
MAUI: Making Smartphones Last Longer with Code Offload

Eduardo Cuervo†, Aruna Balasubramanian‡, Dae-ki Cho∗,
Alec Wolman§, Stefan Saroiu§, Ranveer Chandra§, Paramvir Bahl§

†Duke University, ‡University of Massachusetts Amherst, ∗UCLA, §Microsoft Research

ABSTRACT
This paper presents MAUI, a system that enables fine-grained
energy-aware offload of mobile code to the infrastructure. Previous
approaches to these problems either relied heavily on programmer
support to partition an application, or they were coarse-grained re-
quiring full process (or full VM) migration. MAUI uses the benefits
of a managed code environment to offer the best of both worlds:
it supports fine-grained code offload to maximize energy savings
with minimal burden on the programmer. MAUI decides at run-
time which methods should be remotely executed, driven by an op-
timization engine that achieves the best energy savings possible un-
der the mobile device’s current connectivity constrains. In our eval-
uation, we show that MAUI enables: 1) a resource-intensive face
recognition application that consumes an order of magnitude less
energy, 2) a latency-sensitive arcade game application that doubles
its refresh rate, and 3) a voice-based language translation applica-
tion that bypasses the limitations of the smartphone environment
by executing unsupported components remotely.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Client/Server

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
code offload, partitioning, smartphones, energy management

1. INTRODUCTION
One of the biggest obstacles for future growth of smartphones

is battery technology. As processors are getting faster, screens
are getting sharper, and devices are equipped with more sensors,
a smartphone’s ability to consume energy far outpaces the battery’s
ability to provide it. Unfortunately, technology trends for batteries
indicate that these limitations are here to stay and that energy will
remain the primary bottleneck for handheld mobile devices [34].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiSys’10, June 15–18, 2010, San Francisco, California, USA.
Copyright 2010 ACM 978-1-60558-985-5/10/06 ...$10.00.

Given the tremendous size of the mobile handset market, solving
the energy impediment has quickly become the mobile industry’s
foremost challenge [14].

One popular technique to reduce the energy needs of mobile de-
vices is remote execution: applications can take advantage of the
resource-rich infrastructure by delegating code execution to remote
servers. For the last two decades, there have been many attempts
to make mobile devices use remote execution to improve perfor-
mance and energy consumption. Most of these attempts took one
of the following two approaches to remote execution. The first ap-
proach is to rely on programmers – to specify how to partition a
program, what state needs to be remoted, and how to adapt the pro-
gram partitioning scheme to the changing network conditions [9,
10, 1, 3]. This approach leads to large energy savings because it is
fine-grained – applications can remote only the sub-parts that bene-
fit from remote execution. For example, an application that both de-
codes and plays video would remote only the decoder, which is the
CPU-intensive part, without remoting any of the screen-intensive
parts. The second approach is to use full process [31] or full VM
migration [6, 37] in which individual applications (or entire OS’s
in the case of VMs) can migrate to the infrastructure. This ap-
proach reduces the burden on programmers because applications
do not need to be modified to take advantage of remote execution;
instead, all their code and program state is automatically sent to the
remote infrastructure.

We present MAUI, an architecture that combines the benefits
of these two approaches: it maximizes the potential for energy
savings through fine-grained code offload while minimizing the
changes required to applications. MAUI achieves these benefits by
using several properties of today’s managed code environments (we
use the Microsoft .NET Common Language Runtime (CLR) [36]
for MAUI, although Java would offer the same properties). First,
MAUI uses code portability to create two versions of a smartphone
application, one of which runs locally on the smartphone and the
other runs remotely in the infrastructure. Managed code enables
MAUI to ignore the differences in the instruction set architecture
between today’s mobile devices (which typically have ARM-based
CPUs) and servers (which typically have x86 CPUs). Second,
MAUI uses programming reflection combined with type safety to
automatically identify the remoteable methods and extract only the
program state needed by those methods. Third, MAUI profiles each
method of an application and uses serialization to determine its net-
work shipping costs (i.e., the size of its state). MAUI combines the
network and CPU costs with measurements of the wireless con-
nectivity, such as its bandwidth and latency to construct a linear
programming formulation of the code offload problem. The so-
lution to this problem dictates how to partition the application at
runtime to maximize energy savings under the current networking

conditions. Because serialization can be done at runtime, MAUI’s
application profiling is run continuously to provide up-to-date es-
timates of each method’s costs. This continuous profiling makes
MAUI’s program partitioning scheme highly dynamic. The combi-
nation of code portability, serialization, reflection, and type safety
allows MAUI to offer dynamic fine-grained code offload with min-
imal burden on the programmer.

In implementing MAUI, we discovered a number of unforeseen
challenges to implementing program partitioning for mobile appli-
cations. One such challenge is that using power-save mode (PSM)
when transferring state remotely can hurt the overall energy con-
sumption of the application when the latency to the server is low.
Moreover, PSM mode helps save energy but only when latencies
approach the sleep interval (today’s hardware uses 100 ms). An-
other unforeseen challenge is related to using profiling to estimate
the energy savings of code offload. On one hand, profiling the state
transfer overhead of a method each time it is called can provide the
freshest estimate; on the other hand, the cost of this profiling is not
negligible and it can impact the overall application’s performance.
Throughout our presentation of the MAUI architecture, we provide
in-depth descriptions of the lower-level implementation challenges
discovered in an effort to guide future implementations of remote
execution to avoid them.

