); /1 Throws Exception(s)
W .release(); //CPUis free to sleep
} catch(Exception e) {

Systemout.printin(e); //Print the error

component was not put to sleep. Listidg 2 shows a code-shippe
that represents a typical template of a no-sleep bug whesppn
takes a different, somewhat unanticipated code path af&ing

up a component and therefore does not put it back to sleepn As i
Listing[, the critical task in the apmet _sync(), is protected

by acquiring and releasing the CPU wakelock instructingGréJ

not to sleep during the remote syncing phase. However, meuti
net _sync() may throw exceptions[41], a Java language mech-
anism for notifying apps of some failure conditions, suclaasn-
nect to a remote end host failed, a string could not be pased t
integer, or a specific file to be opened does not exist. A thrown
exception is explicitlycaughtby thet ry’s cat ch block which

We characterize the root cause and impact of the bugs. Thble 2simply prints the exception for debugging purposes. Nowritie

gives a summary of the three general categories of no-slegp b
we have identified and their impact. Drain time shows the arhou
of time it will take to drain a fully charged battery under iygl
usagdl Without the bugs, it takes about 15 hours to drain a fully
charged battery. The bug references in Télble 2 refer to lheth t

sleep bug can manifest itself in the following code pathstRine

t ry block executes and acquires the wakelock. Next a call is is-
sued to the critical taskget _sync() . If an exception is raised
insidenet _sync() , the control directly jumps to the catch block,
the debug output is printed, and the code exits the try cdtmtkb

bug fix commit logs and user complaints about specific apps on Consequently, the code-path followed does not release dke-w

Android bug repositories, all of which indicate the real Bopand
user frustration caused by the no-sleep bugs. The first tue ca
gories,No-Sleep Code Patl@dNo-Sleep Race Conditipaxhibit
typical symptoms of no-sleep bugs where a component is riaopu
sleep at all, whereas the third categaony;sleep dilationrepresents

lock, keeping the CPU on indefinitely. To fix this problem, the
wakelock should be released in thenal | y block so that it is
always executed.

A large number of no-sleep bugs are caused by this second rea-
son. These include popular apps such as FaceBadk [22], Agend

the scenario where a component was held on much longer tean th widget [21] (another version), MyTrackI25] (no sleep of GPS

programmer’s intention (on the order of hours). Below wespre
an in-depth analysis of these three categories of no-slegp. b

4.1 No-Sleep Code Path

BabbleSink [[25], CommonsWare and appsl[27], as well as ser-
vices that come with the Android framework, such as Andr@T
phony [28], Android Exchangé& 2B, 1B0], and WifiServitel[3Epr
example, in SIP servic€[19], the wakelock was not releasext s

The root cause for most of the observed no-sleep bugs in a sin-the objects containing the wakelocks were deleted and slotke

gle threaded activity was the existence of a code path in pipe a
that wakes up a componerd,g., by acquiring the wakelock for
the component, but does not put the component back to Segp,
there is no release of the lock. This category captures arityafd
the no-sleep bugs we have observed in our bug collection.

handlers were deleted along with them.

The third cause for a no-sleep code path is that a higher level
condition (like an app level deadlock) prevented the exenttom
reaching the point where the wakelock was to be released. ighi
likely to happen in smartphone programming because e\asee

We observed three causes for the existence of a code patlk wher programming of smartphones can lead to many possible cogelbes

the component was switched on but not put to sleep.

The first cause is that the programmer simply forgot to releas
the wakelock throughout the code, or the programmer redietse
lock in thei f branch of a condition but not in thel se branch.
Although it seems like a simple mistake, this does happeeah r
apps. For example, a version of the Agenda widgét [21] coathi
such a no-sleep bug.

The second cause is that the programmer did put code that re-

(as in the example of the Android Email app) that makes it-diffi
cult for the programmer to anticipate all the possible codth
and keep track of the wakelock stateocat i onLi st ener [33,
[34] in the Android framework contained such a no-sleep buge T
developer did release the wakelock, however, a higher leppl
deadlock prevented the code from entering the release phése
app.

Finally, the most common pattern of no-sleep code-path bug i

leases the component wakelock on many code paths, but tiee cod @ result of the fact that developers do not properly undedstae

took an unanticipated code path during execution along fwttie

5Not all app binaries could be transformed into (meaningful)
source code, especially the ones that have been obfuscated d
ing compilation (using tools like proguard]158.g.,the NYTimes
Android app.

"Typical usage assumes that the phone is used actively by fonse
20% of the total time. Drain times are calculated using thergn
drain rate in the bug state measured on the HTC Nexus phone.

life-cycle of Android processes. In Android, an app acyivince
started is always alive. When the user exits any app, Anciaies
the state of the app and passes it back to the app if the usensget
to it. The app is only completely killed when the phone isicaily
low on RAM or when the app kills itself. This methodology isds
to reduce the startup time of the app and to maintain its.state
This essentially means that the app may not actually beayestr
for very long periods of time. But many app developers only re

Table 2: No-sleep bug case study. Entries with (F) represetiugs in the Android framework, and with (*) represent new bugs found by our technique.

App Description Bug Description | Drain | Ref.
No-Sleep Code Paths

Agenda Widget Popular Android widget| Two bugs were reported in different versions (a) not all bhes release wakelocks ih9 hrs | [21]
managing news/calendar Al ar nSer vi ce; (b) programmer forgot to call wakelock release after agagiit.

FaceBook The default FaceBook facebook. kat ana. HoneActi vity, the central Activity, acquires wakelock tp 9 hrs | [22]
Appv 1.3.0 run FaceBookSer vi ce. Not all possible branches in the service release wakelogks

k9mail One of the most popular Per-thread wakelock maintained. Wakelock acquired wheARNDONE was sent, butl 9 hrs | [23]
email client for Android | was not released iNessagi ngCont r ol | er PushRecei ver during IDLE stat

CheckinMaps Visual stories on maps | GPS remains on, even when user closes the app (callingntRause() handler). 5hrs | [24]

(*) MyTrack Track User Path online | GPS remains on, even after user navigates away from the apprdy battery. 5 hrs [25]

BabbleSink Find phone’s location A Nul | Poi nt er Except i on causes the thread to exit without releasing wakelock.9 hrs [26]

CommonsWare Android Training Book | Wakelock released without finalize. 9hrs | 21

Sip Service (F) Std. voice protocol im-| A Sip handler (object) was deleted which had wakelocks aeduiefore releasing th¢ 9 hrs | [19]
plementation in Android| wakelock. The deleted handlers can not perfoh ease() to release the wakelockg.

Telephony (F) Telephony Handler: RIL| Android telephony does not release the partial wakelodi agvay if there is an errorir] 9 hrs | [28]
service in Android code | sending the RIL request, preventing the phone to go in poaléagse draining battery

(*) Android Ex- | The default email app i During background syncing of mailboxes in an exchange atgdhe app acquires 9 hrs [29]

change (F) Android framework wakelock and does not release in all failure conditionscigipally in | OExcept i ons. 0]

WifiService (F) Android WiFi Handlers | CPU does not go to sleep during a message removal and waketsckeld forever. 9hrs | [B1]

PowerManager(F)| PowerService Android | Two instances of wakelocks are not releasdebiner Manager Ser vi ce in Android. | 9 hrs | [B7]

LocationListener | GPS handling library in| A deadlock inLocat i onManager Ser vi ce for releasing wakelocks after client ng-9 hrs | [33]

(F) Android framework tifications have been received prevented the release ofdkelacks draining battery. 4]

| No-Sleep Race Condition
(*) Android Email | Default Android email| Race condition between email synchronizing thread and #ie thread which kills thel 9 hrs | [B5]
app (F) app performing sync synchronizing thread resulted in a shared wakelock to reinacquired state after exi. B8]
| No-Sleep Dilation

MyTrack Track User Path online | Wakelock acquired and released much before and after th@eeddunctionality in app.| 9 hrs

GoogleBackup (F)| Cloud backupll3[7] Wakelock reported to be held for a long duration of time (ugridnour) in poor network{ 11 hrs

GPS Driver (F) Android GPS handler Wakelocks are being held for longer than needed in low leS@river code. 15hrs | [B9]

Google Maps Android Google maps | App was reported to hold wakelock for several hours even vitheas not used. 10 hrs | [EQ]

Listing 3: Wakelock Complexity encumbered programming. This is a code-shippet from the An-

[En
QOO ~NOUAhWNE

P
WN =

@verride protected void finalize(){
JEX]
* |t is understood that This finializer is not
* guaranteed to be called and the rel ease | ock
* call is here just in case there is sone path
* that doesn’t call onDisconnect and or
* onConnect edl nOr Qut .
*/
if (mPartial WakeLock. isHel d()) {
Log. e(LOG_TAG "[CdmaConn] UNEXPECTED;, nParti al WakeLock
is held when finalizing.");
}
rel easeWakelLock();
}

lease the wakelock in thenDest r oy () call-back, instead of in
onPause() . onDestroy() is only called when the app com-
ponent is about to be destroyed. As a result, once an app higth t
bug is started, the phone will only sleep when it is runnintiazaily

low on memory (which may take a long period of time).