Our evaluation shows that MAUI offers significant energy and
performance benefits to mobile applications. With MAUI, we parti-
tioned four smartphone applications that have different latency and
computational requirements. Our results show that (1) MAUI im-
proves the energy consumption of resource-intensive applications,
such as face recognition, by almost one order of magnitude (i.e.,
a factor of eight); (2) MAUI allows latency-sensitive applications,
such as games, to more than double their screen refresh rates; and
(3) MAUI enables the development of applications that bypass the
limitations of today’s smartphone environments; we developed a
real-time voice-based Spanish-to-English translator even though
today’s smartphones do not provide enough RAM to run our ad-
vanced speech recognition engine.

The remainder of this paper presents the design, implementation,
and evaluation of MAUI. We start by raising four questions that
investigate the benefits of remote execution given today’s mobile
landscape (Section 2). Next, we present a high-level description of
MAUI’s architecture (Section 3). The next three sections describe
MAUI’s program partitioning mechanism (Section 4), its ability
to profile mobile applications and the wireless environment (Sec-
tion 5), and its dynamic optimization framework (Section 6). The
paper’s final sections evaluate MAUI’s performance (Section 7),
summarize the work related to remote execution for mobile appli-
cations (Section 8), and conclude (Section 9).

2. THE NEED FOR REMOTE EXECUTION
IN TODAY’S MOBILE LANDSCAPE

This section’s goal is to examine remote execution through the
lens of today’s mobile landscape. Today’s mobile users expect their
smartphones to run sophisticated applications, they have almost
ubiquitous access to 3G connectivity, and their computing appli-
cations are moving to the cloud. How do these trends affect the
remote execution problem? The remainder of this section exam-
ines these issues by raising three questions:

1. MAUI’s goal is to mitigate the energy problem for mobile hand-
helds, the mobile industry’s foremost challenge. How severe is the
energy problem on today’s handheld devices?

2. Mobile handheld devices are increasingly equipped with wire-

330

542

1573

576

979

2,762

0

500

1000

1500

2000

2500

3000

Wi-Fi (RTT: 25ms) Wi-Fi (RTT: 50ms) 3G (RTT: 220ms)

E
n

e
rg

y
 C

o
n

su
m

e
d

 b
y

 U
p

lo
a

d
 (

m
J)

10KB
100KB

Wi-Fi connectivity

3G connectivity

Figure 1: The Energy Consumption of Wi-Fi Connectivity vs.
3G Connectivity We performed 10 KB and 100 KB uploads from
a smartphone to a remote server. We used Wi-Fi with RTTs of 25
ms and 50 ms (corresponding to the first two sets of bars) and 3G
with an RTT of 220 ms (corresponding to the last bar).

less wide-area network interfaces, such as 3G. Unlike Wi-Fi, 3G of-
fers ubiquitous connectivity. However, 3G connections are known
to suffer from very long latencies and slow data transfers [15]. For
code offload, this poor performance may lead to increased energy
consumption. How energy efficient is using 3G for code offload?

3. With cloud computing, industry is building massive infrastruc-
ture to offer highly available resources. Offloading mobile code to
the cloud is an attractive possibility for systems like MAUI. How-
ever, typical round-trip times (RTTs) to cloud servers are on the
order of tens of milliseconds. An alternative for MAUI is to use
nearby servers [37] (with RTTs less than 10ms), such as a server
co-located with a Wi-Fi access point or a user’s personal desktop in
the home. How sensitive is the energy consumption of code offload
to the RTT to the remote server?

2.1 How Severe is the Energy Problem on
Today’s Mobile Handheld Devices?

The two main contributors to the energy problem for today’s mo-
bile devices are: 1) limited battery capacity, and 2) an increasing
demand from users for energy-hungry applications.

To illustrate the severity of the battery limitations of today’s
handheld devices, we performed the following experiment. We cre-
ated a synthetic resource-intensive application, and measured how
long it takes to completely drain the battery of a new smartphone
(the HTC Fuze with a 1340 maH battery, released in November
2008). Our synthetic application performs a large bulk-data trans-
fer over the Wi-Fi interface, consumes the entire CPU, and keeps
the display backlight on. Although it is synthetic, this application
is not unrealistic: a streaming video decoder would also heavily
utilize the CPU and the Wi-Fi network with the screen on. When
running this application, we found that the fully charged battery
drained after only one hour and twenty minutes.

In today’s mobile handheld market, user demand is increasing
for three categories of resource intensive applications. First, video
games are very popular (for example, many of the top applica-
tions on Apple’s AppStore are video games) and they have large
energy demands. Second, mobile users are increasingly watch-

ing streaming video. For example, one third of iPhone users ac-
cessed YouTube [24] and the number of mobile uploads to YouTube
increased 400% during the first six days after iPhone 3GS’s re-
lease [21]. Finally, mobile devices are increasingly equipped with
new sensors that produce continuous streams of data about the
user’s environment. New applications that rely on continuous pro-
cessing of sensor data are emerging, such as car navigation sys-
tems, pedometers, and location-based social networking. Today,
developers restrict their applications by making judicious use of
sensors due to energy concerns (e.g., obtaining a GPS reading is
expensive).