Manually tracking all possible code paths for wakelock ac-

quire/release appears to be a daunting task for app devslope
Listing[shows an example of the complexity involved in powe

droid framework’s clas€dnaConnecti on. This class uses a
PARTIAL_WAKE_LOCK for managing the connection and re-
leases the wakelock when the connection is disconnectedv- Ho
ever, there are many different possible program pathsnarisi
from different patterns of user interactions, hardwareestale-
pendent on the external environmeets. The developer included
rel easeWakelLock in fi nal i ze as an additional safety mea-
sure, even thoughi nal i ze is not guaranteed to be called. This
example shows the need for an automated tool that can aid- deve
opers in checking all possible program paths for no-slegs.bu

4.2 No-Sleep Race Condition

The second category of no-sleep bugs we observed was cause by

race conditions in multi-threaded apps. Specifically, weeobed
that the power management of a particular component waedarr
out (i.e.,switched on and off) by different threads in the app. In the

common case, one thread switches the component on, and some

time later another thread switches the component off, tieguin

the normal behavior of component utilization. However, coaner
case condition, it can happen that the thread that switcheaheo
component gets scheduled to run after the thread that ssititie
component off, resulting in a no-sleep bug with the comporedh

OCOO~NOUIDWNE

Listing 4: No-sleep bug: race condition.

public void Min_Thread(){
nKill = false; //Unset kill flag
w . acquire(); /1 CPU shoul d not sl eep
start(worker_thread); //Start worker
/1....Do Sonething
nKill = true; /1Set kill flag
stop(wor ker _thread); //Signal worker
w . rel ease(); /1 CPU can sl eep now
} //End Main_Thread();
public void Wrker_Thread(){

whi | e(true){
if(nKill) break; //Break if flagged
net _sync(); /lCritical task

W .release(); //Rel. w before sleep
sl eep(180000);//Sleep for 3 minutes
w . acquire(); //CPU should not sleep
} //End while |oop;
} //End Worker_Thread();

on. Effectively there is a race condition between the mdatmn
of the wakelock by the two threads.

Listing[shows a code snippet of a no-sleep bug caused byga rac
condition. Mai n_Thr ead runs first, acquiring a wakelock (waking
up a componente.g.,the CPU), and then firegor ker _Thr ead
which periodically executes a critical tagkg.,syncing stock up-
dates. After every synchor ker _Thr ead gives up the lock, sleefbs
for 3 minutes (allowing the CPU to sleep), and re-acquireddbk
after waking up. This process is repeated in an infinite loop u
til Wor ker _Thr ead is notified byMai n_Thr ead using thenKi | |
flag to break out of the loop. To initiate the termination c# #pp,

Mai n_Thr ead sets therKi | | flag, and calls the AP$t op to sig-
nalver ker _Thr ead to initiate the halt which wakeéai n_Thr ead
up ifitis in sleep stateMai n_Thr ead releases the wakelock after
callingst op.

In the normal scheme of things, the code in Listldg 4 exe-
cutes without any energy bug. However, consider the follow-
ing sequence of eventsvai n_Thr ead sets thenKi | | flag, sig-
nalsWr ker _Thr ead to stop, and releases the wakelock. Then
Wor ker _Thr ead wakes up, acquires the lock and exits the loop
because of theKi | | flag. As a result, the wakelock remains held
by the app and is never released. A key point to note here is tha
the semantics of thet op() API called byMai n_Thr ead does
not guarantee that the return from the call will be synclredi
i.e.,only aftervor ker _Thr ead exits. Had that been the case, there

for an unexpected length of time before it returns, the thieebais
drained for that prolonged period of time.

While it is arguable that keeping the system on during theexe
tion of a critical task, no matter how long it takes, was irdléee
intention by the app developer, we characterize such sngts
the third category of no-sleep energy bugs;sleep dilationThese
are considered no-sleep energy bugs for the following reas@)
such instances of prolonged component wakeup are usuadhy un
pected, even by the app developer, as we found by readingghe |
of code commits; (b) the mobile programming API documeantati
strictly warn developers not to keep the components awaker e
longed periods of time unless it is actually requiredy., in the
Skype app, where a user performing a video call requiresdire ¢
ponents (screen, CPU) to be switched on from the start &lktid
of the call irrespective of how long the call persists; (Stances of
no-sleep bugs in this category were observed to cause seusre
tration among smartphone users since the energy drain whs bo
severe and unexpected; and (d) the root cause of such pealong
completion time of critical tasks was usually because ofgindi
level bug (.e., programming mistake) in the code, which signifi-
cantly inflated the running time of critical task.

We found two causes for no-sleep dilation in smartphone:apps
app delay and app optimizations. We first discuss the dilatio
caused by app delay in the GPS driierl[39] in Android. Theatriv
held wakelocks for longer than needed. In some circumstarde
ter holding the wakelock, the driver issuedvait, waiting for an
event. However, after being signaled, a secorait was issued
causing another wait until the driver was signaled agair.tt$
was done while holding a wakelock. As a result, a higher level
bug in handling signals extended the time period the wakelas
being held.

Another cause of no-sleep dilation observed in the appswee st
ied results from poor placement of component wakeup codeein t
app. For example, consider the code in Listidg 1. The dihatio
could happen if the app developer, instead of just protgdtie
critical partnet_sync() wrapped a large piece of code in wake-
locks. We observed such a bug in the MyTrack dpg [25] where
the developer acquired the CPU wakelock the moment the app wa
turned on and released it when the app completed. Howeer, th
critical part of the code was only the period where the useketl
the track button for location tracking.

5. DEBUGGING NO-SLEEP BUGS

would have been no race condition and hence no no-sleep bug in Two general approaches exist to understanding program be-

the app.

havior: those done at compile-time and those done at rue-tim

Tracing no-sleep bugs in app source code caused by race condi oo mije-time approaches incur no run-time overhead. Wile

tions is particularly hard since it requires enumeratinghed pos-
sible execution orderings of the threads. However, usingaato-
matic techniques for detecting no-sleep bugs presentefd,invé
were able to detect an instance of a no-sleep bug caused bg a ra
condition in the Android Email Ap[35.-86.42], which had ansi

ilar pattern as shown in Listirld 4.

4.3 No-Sleep Dilation

This category of no-sleep bugs differs from the first two cate

run-time approach can gather perfect, or near perfectrmton
about a given run, a compile-time approach will (consevesf)
determine facts that may be true on any run. Because of the run
time overhead, compile-time approaches are preferred wien
are sufficiently accurate, as is the case with our problemnthig
paper, we present a static, compile-time solution for ditgeo-
sleep energy bugs in smartphone apps.

Our solution treats the acquire and release of a wakelark
a definition of (assignment to) the variahle corresponding ta.

gories in a single aspect: the component woken up by the app is o gefinition d of a variablev; is said to reach some poiptin a

ultimately put to sleep by the app, but only aftes@bstantially
longer period of time than expected or necessary. For exampl
consider the code in Listirid 1. Suppose routied¢ _sync() usu-
ally finishes in a few seconds, but during a particular ruraitds

8We assume that thel eep API call used in Listind¥ registers a
wakeup timer with the CPU, which in case the phone freezaaglur
the app sleep, wakes up the CPU at the end of the timeout.

program if there exists a path frochto p that does not redefine
v;. Therefore, if a definition ofy; corresponding to acquiring a
wakelockreachesthe end of some code region there exists a no-
sleep code path in the region. Thus, detecting no-sleep paiths
corresponds exactly to tlieaching definitions (RD) dataflow prob-
lem[6], which can be solved by a standard compile-tidataflow
analysis

We first present, in[36, our solution when only a single thread
is being analyzed, and then, ill87, show how to apply the probl
to multi-threaded smartphone apps to detect no-sleep biigjsga
from races. We leave detecting and debugging no-sleepatilat
bugs as future work.

6. NO-SLEEP CODE PATHS

We first give an overview of dataflow analysis, and then dbscri
our solution as a dataflow analysis problem.

6.1 Dataflow Analysis: An Overview

Dataflow analysis refers to a set of techniques that asndeteis
about program properties by analyzing the effects of statesn
along different paths of eontrol flow graph (CFGpn those prop-
erties. There exist many useful dataflow analysig,, RD (dis-
cussed above)jve variable analysiswhich variable values are
used after a block), andvailable expressionévhich subexpres-
sions have already been computed and are unchanged yet).

Each node in a CFG islaasic blockof statements, e., the block
has exactly one entry point and one exit point. There exist a d
rected edgé B;, B;) in the CFG connecting every pair of blocks
B;, B; such that blocl; can execute immediately after blogk.
There is also an edge from every exception to ewaaych that
might catch it. Figurg]l shows an example of a dataflow graph.
Two special blocks are added to the CEENTERandEXIT. There
exists an edge froBNTERto every blockB; # ENTER with no
predecessor, and an edge fr&XIT to every blockB; # EXIT
with no successor. Aorward dataflow analysis propagates facts
about the program from tHENTERto theEXIT node while eback-
ward analysis propagates information backwards through thehgra
from the EXIT to theENTERnode.

Each node in the CFG is annotated with two s€&&NandKILL.
TheKILL set contains facts in the analysis that become false in this
node, and th&EN set contains facts that become true. Each node
also has aiN and anOUT set. The sets associated with a block
B can be denoted dsl[B], OUT[B], GEN[B], andKILL[B] . For
a forward (backward) analysis thid (OUT) set will contain facts
that are true immediately before the node is visited, andtid
(IN) set will contain facts that are true immediately after tiogle
is visited. Thetransferfunction describes how tH@UT (IN) set is
computed from th®©UT (IN), KILL andGEN sets. For simplicity
we only consideforward analysis from this point on.

CFGs with branches contaijoin points where multiple paths
come together.g.,the block containing statemerd8 andd9 in
Figure[1. Ameetoperation decides how the values coming from
the predecessor node are combined to form the value dRtkset.

If the CFG contains cycles, an iterative algorithm thattwisides
repeatedly is used until the analysis converges to a fixet pach
that revisiting all of the nodes does not change the valuesyfN
or OUT set. The algorithm works by adding tBNTERnode to a
work list. As nodes are processed, if th@UT set changes, their
successors are added to the work list. When the work list gtem
the algorithm has converged at a fixed-point.

6.1.1 The Reaching Definitions Dataflow Problem

The first task in applying these concepts to the RD problem is t
construct a CFG. Next, we define teENandKILL sets for each
block B. The last assignment to a variahién the block creates a
definitiond of v that can reach other statements outside the block,
and therefore the definition is placed in tl&EN set. Thus for
block B1 of Figure[d, the definitions at1, d2, andd3 can reach
the other blocks, and therefore are added®is GEN set. The
definition of theKILL set comes from the following observation:
an assignment to some variabl@ a block prevents any definition
of the variablev outside from flowing through the block. Thus any
definition outside the block become members ofikhe. set. Thus
in block B5, definitiond8 causes definitiod4 to be in the kill set.

We now define theéN set. Consider the set of predecessors of
some blockB. Any definition that is in th@©UT set of one of these
predecessors can reaBh and thus is ifN[B] set ofB. Therefore,
IN[B] is the union of theDUT sets of all of its predecessomsg.,
IN[B2] is OUT[B5] U OUT[B1]. Finally, theOUT set for a
block B must be computed. ThO®UT set is simply thelN set
with the effects of flowing through the block applied to it. erh
expression’N[B] — KILL[B] gives those definitions that reached
the block and can reach later blocks, and unioning this with t
GEN set gives all definitions that can pass through this block and
reach other blocks. Thugs : OUT[B] = GEN[B]U (IN[B] —
KILL[B)) is the transfer equation for blodg.

Interprocedural analysis, which incorporates the effe€tou-
tine calls and routine arguments, is beyond the scope oflibisis-
sion but is covered in detail il [#4].

6.2 No-Sleep Code Path Dataflow Analysis

We now formulate the single-thread no-sleep code path prob-
lem as an RD problem, and show how to solve it using standard
dataflow analysid]6]. We only analyze non-reference caljnte-
timer wakelocks and exotic component power APIs. We leage th
study of other categories as future work.

6.2.1 No-Sleep Code Path to Reaching Definitions

For no-sleep code path analysis, we are only interestedein th
points in the code path where the smartphone component pswer
managede.g.,the points in the CFG where wakelocks for the CPU
or screen are acquired or released, or points where the adamer
turned on and off. As a result, tldwmainof the dataflow problem
is a set consisting of component wakelocks for traditiomahpo-
nents and component power management assignments foc exoti
components. For brevity, from now on we use wakelocks tarrefe
to the power control handles for both traditional and exotimpo-
nents.

Once the transformation is completed, the no-sleep code pat
problem is reduced to finding the RD in the transformed G5,
finding which definition of a wakelock reaches tB¥l T node of
the CFG. If only those definitions that declare all the velgalas
0 (i.e.,the component can sleep) reach B T node, the code is
said to be free of no-sleep bugs, since all of the possible paths

We note that all dataflow schemas compute approximations to Put all accessed components to sleep before reaching thef émel

the actual ground truth. The actual problem being solvedhis u
decidable €.g., constant propagation_[43]). This is because it is
undecidable, in general, if a particular path along a CFG bl
taken during a program’s execution. As a result, dataflow-sol
tions returnconservativer safeestimates to the actual problem. A

CFG, and therefore the end of the code.

Solving the code path problem.We now show how to apply the
standard iterative algorithm for dataflow analysis to saue no-
sleep code path problem.

For our no-sleep code path problem, the set of non-zeroblaria

conservativeapproach guarantees that the results obtained by the definitions reaching th&XI T node represents the no-sleep code

analysis will err on the side of safety. Thus while an RD asialy
may say more definitions reach some point than actually aallit
never fail to find all definitions that do reach a program point

path bugs in the app. Tallk 3 shows, for each blBckhe I N[B]
andOUT[B] sets at the end of three iterations. It showsihgB]
andOUT'[B] sets are the same at the end of the second and third

ENTER

d1: cpu_wl_l.acquire();
d2: gps.start();
d3: proximity_sensor.stop();

ENTER

dl:cwll =1;
d2:gps =1;
d3: pr

gen = {d1, d2, d3}

Block B1 kill = {d9, d7}

=0;

AW NPE

gen = {d4, d5}
kill = {d8, d6}

d4: cpu_wl_2.release();
d5: camera.start();

d4: cwl2 =0;

Block B2
H d5:cm =1;

gen = {d6}
kill = {d5}

d6: camera.stop(); Block B3

: = {d7
d7: gps.stop(); Block B4 d7:gps =0; Eie“n= {22}}
- H gen = {d8, d9}
d8: cpu_wl_2.acquire(); il =
d9: cpu_wl_1.release(); Bloc:k 5 kill = {d4, d1}

Figure 1: Transforming no-sleep code path into reaching defiition
dataflow problem, and the resultingIN and OUT sets.

iteration, and hence the algorithm has reached a fixed-poidt
converged in three iterations. The value@UT[EXIT] in the
last iteration contains the reaching definitions at the dideocode:

all definitions butZ; andds can reach the end of the code, including
d2, ds andds which indicate the existence of a no-sleep bug. Their
presence indicates no-sleep code paths along which a cempon

Listing 5: No-sleep code path due to runtime exceptions.

wake_| ock_.acquire();//CPU shoul d not sleep

oj ect b = xyz.getObject(); //bis areference to an
obj ect

b.net_sync(); //Performcritical task here

wake_| ock_.release();//CPUis free to sleep

Listing 6: Fixing no-sleep code path due to runtime exceptios.