The trends in battery technology make it unlikely that the energy
problem will disappear in the future. Although the chemical com-
position of batteries has changed significantly over the years, these
changes have had less impact on battery capacity than on other as-
pects of battery technology, such as recharging and “memory ef-
fects”. While recent research has suggested using newer chemi-
cals [32], these changes are unlikely to significantly improve bat-
tery lifetime. Another proposed technology is the use of “fuel
cells”, yet even the most optimistic predictions of their performance
do not suggest that energy concerns are likely to disappear [27].

2.2 How Energy Efficient is 3G for Code
Offload?

Handheld devices have two alternatives for code offload: use ei-
ther 3G or Wi-Fi. The primary benefit of 3G over Wi-Fi is the
near-ubiquitous coverage it provides. However, recent studies have
shown that round-trip times over 3G are lengthy and bandwidth is
limited. RTTs are consistently on the order of hundreds of mil-
liseconds and they even reach seconds [15]. Such long latencies
may make code offload slow and expensive. For example, sending
just a few tens of kilobytes to the cloud requires multiple RTTs, and
thus the transfer time may take on the order of seconds.

We performed a simple experiment to contrast the energy con-
sumption of 3G versus Wi-Fi. We setup the HTC Fuze smartphone
do to two small code uploads (10 KB and 100 KB) to a remote
server using either 3G or Wi-Fi. The server uses a driver that adds
a controlled amount of queuing delay to the network path between
the smartphone and the server. We then evaluated two scenarios:
(1) the smartphone using Wi-Fi to reach the server (and adding an
additional 25 ms or 50 ms of queuing delay); and (2) the smart-
phone using 3G (with a measured RTT of 220 ms). Figure 1 shows
the energy consumed by the smartphone during the two uploads.
Using 3G, the smartphone consumes three times as much energy as
it does using Wi-Fi with a 50 ms RTT, and five times the energy of
Wi-Fi with a 25 ms RTT. This implies that our HTC Fuze phone,
with a 1340 mAH battery, will last less than 2 hours if the phone
repeatedly downloads a 100 KB file over a 3G connection.

Such drastic discrepancies in energy consumption made us re-
consider using 3G for MAUI. Despite the coverage benefits, 3G
has poor performance and high energy consumption. For a system
aimed at saving energy (like MAUI), the cost of using 3G today is
almost prohibitive. In contrast, Wi-Fi has much better performance
and lower energy consumption. MAUI can use either Wi-Fi or 3G
for code offload.

2.3 How Sensitive is the Energy Consumption
of Code Offload to the RTT to the Server?

As the previous experiment showed, the longer the RTT to the
remote server, the higher the energy consumed by the code offload.
To investigate this latency versus energy trade-off in more-depth,
we performed a series of experiments where we offloaded code to
a remote server via a link with increasing RTTs from 10 up to 150

0

500

1000

1500

2000

2500

3000

0 30 60 90 120 150

E
n

e
rg

y
 C

o
n

su
m

e
d

 b
y

 U
p

lo
a

d
 (

m
J)

RTT to Server (ms)

100KB

10KB

Figure 2: The Energy Consumed by Offloading 10 KB and 100
KB of Code to the Cloud for Various Round-Trip Times to the
Server. We used power-save mode (PSM) for the results presented
in this graph; we also conducted experiment with no PSM that
show the same trends. High RTTs lead to significant increases in
the energy consumption.

ms. We used two configurations for Wi-Fi: with power-save mode
(PSM) enabled, and without. With PSM, the smartphone’s Wi-Fi
radio wakes up only when it has data to transmit and once every
100 ms when it checks whether the access point has any incoming
data.

Figure 2 shows the energy consumed when offloading 10 KB and
100 KB of data with Wi-Fi using PSM. We also measured the re-
sults when offloading pieces of code with different sizes (20 KB, 50
KB, 500 KB, and 1 MB) and using Wi-Fi with PSM disabled, but
we omit showing these results to avoid cluttering the graph since
the results show the same trends. As Figure 2 shows, the energy
consumption of code offload grows almost linearly with the RTT.
In fact, for offloading 10 KB of code, the energy consumption al-
most doubles when increasing the RTT from 10 ms to 25 ms only,
and it doubles again when the RTT reaches 100 ms.

Two important consequences arise from these results. First,
cloud providers should strive to minimize the latency to the cloud
for mobile users. Shorter RTTs can lead to significant energy sav-
ings. Second, the benefits of remote execution are most impressive
when the remote server is nearby (RTT of 10 ms), such as on the
same LAN as the Wi-Fi access point, rather than in the cloud (RTT
≥ 25 ms). There are many scenarios where it is straightforward to
deploy remote execution servers near smartphone users, such as in
an enterprise to help increase the battery lifetimes for employees’
smartphones, and in private homes to help home smartphone users.
Others also pointed out the huge energy benefits of offloading code
to nearby servers [37].

3. MAUI SYSTEM ARCHITECTURE
MAUI’s goal is to maximize the benefits of code offload for to-

day’s smartphone devices. In this section, we present a high-level
overview of MAUI’s components on a mobile device and in the in-
frastructure in order to understand how they all integrate into one
platform for developing mobile applications.

MAUI provides a programming environment where developers
annotate which methods of an application can be offloaded for
remote execution. Each time a method is invoked and a remote
server is available, MAUI uses its optimization framework to de-

RPC

App Client

Proxy

Maui

Runtime

App
Server

Proxy

ProfilerProfiler

SolverSolver

Maui

Runtime

Maui server

RPC

Smartphone

ProfilerProfiler

SolverSolver

Solver

Maui Controller

Figure 3: High-level view of MAUI’s architecture.

cide whether the method should be offloaded. Once an offloaded
method terminates, MAUI gathers profiling information that is used
to better predict whether future invocations should be offloaded. If
a disconnect occurs, MAUI resumes running the method on the lo-
cal smartphone; in this case, the application’s energy consumption
only incurs a small penalty – the cost of shipping the control and
program state to the server.

MAUI instruments each method of an application to determine
the cost of offloading it, such as the amount of state that needs
to be transferred for remote execution, and the benefit of offload-
ing it, such as the number of CPU cycles saved due to the offload.
Additionally, MAUI continuously measures the network connec-
tivity to the infrastructure, estimating its bandwidth and latency.
All these variables are used to formulate an optimization prob-
lem whose solution dictates which methods should be offloaded
to the infrastructure and which should continue to execute locally
on the smartphone. Because mobile users may move in and out of
a MAUI server’s range relatively rapidly, the optimization problem
is re-solved periodically to enable MAUI to adapt to changes in the
networking environment.

Figure 3 provides a high-level overview of the MAUI architec-
ture. On the smartphone, the MAUI runtime consists of three com-
ponents: 1) an interface to the decision engine (to save energy, the
solver actually runs on the MAUI server); 2) a proxy, which handles
control and data transfer for offloaded methods; and 3) a profiler,
which instruments the program and collects measurements of the
program’s energy and data transfer requirements. On the server
side, MAUI provides four components: the profiler and the server-
side proxy which perform similar roles to their client-side coun-
terparts; the decision engine which periodically solves the linear
program; and the MAUI coordinator, which handles authentication
and resource allocation for incoming requests to instantiate a par-
titioned application. In Sections 4, 5, and 6, we describe in detail
MAUI’s mechanisms for program partitioning, the MAUI profiler,
and the MAUI solver, respectively.

4. PROGRAM PARTITIONING
MAUI enables developers to produce an initial partitioning of

their applications with minimal effort. The developer simply an-
notates as remoteable those methods and/or classes that the MAUI
runtime should consider offloading to a MAUI server. Certain types

of code should not be marked remoteable: 1) code that implements
the application’s user interface; 2) code that interacts with I/O de-
vices where such interaction only makes sense on the mobile de-
vice; and 3) code that interacts with any external component that
would be affected by re-execution (MAUI’s failure handling is dis-
cussed in detail in Section 4.2). Examples of the second category
include code that reads an accelerometer, or code that determines
the location of smartphone by reading from the GPS device. An
example of the third category is code that uses a network connec-
tion to perform an e-commerce transaction (such as purchasing an
item from an online store).

Our intent for the remoteable annotations is that developers do
not need to guess about whether or not a particular method makes
sense to offload (from the perspective of energy and performance).
Instead, they should mark as remoteable all code that meets the
criteria specific above, and it is up to the MAUI solver (described
in Section 6) to determine at runtime whether it makes sense from
a performance and energy standpoint to execute it remotely.

We considered and then discarded an alternative approach: re-
quire the programmer to annotate those methods and/or classes that
can only run on the smartphone as local, and then consider all the
remaining code as remoteable. Although this approach may lead
to fewer annotations, we decided against this approach because it
favors performance over program correctness. If the programmer
makes a mistake, such as forgetting to label a method as local, then
the program may no longer behave correctly should MAUI decide
to offload that method. Instead, with our approach such mistakes
only affect the program’s performance and not its correctness.

4.1 Partitioning .NET Applications
To support partitioning an application across multiple machines,

MAUI needs to address the following challenges:
1. Because today’s smartphones typically use a different in-

struction set architecture (ARM) than desktop and server machines
(x86), MAUI needs the ability to execute the same program on dif-
ferent CPU architectures, preferably without access to the program
source code.

2. MAUI must be able to automatically identify which methods
are marked remoteable and which are not.

3. MAUI must be able to automatically identify and migrate the
necessary program state from a running program on one machine
to another.

4. MAUI must be able to dynamically select whether to run a
method locally or remotely based on the current environment.

5. MAUI must be able to detect and tolerate failures without
affecting the original program semantics.

In the rest of this section we discuss how our MAUI prototype
handles these challenges.