OCOO~NOUIDWNE

wake_| ock_.acquire();
client = new Appengi neCient(this);
Log. d(TAG "onHandl el ntent");
try {
client = new Appengi neC ient(this);
...

} finally {
wake_| ock_.rel ease();
+ }

+

gramming typically consists of several functions which event
handlers, one corresponding to each event the app handiese T
events could be a button click, an incoming call, a notifmafrom
server, a response from a componeng(,GPS),etc. Each event
handler is invoked when the event is fired and the handler may i
turn invoke a tree of routines underneath it before exiting.
Handling multiple entry points of an app creates a new chge
each handler has its own CliGnd a component may be turned

(GPS, camera, and CPU wakelock_2, respectively) is woken up on in one event handler and put to sleep under anothgr, étart

but not put to sleep.

6.2.2 Handling Uncaught Runtime Exceptions

Java runtime exceptions (RTE)_]45.¢., null pointer and ar-
ray index out of bounds exceptions) can be thrown during abrm
Java Virtual Machine (JVM) operations. RTEs that are hashdle
plicitly by at ry- cat ch block in code are handled as before by
adding a path from the source block to the handler block. Kewe
RTEs are often not handled by a program and the thread rdtsing
exception is terminated by the JVM when the exception iswhro

camera when start button is clicked and stop camera when stop
button is clicked). However, the order of execution of thigedent
events, which is needed to stitch together the CFGs of differ
handlers, may be unknown at compile time and depends on user
interactions.

We handle this complication as follows. (1) For common event
handlers €.g.,onCr eat e, onPause) which have known in-
vocation orders, we simply perform the RD analysis acrosmth
on the combined CFG obtained from stitching together imtdigl
CFGs following those invocation orders. For example, if eneo

Uncaught RTEs are a source of no-sleep bugs and must be hanponent is not put to sleep when the apppsused after being

dled by our analysis. Consider the code in Lisfihg 5. A CPUavak
lock is acquired, followed by a call to the critical routin@r in-
stanceb. The wakelock is released after the call. If a RTE is raised
(e.g.,a null pointer exception on line 3 caused bpeingnul |),
the thread is halted. This results in a no-sleep energy Inog she
thread terminates before the wakelock is released. Weifidehan
instance of this bug[26] in our characterization study. tihg[@
details the patch applied by the developer to fix a null poiREE
(code lines appended with “-"or “+” indicate that these ingere
removed from or added to the new version, respectively). déie
veloper added handlers for the null pointer RTE and movetbtiie
release into &i nal | y block to ensure that it is run regardless of
any exceptions.

first cr eat ed, it usuallyis a sign of a no-sleep bug. (2) For the
remaining handlers, we ask the developers to specify abexpl
invocation orders, and then perform no-sleep bug RD arsatysi
the combined CFG for these orders.

7. NO-SLEEP RACE CONDITIONS

To statically detect possible no-sleep race conditionsifolti-
thread apps, we adapt the RD dataflow analysis previouslgl-dev
oped for parallel programBT49.150].

A multi-threaded program typically has a repeating patiafn
sequential sections ending with a thréark, interleaved execution
of parallel threads followed by a thregain, followed by the next

Our technique places an edge from each RTE that is not handledS€duential section in the pattern. Execution is sequeniidin

within a routine to theEXIT node for that routine. This creates a
path for a lock acquire definition to reach the exit, and cdedil

to more false positives (although we have not seen that irestr
cases). Techniques such as null pointer analfisis [46], AFAZD
for array bounds check, and RTE analysis technigees,[48] can
be used to make the analysis more precise and generate faer f
positives.

6.2.3 Handling Event Based Entry Points

Android app programming is primarily event-based program-
ming. Unlike traditional code, where tin&i n() routine starts the
app with the app exiting whemai n() returns, Android app pro-

each thread and so a CFG can be built for the thread. CFGs for
different threads can be stitched together by connectiegfdtk
spawning the thread with thENTRYnode for the thread’'s CFG,
and theEXIT node of the CFG with the join node usingarallel
control edgdlk0].

The RD analysis is now modified for this new CFG. Three obser-
vations [50] motivate these modifications. (1) All threada paral-
lel section are executed; (2) Any of the definitiahs, d¢;, . . . , dik
to some variabler executing in different threads, and not ordered

®We extract the entry point of an event handlee., the root
of its CFG, from various. xm files in the build tree €.g.,
Mani f est . xm , mai n. xm).

Table 3: Computing IN and OUT for no-sleep code paths.

Block B OUT[B](J IN[B] T OUT[B] T IN[B] 2 (=IN[B] 5) OUT[B] 2 (=OUT[B]5)
By {} {di1,d2,d3} {} {d1,d2,d3}
Ba {d1,d2,d3} di,d2,d3, dy,ds {d1,d2,d3,ds,ds,d7,ds,do} | {d1,d2,d3,ds,ds,d7,dg
B3 dy,d2,d3,dy,ds} di,da,ds3,ds,ds di,da,d3,dy,ds,d7,do di1,da,d3,dy, ds,d7,do
By di,da,d3,ds,de} di,d3,dy, ds, d7 d1,d2,d3,ds, ds, d7, dg {d1,d3,ds,ds,d7,do}
Bs di,d2,d3,dy,ds,dg,dr} | {d2,d3,ds,ds,d7,dg, do {di1,dz,d3,da,ds,ds,d7,do} | {d2,d3,ds,ds,d7,ds,dg
EXIT da,d3,ds,ds,d7,dg,do} | {d2,d3,ds,ds,d7,dg,do {d2,d3,ds,ds,d7,ds,do} da,ds,ds,dg, d7,ds, dg

Listing 7: Handling simple code paths.

d1: mKill = false;

Block B1 d2: cwl = 1;

Worker_Thread:
Parallel Part:

Block B2 }

w 1. acquire();

if(wl !'=null)
w 1.rel ease();

if(w 2. isHeld())
W 2. rel ease();

w 2. acquire(); //wakeup
/1if object is not null
//rel ease the wakel ock
/1if W2 is acquired
/Irel ease the wakel ock

H *Block B5
Block B3 ioloc

: Block B6

Block B4

d7:cwl = 1;

H i Block B7
—> Sequential Edge] :
..... Y Parallel Edge

Figure 2: Tracing no-sleep race bug: Parallel Flow Graph (PFs) for
code in Listing[@.

by synchronization, may be the last definitiorvdb execute, there-
fore no such definition,,, can be said to kill another definitiah,,
p,q € {i,7,...,k}; (3) Any kill performedunconditionallyby any
thread in a parallel sectioné., along all sequential paths through
the thread) kills all definitions that occur before the patadec-
tion’s fork; (4) Any definitiond performedconditionally within a
thread does not kill definitiond’ before the thread’s parallel sec-
tion’s fork since eithetl or d’ may reach the parallel section’s join,
and following statements. The details of modifying the tata
analysis to account for these additional constraints axérorg
synchronization are discussed in detaillinl[50] and are eyp¢ated
here.

Figurel2 shows that the RD analysis on the PFG finds that defi-
nitionsds, d4 andd, can reach th&X| T node. Sincel; turns on
the component, this is a no-sleep race bug.