4.1.1 Executing the Same Code on Different CPU
Architectures

MAUI is currently designed only to support applications written
for the Microsoft .NET Common Language Runtime (CLR) [36].
While the CLR supports a variety of programming languages, our
MAUI applications are all written in C#1. All CLR applications
are compiled to the CIL intermediate language, regardless of what
source language they are written in. An “executable” for the CLR
contains CIL instructions, and the CIL is dynamically compiled at
execution time. Thus, by leveraging the CLR’s capabilities, MAUI
obtains independence from differences in the instruction set archi-
tecture between today’s smartphones (which typically have ARM-

1Some include native dll’s with C# wrappers.

based CPUs) and today’s desktop and server machines (which typ-
ically have x86 CPUs).

To begin running an application, the MAUI runtime must en-
sure that the MAUI server has copies of the application executables.
The MAUI runtime supports two options: 1) the MAUI server can
obtain copies of the program executables directly from the smart-
phone (which incurs a delay and consumes energy), or 2) the MAUI
runtime on the smartphone can send signatures of the executables
to the MAUI server which then downloads the actual executables
from a cloud service.

4.1.2 Extracting Remoteable Methods Using
Reflection

To identify remoteable methods in a language-independent man-
ner, we use the custom attribute feature of the .NET CLR. At-
tributes are meta-data that annotate specific code elements such as
methods or classes, and they are included in the compiled .NET
CLR executables. The application developer modifies the applica-
tion’s source code by adding the “[Remoteable]” attribute to each
method that is safe to execute remotely. The MAUI runtime uses
the .NET Reflection API [22, 36] to automatically identify which
methods the developer has marked as suitable for remote execu-
tion, simply by searching through the executable for those methods
tagged with the “[Remoteable]” attribute.

4.1.3 Identifying the State Needed for Remote
Execution Using Type-Safety and Reflection

At compile time, MAUI generates a wrapper for each method
marked as remoteable. This wrapper follows the original method’s
type signature, but with two changes: it adds one additional in-
put parameter, and one additional return value. Figure 4 shows a
snippet of the video game application’s original interface and the
MAUI wrapper interface. The additional input parameter is used
to transfer the needed application state from the smartphone to the
MAUI server, and the additional return value is needed to transfer
the application’s state back from the server to the smartphone.

Performing application state transfer leverages the type-safe na-
ture of the .NET runtime. Type safety allows us to traverse the
in-memory data structures used by the program, and to only send
over the network data which is potentially referenced by the method
being offloaded. To determine which state needs to be serialized
beyond the explicit method parameters, we currently take the con-
servative approach of serializing all the current object’s member
variables, including not only simple types, but also nested complex
object types. We also serialize the state of any static classes and any
public static member variables. To perform the serialization, we
use the .NET built-in support for XML-based serialization, which
makes use of the .NET Reflection API. We are currently working
on replacing this with our own custom binary serializer that will
reduce the serialization overhead. Because the size of XML-based
serialized state is potentially large compared to the in-memory rep-
resentation, we also optimize the overhead of state transfer by only
shipping incremental deltas of the application state rather than the
entire state. We are also currently developing a static analysis tool
that determines which variables are actually referenced in the re-
moteable method, to further limit the amount of state transferred.

4.1.4 Performing Code Offload
At compile time, MAUI generates two proxies, one that runs on

the smartphone and one that runs on the MAUI server. The role
of these proxies is to implement the decisions made by the MAUI
solver (described in Section 6). The solver decides, based on input
from the MAUI profiler, whether the method in question should

//original interface

public interface IEnemy {

[Remoteable] bool SelectEnemy(int x, int y);

[Remoteable] void ShowHistory();

void UpdateGUI();

}

//remote service interface

public interface IEnemyService {

MAUIMessage<AppState, bool> SelectEnemy (AppState state, int x, int y);

MAUIMessage<AppState, MauiVoid> ShowHistory(AppState state);

}

Figure 4: Local and remote interfaces.

be executed locally or remotely, and the proxies handle both con-
trol and data transfer based on that decision. The granularity of
state and control transfer in MAUI is at the method level; we do
not support executing only portions of a method remotely. For
calls which transfer control from the local smartphone to the re-
mote server, the local proxy performs state serialization before the
call and then deserialization of the returned application state after
the call. When a remoteable method which is currently executing
on the MAUI server invokes a method which is not remoteable, the
server-side proxy performs the necessary serialization and trans-
fers control back to the smartphone. The MAUI runtime currently
has only limited support for multi-threaded applications – we only
offload methods from a single thread at any given point in time.

4.2 Handling Failures
MAUI detects failures using a simple timeout mechanism: when

the smartphone loses contact with the server while that server is
executing a remote method, MAUI returns control back to the local
proxy. At this point, the proxy can either re-invoke the method lo-
cally, or it can attempt to find an alternate MAUI server and then re-
invoke the method on the new MAUI server. Because program state
is only transferred at the start and end of methods, re-executing
a portion of the method will not affect the program’s correctness.
However, programmers should not label methods as remoteable if
those methods interact with any external component that would be
affected by re-execution (e.g., using a network connection to per-
form an e-commerce transaction).

4.3 Additional Program Modifications Can
Bring Performance Benefits

One of the key benefits of MAUI’s approach to program parti-
tioning is the extremely low barrier to entry for developers. Once
the program is working with MAUI, the programmer may be inter-
ested in further optimizing the program’s performance and/or en-
ergy consumption. From our experience, we find that some restruc-
turing of the video game application has a significant impact on its
performance and energy characteristics. The information produced
by the MAUI profiler as input to the MAUI solver can also benefit
the application developer in terms of understanding the energy and
state transfer characteristics of the program.

In the video game application, the program logic that is best
offloaded determines the attack strategy for the enemies. In the
unmodified application, the method that implements this logic is
called once per enemy during each frame refresh. If there are 60
enemies, this leads to 60 remote calls per frame. We modified the
game to perform all the enemy update operations in a single call,
which leads to a significant improvement in latency (i.e., the frame
rate), and a reduction in energy consumption. We found that our

Figure 5: The hardware power meter used for energy measure-
ments.

legacy face recognition application and the chess game did not re-
quire any code restructuring to enable partitioning, and we wrote
the voice translator application from scratch and therefore we de-
liberately separated out the logic that implements the graphical UI
and I/O on the smartphone (e.g., the translator uses the microphone
and the speaker) from the bulk of the application that implements
the translation functionality.

5. MAUI PROFILER
At runtime, before each method is invoked, MAUI determines

whether the method invocation should run locally or remotely. Of-
fload decisions depend on three factors: 1) the smartphone device’s
energy consumption characteristics; 2) the program characteristics,
such as the running time and resource needs of individual meth-
ods; and 3) the network characteristics of the wireless environment,
such as the bandwidth, latency, and packet loss. The MAUI pro-
filer measures the device characteristics at initialization time, and
it continuously monitors the program and network characteristics
because these can often change and a stale measurement may force
MAUI to make the wrong decision on whether a method should be
offloaded. The current implementation of the MAUI profiler does
not explicitly incorporate the CPU load on the MAUI server. In the
rest of the section, we provide an in-depth description of MAUI’s
techniques for device, program, and networking profiling.

5.1 Device Profiling
Today’s smartphones do not offer a way to obtain fine-grained

energy measurements of an application. Instead, they just offer a
simple “how much battery is left” API that is very coarse-grained
and often unreliable. Instead, to measure a device’s energy con-
sumption, we attach a hardware power meter [25] to the smart-
phone’s battery (see Figure 5). This power meter can provide fine-
grained energy measurements; it samples the current drawn from
the battery with a frequency of 5000 Hz.

We use the power meter to build a simple energy profile of the
smartphone. For the CPU, our approach is inspired by JouleMe-
ter [19]. We constructed a synthetic benchmark that uses both inte-
ger and floating point arithmetic. We ran our synthetic benchmark
multiple times, varying the run-time of the benchmark and instru-
menting it to record the number of CPU cycles it required for each

4.4

10.3

17.6

13.4

17.7

0

5

10

15

20

F
u

ll
D

if
f

F
u

ll
S

e
r
ia

l

L
a

s
tD

if
f

L
a

s
tS

e
r
ia

l

O
ra

c
le

F
ra

m
e

s
 P

e
r
 S

e
c
o

n
d

Figure 6: Performance overhead of MAUI profiling. Effect on
the game’s performance of five different strategies for the MAUI
profiler.

run. We then used the collected samples of CPU utilization and
the corresponding smartphone energy consumption to build a sim-
ple linear model, using least-squares linear regression. This model
lets us predict the energy consumption of a method as a function of
the number of CPU cycles it requires to execute. We validated our
model by comparing its prediction of energy consumption with the
actual measurements produced by hardware power monitor for the
applications we have built using MAUI. We found that the median
error produced by the model is less than 6%, while the mean error
is less than 8% and the standard deviation is 4.6%. Finally, we also
used the energy meter to characterize the energy consumption of
using the smartphone’s Wi-Fi and 3G wireless radios.

5.2 Program Profiling
The MAUI profiler instruments each method to measure its state

transfer requirements, its runtime duration, and the number of CPU
cycles required for its execution. The amount of state needed to be
sent to the MAUI server to execute the method includes the size of
all data potentially referenced by the method, as well as the amount
of state required to be returned to the smartphone once the method
is completed (Section 4.1.3 describes in detail how MAUI identifies
which program state needs to be transferred).

MAUI uses the method’s duration and CPU cycles to estimate
the energy consumed by running the method on the smartphone.
Characterizing an application’s energy consumption is very chal-
lenging for two reasons. First, applications are not deterministic:
each subsequent invocation of a method can take a different code
path leading to a different running duration and energy profile than
the previous invocation. While more sophisticated program instru-
mentation can help mitigate this problem, such techniques may be
prohibitively expensive. Instead, MAUI uses past invocations of a
method as a predictor of future invocations; we found this assump-
tion to work well for the phone applications we used to experiment
with MAUI. Second, today’s smartphones scale the CPU’s voltage
dynamically to save energy (i.e., dynamic voltage scaling) with-
out informing the software running on the phone. While the dy-
namic voltage scaling mechanisms could drastically change the en-
ergy profile of an application, our experiments validating the CPU
energy model discussed earlier did not show this to be a signifi-
cant problem. Once the application terminates and the user does

not interact with the phone, the smartphone often lowers the CPU’s
voltage to save energy.