8. IMPLEMENTATION

ProGuard Extension: We implemented no-sleep bug tracing as a
1K-LOC extension to ProGuarfi15]. The ProGuard tool is used
to shrink, optimize and obfuscate Android code and helpsaken
smaller. apk installer files. It builds an intermediate Representa-
tion of the input source containing CFGs that we use. We chose
ProGuard since it is integrated into the Android build systét
automatically runs when an Android app or the framework im-co
piled and does not require a separate, manual invocatiorw- Ho
ever, source code is not required to perform the analyste $#no-
Guard can run directly on the bytecode generated by the dewa c
piler. If we only have the apk installer for an app we first use
useded [Ig] to decompile the embeddediex files (Dalvik Ex-
ecutable[[51]) and convert them to Java bytecadd @ss files).

We then run ProGuard and the no-sleep bug dataflow analysis on
the. cl ass bytecodes.

Handling Object References and Intent Resolution:Java object
references and intent resolutions are the only indirectrobtrans-

fer mechanisms in the Android framework and apps. An indirec

control transfer mechanism poses problems for static aisadynce

it is difficult to determine at compile time which class thgeath is

an instance of, or which handler will service the intent, Aedce
which particular method (routine) will be called. We use a-co
servative approach by analyzing all routines’ referenbas ¢ould
possibly be referred to at runtime.

Handling Special Code Paths:To reduce the number of false pos-
itives, we handle the two special cases shown in Lidfing 70 Tw
wakelocks 1, w 2) are acquired beforief conditions and are
released under their respectiveé. We found these two usages to
be common in mobile apps. The RD no-sleep bug analysis fa cod
in Listing[d would flag both lock acquires as reaching the drti®
block since they are not released in #lese branches. However,

in both cases, itis evident that there is no bug since if tHesloak

is eithernul | or not held, it need not be released. We handle these
two common usages specially, by insertingedrse branch to the

i f condition which contains a definition ofel ease() .

Runtime Exceptions: In our characterization study, we did not
observe any occurrences of uncaught RTEs other than nultguoi
exceptions (NPEs). Hence, in our current implementatiaonly
handle NPEs. We leave handling other RTEs as future work. To
handle NPEs, we trace thail | reaching definitions at each access
point of the object for every object declared in the progrdfa

nul | definition reaches an object access point, we add a path from
that point to theEXI T node in the CFG.

Race Conditions: Our current implementation only implements
analysis for no-sleep race condition for programs withguthro-
nization points. We leave as future work extensions to fesgh-
chronization points, which can be implemented by adopthey t
techniques proposed in50].

9. EVALUATION

We now present experimental results of no-sleep bug detecti
using our dataflow analysis based no-sleep bug detection\ié®
first present a summary of the detection results on 500 appsg
on Android and then discuss false positives and the runtiintieeo
scheme.

Methodology: We collected app installers &pk files) for 500
apps, including popular apps like Facebook, Google apps asic
gtalk and stock apps in the Android framework including Bmai
and Dialer. These include all the apps listed in Téable 2. Auattic
analysis of therani f est . xrmi file for permissions reveals that
187 apps explicitly manipulate component wake/sleep sycige
then decompiled theapk installers usingled [L6] and obtained

Table 4: Summary of detecting no-sleep code paths. Listing 8: No-sleep code path: false positives.

App type # Breakdown of 42 apps that | # 1|//Use a routine to manipul ate conponent
breakdown contain no-sleep code paths 2| voi d WakeUpCPU(bool ean wakeup) {
Total input set of apps 500 | New bugs 30| 3 i f (wakeup) W .acquire(); //wakeup
Manipulated component 187 | In the framework 6 4 else W .release(); //release the |ock
Fully decompiled 86 | Incorrect event handling 26 | 5|} //End WakeUpCPU
No-sleep code paths | 42 | i f, el se + exception paths | 12 | 6|void Critical Task(){
False positives 13 | Forgot release (incl. Services) 3 7 WakeUpCPU(true); //acquire the lock
True negatives 31 | Miscellaneous 1| 8 /1 Do critical task ...
9 WakeUpCPU(f al se); //release the |ock
10} //End Critical Task

86 apps that were decompildo bytecode and Java source code.
For these 86 apps, we ran our detection analysis tool djrect!
the bytecode, and then used the decompiled Java source @ode t
identify false positives incurred by our analysis. TdHleiveg a
breakdown of the apps (left) and causes of bugs in them Jright
No-Sleep Bug Analysis:Manually enumerating all possible paths
in the program to verify the correctness of the tool alongheafc
those paths is not humanly possible due to the exponentiabau

of paths. We used the following approach. For each of the §6,ap
we manuallf tally the no-sleep bugs (no-sleep code paths in single
threads). We then check if the bugs had been reported by ¢he to
Using this approach we segregated the apps into four cagsgor
(a) True Positive (TP)Apps in which we manually found the bug
and it was reported by the tool; (Byue Negative (TN)Apps in
which we could not manually find bugs and the tool reported no
bug; (c)False Positive (FP)Apps in which we did not find bugs
manually, but the tool reported bugs; and Fd)se Negative (FN):
Apps where we found a bug manually but the tool did not. The
last category contained no apps. Tddle 4 summarizes thistesu

akin to the code in Listinfl2 were observed in apps includhey t
Facebook and Android Email apps. The component (CPU in these
cases) was not allowed to sleep in case of a thrown exception.

(3) Forgot to release a wakelock (3)n K9mail [23], Agenda
Widget [21] and SIP servicET19], the programmer forgot tease
the CPU wakelock.

(4) Miscellaneous (1)In Android WifiService [31], the wake-
lock is not released in all cases of received messages.

We also detected a no-sleep bug caused by a race conditios in t
Android Email app, as was discussed in detaillln84.2. Anatyz
multi-threaded Android apps involving explicit synchraaiions is
left as future work.

Reasons for False Positives13 apps were reported to contain a
no-sleep code path, but upon further manual analysis, theyd
out to befalse positivesas discussed next.

There were two major reasons for the false positives regorte
in the 13 apps: use of helper functions or variables for carepb
JAccess, and interference of higher level app logic in loakg@ment.

(a) Helper functions/variables (3):The code in Listing[8
describes an app using a helper function for wakelock ma-
nipulation. RoutineWakeUpCPU(bool ean) manipulates the
wakelock depending on the boolean input variable. Routine
Critical Task() acquires and releases the wakelock using
the helper routine by passirtgr ue and f al se as input argu-
ments. RD analysis of routindakeUpCPU(bool ean) sug-
gests that one code path (thé branch of the condition) reaches
the end of the routine and hence there exists one path imeouti
Critical Task() that reaches the end of the routine with the
wakelock held.

Similarly, we found apps to use additional helper varialites
track the liveness status of the component instead of iglgim
standard API routinese(g.,i sHel d()) that come bundled with
the Android framework. The boolean helper variable is tedgl
each time the component is switched on or off and is checked be
fore setting the component free. This use of multiple vdesio
achieve a single purpose not only results in false posifivesur
static analysis of no-sleep bugs, but also was previousipnddo
be the root cause of multi-variable access blgs [7].

(b) Higher level App logic (10)Listing[@ demonstrates a false
positive observed in the Android Dialer app due to higheelev
app logic. The incoming call handler acquires the wakeldthke
caller is not blacklisted by the user and otherwise it imratdy

in TP set. Below we break down these 42 apps according to the
causes.

(1) Incorrect event handling (26)The largest category of bugs
in these apps are bugs from inappropriate handling of everts-
droid apps, specifically the handlers in the default Andeativity
cycle [62]: onPause() andonSt op(). An activity is a sin-
gle focused window that a user interacts with. It is the fooegd
GUI part of an app that the user sees. The framework calls the
onPause() event routine of the activity in the app whenever the
activity is interrupted by another activity coming in fraoftit, e.g.,
an incoming phone call displaying an “incoming call-box” ilgh
the user is playing a game. Once the activity is completaty e
the background,e.,the activity is no longer visible, the framework
callsonSt op() . The framework call®nDest r oy() when the
app finally exits.