5.2.1 Profiling Overhead
As mentioned in Section 4.1.3, the MAUI proxies ship incremen-

tal deltas rather than the full application state to reduce the network
and energy overhead of state transfer. To implement this, the local
MAUI proxy keeps track of what state it has previously sent to the
remote proxy, and just before each remote invocation, the proxy
calculates the delta between the local state and the remote state. If
the size of the delta is smaller than the full state, it sends the delta
instead. This optimization, which seems straightforward, turns out
to introduce unintended complexity for the MAUI runtime.

The MAUI profiler observes the program behavior over time as
it executes, and the MAUI solver uses past program behavior as a
predictor of how the application will behave in the future. The cur-
rent MAUI profiler does not persist the profiling data across mul-
tiple runs of the same program. When a method A calls method
B, the MAUI profiler measures the size of state that would need to
be transferred over the network to enable B to run remotely, and
this measurement is performed regardless of whether B is actually
remoted. The performance overhead of taking this measurement is
simply the cost of using the XML serializer to transform the state
into XML format, and then measuring the size of the buffer. The
more times the profiler observes A calling B, the better the estimate
it obtains of future behavior.

The introduction of deltas changes this picture. When A calls B,
the size of the state that needs to be transferred is now not only a
function of the program’s previous behavior, but also a function of
the MAUI runtime behavior. In other words, MAUI has perturbed
the very thing that it is measuring about the program. If MAUI has
offloaded a method recently the delta will likely be small, whereas
if MAUI has not offloaded in a long time then the delta is likely to
be substantially larger.

Another unintended consequence of calculating deltas is the per-
formance impact it has on interactive applications. To characterize
this impact, we performed the following experiment. We used five
different strategies for profiling an interactive application (a video
game) and we measured the video game’s performance (in frames
per second) when offloading code to a nearby server. These strate-
gies are:
1. FullDiff – the profiler uses delta calculation and serialization on
every call to a remoteable method.
2. FullSerial – the profiler uses serialization only on each call to a
remoteable method.
3. LastDiff – the profiler uses delta calculation and serialization
on the remoteable method’s first call, but then re-uses this estimate
without recomputing it on subsequent calls to the method. How-
ever, whenever MAUI chooses to offload the method, MAUI up-
dates these estimates.
4. LastSerial – the profiler uses serialization on the remoteable
method’s first call similar to LastDiff.
5. Oracle – the profiler knows in advance exactly how much state
is transfered for each remoteable method without any computation.

Figure 6 shows the effect of MAUI’s profiling on the perfor-
mance of the video game under each of these five scenarios. The
additional overhead of calculating deltas reduces the game’s frame
rate from 10 fps to 4 fps, and the two heuristics, LastDiff and Last-
Serial, both provide a significant benefit in terms of interactive per-
formance of the game. LastDiff provides more benefit than LastSe-
rial because it enables the decision engine to offload certain meth-
ods that are not offloaded with LastSerial. These results show that
our simple heuristic can balance the trade-off between the cost of

performing profiling frequently and the freshness of its estimates
of application’s behavior.

5.3 Network Profiling
Initially, we believed that profiling the wireless networking en-

vironment would be relatively straightforward. We planned to use
Wi-Fi’s power-save mode (PSM) to maximize the energy savings
when offloading code, and we planned to use network measure-
ment tools to estimate the wireless link’s round-trip time, band-
width [35], and packet loss [38]. Instead, we discovered that both
design choices were either wrong or unnecessarily complicated.

First, we discovered that Wi-Fi’s power-save mode (PSM) can
hurt the energy consumption of code offloading. With PSM, the
smartphone’s Wi-Fi radio is put to sleep, waking up just before the
access point (AP) sends a beacon (every 100ms) to check if the AP
has any incoming data destined for the phone. If there is no data
sent by the MAUI server available at the AP, then the radio goes
back to sleep for another 100ms. Because MAUI uses TCP, PSM’s
interactions with TCP have some surprising effects in terms of time
to complete a transfer, and in terms of energy consumption.

We characterized these interactions by performing a suite of
experiments transferring different amounts of data to and from a
MAUI server varying the connection’s RTT, both with PSM en-
abled and with it disabled. To illustrate our findings we select two
specific examples of a 500 KB TCP transfer over a link with a 25
ms RTT and one with 75 ms RTT with PSM enabled.

Figure 7 shows the dynamics of the TCP transfer by plotting the
TCP’s byte sequence offsets over time. With an RTT of 25 ms,
TCP experiences the PSM effects during slow-start, when the TCP
sender has a small window size. The TCP sender finishes sending
all the segments and then goes to sleep. It wakes up 100 ms later,
receives the TCP ACKs and again sends a window worth of seg-
ments. However, after about one second, the window has become
large enough that the TCP ACKs arrive back at the sender before it
has run out of segments to send. This prevents the sender from go-
ing into sleep mode; at this point, the TCP transfer behaves similar
to one without PSM enabled. Effectively, the transfer experiences
an RTT of 100 ms (due to PSM) during the first second and an RTT
of 25 ms during the last second. A similar effect occurs when the
RTT is 75 ms. However, because the RTT is much closer to 100 ms
(the PSM sleep interval), the discrepancy between the first part of
the transfer and the second is not so large.