The bug occurred in any app that wakes up a component when it
is started or resumed in the default event handber€r eat e()
oronResune() , respectively, and lets the component sleep only
when the app finally exits, in handlenDest r oy () . Basically,
when such an app is interrupted during this interval by asrodc-
tivity started by the user (like clicking the home screenstart-
ing another app), the respective component is kept awake ire
original app is frozen and may not run for a long time. We obser

gr?éag%?(?; g;ls bug in 26 apps involving CPU wakelocks @ 2 returns. Similarly, when the call is disconnected, the agpases

(2)i - el se + exceptions (12)in 12 apps, including Agenda the wakelock only when the caller was not blacklisted. This i

Widget and Android Email App (TablE] 2), not all paths (using duces a false positive in static reaching definitions amalsinice

: theacqui re() in Handl el ncom ngCal | () reaches the end
i f-el se) released the component. Also, no-sleep code paths - . e
) P P P of Di sconnect Cal | (). We leave addressing this issue to future

"Decompilation failed completely for the remaining apps,, not work. . o
even a single source file was generated. Analysis Runtime and Wakelock Statistics: Table[® presents de-

HThese include leveraging bug reports when available fosapp tailed statistics of no-sleep bugs in 5 popular apps. Foh eap,
Table[2. the table shows the LOC, the number of classes in the app and in

Table 5: Summary of no-sleep code paths for 5 popular apps.

Listing 9: No-sleep code path: false positives in the DialeApp.

App KLOC # wakelock objs [Analysis 1

(# classes) (# acq def.) time 2

{# lib class} {# rel. def.} (sec) 3

Facebook v1.3.0 93.5(712) {710} | 1 (256) {128} 408 4
Telephony 74.8 (326) {495} | 7 (18) {29} 53 5
Exchange | 17.0(626){952} | 1 (19)112} 51 6
SipService 3.8 (43) {366} 2 (6) {8} 33 g
Cw 0.3 (8) {100} 1(1){1} 3 9

10

Figure 3: CFG of a routine in the Android Email app.

the libraries, the number of wakelocks, and how many timeg th
were definedi.e.,acquired and released, and the time taken to run
the no-sleep code path analysis.

From the table we see that the runtime of the analysis varnied f
3 seconds (for CommonsWare (CW), 0.3 KLOC) to 408 seconds
for FaceBook (93.5 KLOC decompiled). The 3 services thairtg!
to the Android framework took about 50 seconds to perform the
code analysis. Since the tool performs off-line static gsiali.e.,
on a desktop/server, there is no energy drain on the mobiieate
The table also shows that the Telephony service in Androidsho
7 different wakelocks (all with optioRARTI AL_WAKE_LOCK) with
18 acquire and 29 release definitions, for different ugiditiinclud-
ing CDMA connection, GSM connection, SMS Dispatcher, Radio
Interface Layer,etc. Other apps utilize one or two wakelocks.
Although the FaceBook app manipulates only one wakeloak, th
wakelock APIs could be called from multiple locations, l&sg
in a total of 256 acquire and 128 release definitions.
Battery Drain of No-Sleep Bugs:Table[2 lists the amount of time
it will take to drain a fully charged battery under typicabgge on

the Google Nexus One phone due to the corresponding no-sleepll

bugs.

Real App CFG (Android Email App): To illustrate the complex-

ity of the apps, apart from the number of lines of code and num-
ber of wakelock objects shown in Tallk 5, we show in Fidlre 3
a trimmed down version of the CFG of one of the central rou-
tines in the Android Email app, unPi ngLoop(). The nodes

in the graph show branch points. These include, but are mmot li
ited to, handling error conditions such as (a) PING returagty,

(b) PING returned with a login failure, (c) NAT failure, (dyrs
chronization aborted by the user, and (e) alarm event trighlee
left-most node (solid black) denotes the entry point andritle-
most node denotes the exit point. The edges depicted inibhack
lines are the ones along which the CPU wakelock is being held,
while edges in dotted green lines are when wakelocks have bee
released. Out of the four edges reaching the exit node, amdy o
reaches after releasing the wakelock.

10. RELATED WORK

Debugging in Mobile Environments: Diagnosing bugs in smart-
phone environment is a new domain, and there is little exgsti

voi d Handl el ncom ngCal | (){
if(caller !'= BLACKLI STED) W .acquire();
el se return;
/l....Handl e rest of incomng call
} /7 End Handl el ncom ngCal |
voi d Di sconnect Cal I (){
if(caller !'= BLACKLI STED) w .rel ease();
el se return;
/1....Handl e rest of disconnecting call
} //End Di sconnect Cal |

work. MobiBug [53] is a framework for mobile debugging that
focuses on how to perform lightweight logging on resouin@téd
smartphones. It proposes three ideas: spreading the pdask
among many phones, building a conditional distribution etiddr
the app behavior and its dependencies, and sampling what eac
phone logs. MobiBug is designed to be a runtitreglitional bug
tracing system, targeting bugs that usually result in apstas.
However,energy buggd] differ from traditional bugs in that they
do not lead to any app crash; the apps continue to work noymall
except that the battery drains rapidlyi] [4] presents a tamgnof
many types of energy bugs in smartphones and estimategep-sl
bugs to constitute about 70% of all energy bugs in smartphpps.
Our paper is the first directed towards solving energy bugeadn
bile phones.

Applications of Reaching Definitions:Reaching definitions anal-
ysis has many uses, and most are part of the compiling faklor
(seellB]).

Debugging Software Concurrency Bugs:Debugging traditional
software bugs on non-mobile devices is a well-studied tophere
have been several bug characterizing studieg.,[5, 54]) which
classify different categories of software bugsg.,concurrency bugs,
semantic bugs, and configuration bugs. The debugging sofuti
fall into three categories: static, dynamic, or hybrid gse. Some
examples of static analysis include Racérx [55] which usksva
sensitive, inter-procedural analysis to detect data ranesdead-
locks, and MUVI [T] which applies data mining to infer patierof
multi-variable access correlations. Our solution for teep energy
bugs falls in the realm of static analysis, and is based ochieg
definitions analysis.

CONCLUSION

This paper makes the first advances towards understandéhg an
automatically detecting software energy bugs on smartghotit
makes three contributions. First, it presents the first cetmnsive
real world no-sleep energy bug characterization study. <uaty
reveals three major causes of no-sleep energy bugs andlpsovi
useful guidelines and hints to design effective detectidremes.
Second, it proposes the first detection solution, basedeodléissic
reaching definitions dataflow analysis, to automaticalfgrirpo-
tential no-sleep bugs in an app. Third, evaluation of out two
86 Android apps and the Android framework shows that our tool
accurately detected all reported instances of no-sleeg, lasgwell
as 30 instances of new no-sleep bugs.

Our work is only the beginning of smartphone energy bug re-
search and opens a wide avenue for further studies. A saimple |
of future work includes: (1) develop solutions to no-sledptibn
bugs; (2) explore run-time and hybrid compile-time and tiume
solutions to no-sleep bugs; (3) characterize and deteet types
of energy bugs in smartphone apps; (4) understand energy bug
in the smartphone OSes; and (5) develop better programraing |
guage support to avoid no-sleep bugs at programming time.

Acknowledgments. We thank the anonymous reviewers, espe- [23] “K9mail: Simplifying wakelock.” URL: http://code.gugle

cially our shepherd, Maria Ebling, for their helpful comntenThis
work was supported in part by NSF grant 0916901. Abhinavakath
was supported in part by a 2011 Intel PhD Fellowship.

12. REFERENCES

[1] “Smartphone sales overtake pcs for the first time.” URL:
http://mashable.com/2012/02/D3/
smartphone-sales-overtake-pcs/

[2] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat,
“Ecosystem: Managing energy as a first class operating
system resource,” iRroc. of ASPLOS2002.

[3] “Android powermanager class.” UR_: http://developer.
android.com/reference/android/os/PowerManager. html

[4] A. Pathak, Y. C. Hu, and M. Zhang, “Bootstrapping energy
debugging for smartphones: A first look at energy bugs in
mobile devices,” irProc. of Hotnets2011.

[5] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mistake
— a comprehensive study on real world concurrency bug
characteristics,” IIASPLOS2008.

[6] A. Aho, M. Lam, R. Sethi, and J. UllmaiGompilers:
principles, techniques, and tools Pearson/Addison Wesley.

[7] S. Lu, S. Park, C. Hu, X. Ma, W. Jiang, Z. Li, R. Popa, and
Y. Zhou, “Muvi: automatically inferring multi-variable
access correlations and detecting related semantic and
concurrency bugs,” ISOSR 2007.

[8] “Android sensorevent class.” URL: http://developedeoid
com/reterence/android/hardware/SensorEvent.html

[9] “Class powermanager.wakelock: Reference count.” URL:
http://developer.android.com/reterence/android/os/
PowerManager.WakeLock.html#
setRefterenceCounted(boolean)

[10] “Class powermanager.wakelock: Timer based.” URLp#t
developer.android.com/reference/android/os/Poweddein
WakeLock.htmi#acquire(long)

[11] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang,
“Fine-grained power modeling for smartphones using
system-call tracing,” ifProc. of EuroSys2011.

[12] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao,
and L. Yang, “Accurate Online Power Estimation and
Automatic Battery Behavior Based Power Model Generation
for Smartphones,” ifProc. of CODES+ISS2010.

[13] A. Shye, B. Scholbrock, and G. Memik, “Into the wild:
studying real user activity patterns to guide power
optimizations for mobile architectures,” MICRO, 2009.

[14] “Dialer app.” URL: http://www.javaZs.com/Open-Sacel
Android/android-platform-apps/Phone/com/androidfpgo
PhoneApp.java.htm

[15] “Android proguard.” URL| http://developer.androodm/
guide/developing/tools/proguard.himl

[16] “Decompiling apps.” URL! http://siis.cse.psu.ededd

[17] “Android - an open handset alliance project.” URL: hitp
code.google.com/p/android/issues/list

[18] “Maemo community.” URL| http://maemo.org/int o/

[19] “Sipservice: release wake lock for cancelled task$1U
https://github.com/android/plattorm_frameworks_Hase
commit/0c01e6e060d0/9b0a25a44c1159db63944afcel?

[20] “Github: Social coding.” URL! https://www.github. oo’

[21] “Agenda.” URL: http://www.androidagendawidget.com

[22] “Facebook 1.3 not releasing partial wake lock.” URLpW
geekior.me/news/facebook-1-3-wakelaock/

com/p/k9mail/source/detail?r=1€96

[24] “Checkinmap: Disable location updates when checkiniisa
paused.” URL| https://github.com/imschanck/Ushahiidi_
Android/commit/
3370481512 /2513e84 /96tab1294 /ttbec3c0357

[25] “My tracks android app.” URL!: http://mytracks.apps$mon

[26] “Babblesink: Move line inside try in case of npe before
release of wake lock.” URL.: https://github.com/hatstand/
babblesink/commit/
9tbc6i01ce8letd625a6bd62a3b4b /8 /e6080e36

[27] “Ensuring that the wakelock is released during exaapti
URL: |https://github.com/commonsguy/cwac-wakeful/
commit/c/d440t115088/bb9ala3c44015¢c/5/9d/ak1970

[28] “frameworks/base/telephony: Release wakelock on ril
request send error.” URL_: https://gist.github.com/
CyanogenMod/android_frameworks_base/commit/
133d22d577aa86a8e4095e3af29851d1bd717b1b

[29] “Ensure wake lock is released when an ioexception isvhr
during a sync.” URL! https://github.com/mtuton/android__
apps email/commit/
85tec8/3c4413et86d409 /2cc3dbe925ee23e733

[30] “Android issue #9307 fixed - partial wake lock released.
URL: |https://github.com/CyanogenMod/android_packages
apps_Email/commit/
f53bf81178380ed882a0fa34e10c41t9e8242b93

[31] “Wakelock issue for driver stop.” URL.: https://githidom/
buglabs/android-buglabs-tframeworks-base/commit/
3bf504df9tc1971078fdde7eed418a0dd8t601e2:twifi

[32] “Fix wakelock leak in
powermanagerservice.sendnotificationlocked().” UREp:t
gitorious.org/rowboat/frameworks-base/commit/
9359/ed1839de164c81183832d4c23/3ea32ac8f

[33] “Using a locationlistener is generally unsafe for leayva
permanent partial_wake_lock.” URL: http://code.gocgle.
com/p/android/issues/detail?1d=4333

[34] “Locationmanagerservice: Fix race when removing
locationlistener.” URL! https://gist.github.com/
CyanogenMod/android frameworks base/commit/
0528b9p26a9d64bad3acd0e334638303d514b8eb#location/
Java/android/location/ILocationProvider.idl

[35] “Email application partial wake lock.” URL: http://ci@
google.com/p/android/issues/detail?1d=£307

[36] “E-mail app has a bug which causes a partial wake locleto b
held until manually interrupted.” URL.: http://code.goeg|
com/p/android/issues/detall?1d=6811

[37] “Android backup service.” URL: http://code.googlern;
android/backup/index.htinl

[38] “Googlebackuptransport holds backup wake lock so long
which leads to high current.” URL.: http://www.google.bg/
support/forum/p/Google+Mobile/thread?
£10=481131338a19556

[39] “Fix threading problem that resulted in the wakeloclnige
held too long.” URL! https://github.com/CyanogenMod/
android _hardware gcom_gps/commit/
a162c¢4351926285892214b0726aaf07tf06310c72

[40] “Googlemaps holding wakelock for long.” URL: http:Avw.
google.com/support/torum/p/maps/thread?
tid=016d2cec36d7410b

[41] “java.lang.exception class.” UR_: http://downloatacle.
com/javase/1.4.2/docs/api/java/lang/Exception.html

http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/
http://mashable.com/2012/02/03/smartphone-sales-overtake-pcs/
http://developer.android.com/reference/android/os/PowerManager.html
http://developer.android.com/reference/android/os/PowerManager.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/hardware/SensorEvent.html
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html#setReferenceCounted(boolean)
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html#setReferenceCounted(boolean)
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html#setReferenceCounted(boolean)
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html#acquire(long)
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html#acquire(long)
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html#acquire(long)
http://www.java2s.com/Open-Source/Android/android-platform-apps/Phone/com/android/phone/PhoneApp.java.htm
http://www.java2s.com/Open-Source/Android/android-platform-apps/Phone/com/android/phone/PhoneApp.java.htm
http://www.java2s.com/Open-Source/Android/android-platform-apps/Phone/com/android/phone/PhoneApp.java.htm
http://developer.android.com/guide/developing/tools/proguard.html
http://developer.android.com/guide/developing/tools/proguard.html
http://siis.cse.psu.edu/ded/
http://code.google.com/p/android/issues/list
http://code.google.com/p/android/issues/list
http://maemo.org/intro/
https://github.com/android/platform_frameworks_base/commit/0c01e6e060d079b0a25a44c1159db63944afce17
https://github.com/android/platform_frameworks_base/commit/0c01e6e060d079b0a25a44c1159db63944afce17
https://www.github.com/
http://www.androidagendawidget.com
http://geekfor.me/news/facebook-1-3-wakelock/
http://geekfor.me/news/facebook-1-3-wakelock/
http://code.google.com/p/k9mail/source/detail?r=1696
http://code.google.com/p/k9mail/source/detail?r=1696
https://github.com/jmschanck/Ushahidi_Android/commit/337b48f5f2725f3e84796fab12947ffbec3c0357
https://github.com/jmschanck/Ushahidi_Android/commit/337b48f5f2725f3e84796fab12947ffbec3c0357
https://github.com/jmschanck/Ushahidi_Android/commit/337b48f5f2725f3e84796fab12947ffbec3c0357
http://mytracks.appspot.com
https://github.com/hatstand/babblesink/commit/9fbc6f01ce81ef4625a6bd62a3b4b787e6080e36
https://github.com/hatstand/babblesink/commit/9fbc6f01ce81ef4625a6bd62a3b4b787e6080e36
https://github.com/hatstand/babblesink/commit/9fbc6f01ce81ef4625a6bd62a3b4b787e6080e36
https://github.com/commonsguy/cwac-wakeful/commit/c7d440f1150887bb9a1a3c44015c7579d7ab1970
https://github.com/commonsguy/cwac-wakeful/commit/c7d440f1150887bb9a1a3c44015c7579d7ab1970
https://gist.github.com/CyanogenMod/android_frameworks_base/commit/133d22d577aa86a8e4095e3af29851d1bd7f7b1b
https://gist.github.com/CyanogenMod/android_frameworks_base/commit/133d22d577aa86a8e4095e3af29851d1bd7f7b1b
https://gist.github.com/CyanogenMod/android_frameworks_base/commit/133d22d577aa86a8e4095e3af29851d1bd7f7b1b
https://github.com/mtuton/android_apps_email/commit/85fec873c4413ef86d40972cc3dbe925ee23e733
https://github.com/mtuton/android_apps_email/commit/85fec873c4413ef86d40972cc3dbe925ee23e733
https://github.com/mtuton/android_apps_email/commit/85fec873c4413ef86d40972cc3dbe925ee23e733
https://github.com/CyanogenMod/android_packages_apps_Email/commit/f53bf8f178380ed882a0fa34e10c41f9e8242b93
https://github.com/CyanogenMod/android_packages_apps_Email/commit/f53bf8f178380ed882a0fa34e10c41f9e8242b93
https://github.com/CyanogenMod/android_packages_apps_Email/commit/f53bf8f178380ed882a0fa34e10c41f9e8242b93
https://github.com/buglabs/android-buglabs-frameworks-base/commit/3bf504df9fc1971078fdde7eed418a0dd8f601e2#wifi
https://github.com/buglabs/android-buglabs-frameworks-base/commit/3bf504df9fc1971078fdde7eed418a0dd8f601e2#wifi
https://github.com/buglabs/android-buglabs-frameworks-base/commit/3bf504df9fc1971078fdde7eed418a0dd8f601e2#wifi
http://gitorious.org/rowboat/frameworks-base/commit/93597ed1839de164c81f83832d4c2373ea32ac8f
http://gitorious.org/rowboat/frameworks-base/commit/93597ed1839de164c81f83832d4c2373ea32ac8f
http://gitorious.org/rowboat/frameworks-base/commit/93597ed1839de164c81f83832d4c2373ea32ac8f
http://code.google.com/p/android/issues/detail?id=4333
http://code.google.com/p/android/issues/detail?id=4333
https://gist.github.com/CyanogenMod/android_frameworks_base/commit/0528b9b26a9d64ba43acd0e334638303d514b8eb#location/java/android/location/ILocationProvider.aidl
https://gist.github.com/CyanogenMod/android_frameworks_base/commit/0528b9b26a9d64ba43acd0e334638303d514b8eb#location/java/android/location/ILocationProvider.aidl
https://gist.github.com/CyanogenMod/android_frameworks_base/commit/0528b9b26a9d64ba43acd0e334638303d514b8eb#location/java/android/location/ILocationProvider.aidl
https://gist.github.com/CyanogenMod/android_frameworks_base/commit/0528b9b26a9d64ba43acd0e334638303d514b8eb#location/java/android/location/ILocationProvider.aidl
http://code.google.com/p/android/issues/detail?id=9307
http://code.google.com/p/android/issues/detail?id=9307
http://code.google.com/p/android/issues/detail?id=6811
http://code.google.com/p/android/issues/detail?id=6811
http://code.google.com/android/backup/index.html
http://code.google.com/android/backup/index.html
http://www.google.bg/support/forum/p/Google+Mobile/thread?tid=481ff31338a19536
http://www.google.bg/support/forum/p/Google+Mobile/thread?tid=481ff31338a19536
http://www.google.bg/support/forum/p/Google+Mobile/thread?tid=481ff31338a19536
https://github.com/CyanogenMod/android_hardware_qcom_gps/commit/a162c4351926285892214b0726aaf07f0631dc72
https://github.com/CyanogenMod/android_hardware_qcom_gps/commit/a162c4351926285892214b0726aaf07f0631dc72
https://github.com/CyanogenMod/android_hardware_qcom_gps/commit/a162c4351926285892214b0726aaf07f0631dc72
http://www.google.com/support/forum/p/maps/thread?tid=016d2cec36d7410b
http://www.google.com/support/forum/p/maps/thread?tid=016d2cec36d7410b
http://www.google.com/support/forum/p/maps/thread?tid=016d2cec36d7410b
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Exception.html
http://download.oracle.com/javase/1.4.2/docs/api/java/lang/Exception.html

[42] “Email 2.3 app keeps awake when no data connection is
available.” URL! http://www.google.com/support/forym/
Google+Mobile/thread?tid=53bte134321358e8

[43] J.B. Kam and J. D. Ullman, “Global data flow analysis and
iterative algorithms,J. ACM vol. 23, 1976.

[44] E. M. Myers, “A precise inter-procedural data flow
algorithm,” inPOPL ACM, 1981.

[45] “java.lang class runtimeexception.” URL: http://cocracle .
com/javase/1.4.2/docs/api/java/lang/RuntimeException

[46] F. Qian, L. Hendren, and C. Verbrugge, “A comprehensive
approach to array bounds check elimination for java,” in
Compiler Construction2002.

[47] R. Bodik, R. Gupta, and V. Sarkar, “Abcd: Eliminatingay
bounds checks on demand,”.DI, 2000.

[48] M. Bravenboer and Y. Smaragdakis, “Exception analgsid
points-to analysis: better together,”limternational
symposium on Software testing and analy2@09, pp. 1-12.

[49] J. Lee, D. Padua, and S. Midkiff, “Basic compiler algbns
for parallel programs,” iACM SIGPLAN Noticesl999.

[50] D. Grunwald and H. Srinivasan, “Data flow equations for
explicitly parallel programs,” irPPoPP, 1993.

[51] “.dex: Dalvik executable format.” URL.: http://sourze
android.com/tech/dalvik/dex-tormat.himl

[52] “Android activity.” URL: http://developer.androidom)
reference/android/app/Activity.html

[53] S. Agarwal, R. Mahajan, A. Zheng, and V. Bahl, “Theras a
app for that, but it doesn.t work. diagnosing mobile
applications in the wild,” irHotnets 2010.

[54] Z.Yin, X. Ma, J. Zheng, Y. Zhou, B. Lakshmi, and
S. Pasupathy, “An empirical study on configuration errors in
commercial and open source systemsS3S{DSP 2011.

[55] D. Engler and K. Ashcraft, “Racerx: Effective, static
detection of race conditions and deadlocl&JSR 2003.

http://www.google.com/support/forum/p/Google+Mobile/thread?tid=53bfe134321358e8
http://www.google.com/support/forum/p/Google+Mobile/thread?tid=53bfe134321358e8
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/RuntimeException.html
http://docs.oracle.com/javase/1.4.2/docs/api/java/lang/RuntimeException.html
http://source.android.com/tech/dalvik/dex-format.html
http://source.android.com/tech/dalvik/dex-format.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html

	Introduction
	Motivation
	Our Contributions

	Power Encumbered Programming
	Managing Traditional Components
	Managing Exotic Components
	Issues from Event-based Programming
	No-Sleep Bugs

	Methodology
	Characterizing No-Sleep Bugs
	No-Sleep Code Path
	No-Sleep Race Condition
	No-Sleep Dilation

	Debugging No-Sleep Bugs
	No-Sleep Code Paths
	Dataflow Analysis: An Overview
	The Reaching Definitions Dataflow Problem

	No-Sleep Code Path Dataflow Analysis
	No-Sleep Code Path to Reaching Definitions
	Handling Uncaught Runtime Exceptions
	Handling Event Based Entry Points

	No-Sleep Race Conditions
	Implementation
	Evaluation
	Related Work
	Conclusion
	References