This PSM behavior raises an interesting trade-off. On one hand,
with PSM, the sender saves energy by sleeping whenever it has no
packets ready to send. On the other hand, PSM increases the dura-
tion of a transfer. The device consumes more energy overall when
the transfer lasts longer. This trade-off has important consequences
for the use of PSM with a system like MAUI. For example, for short
RTTs (lower than 75 ms in our experiments), disabling PSM saves
energy because the transfers are much shorter, and the device con-
sumes less energy overall during the transfer duration. However,
when RTTs approach 100 ms, enabling PSM saves energy because
the wireless sender is sleeping while waiting for ACKs from the
receiver. The same pattern occurs with RTTs higher than 100 ms –
during slow start, the RTTs are effectively rounded up to 200 ms.

Unfortunately, we had to leave PSM disabled in our current im-
plementation of MAUI, because Windows Mobile does not expose
an API that allows regular applications to enable or disable PSM,
we can only turn it on and off through the systems settings.

Second, we found that it was unnecessary to use specialized tools
to individually measure the wireless link’s round-trip time, band-
width, and packet loss. Instead, our experiments showed that the
following very simple technique works well: send 10 KB of data

RTT: 75msRTT: 25ms

0

100000

200000

300000

400000

500000

0 2 4 6

S
e

q
u

e
n

ce
 O

ff
se

t

Relative Time (sec)

0

100000

200000

300000

400000

500000

0 0.5 1 1.5 2

S
e

q
u

e
n

ce
 O

ff
se

t

Relative Time (sec)

Figure 7: The dynamics of a 500 KB TCP transfer with PSM disabled over a two links, one with a 25 ms RTT and one with 75 ms
RTT. During slow-start, for small sender window sizes, the sender goes to sleep after finishing sending its window causing the RTT of the
transfer to effectively become 100 ms. As the size gets larger, the senders starts receiving TCP ACKs before finishing sending its window
worth of segments. The discrepancy between these two regions of a transfer is less pronounced as the link’s RTT increases.

over TCP to the MAUI server and measure the transfer duration to
obtain an average throughput. We use 10 KB because this is repre-
sentative of typical transfers made to a MAUI server. This simple
approach allows MAUI’s network profiler to take into account both
the latency and bandwidth characteristics of the network. Each time
MAUI offloads a method, the profiler uses this opportunity to ob-
tain a more recent estimate of the network characteristics; these
recent estimates are then averaged (we use a sliding window) with
the current estimate. Finally, if no transfers are performed for one
minute, MAUI conducts another measurement by sending 10 KB
to the server to obtain a fresh estimate.

6. MAUI SOLVER
The MAUI solver uses data collected by the MAUI profiler as

input to a global optimization problem that determines which re-
moteable methods should execute locally and which should execute
remotely. The solver’s goal is to find a program partitioning strat-
egy that minimizes the smartphone’s energy consumption, subject
to latency constraints.

Deciding where to execute each method is challenging because
it requires a global view of the program’s behavior. Figure 8 shows
a simplified version of the call graph for a face recognition appli-
cation. Each vertex represents a method and its computational and
energy costs, and each edge represents the size of the method’s state
and the energy consumed to transfer this state remotely. For each
individual method, its remote execution is more expensive than its
local execution, and yet remote execution can save energy if Find-
Match(), InitializeFaceRecognizer(), and DetectAndExtractFaces()
are all remoted. Thus, the MAUI solver’s decisions must be glob-
ally optimal (i.e., across the entire program) rather than locally op-
timal (i.e., relative to a single method invocation).

We now describe our formulation of the global optimization
problem. At a high level, the execution behavior of the program
is modeled as an annotated call graph, and both the graph and all
the annotations are provided by the MAUI profiler as inputs to the
solver (Section 5 describes how these input parameters are esti-
mated). We use a linear program solver to find the optimal parti-
tioning strategy that minimizes the energy consumed by the smart-
phone subject to a set of latency constraints. To ease the burden on
the programmer, we provide a default latency constraint: the total
execution latency L must not exceed 5% more than the latency in-

FindMatch

18.1M cycles

872 mJ

InitializeFaceRecognizer

92.6M Cycles

4703 mJ

182 KB

1006mJ
UserInterface

DetectAndExtractFaces

256.1M Cycles

13030 mJ

Figure 8: The call graph of a face recognition application. Each
vertex represents a method and its computational and energy
costs, and each edge represents the size of the method’s state and
the energy consumed to transfer this state remotely.

curred if all the methods in the program are executed locally. There
are some applications where absolute latency constraints are impor-
tant to maintain the application’s quality of service. To handle such
cases, we optionally allow the application developer to specify ad-
ditional latency constraints. As the application runs, we re-run the
solver periodically for two reasons: to adapt to changing environ-
mental conditions, and also to learn from the historical behavior of
the program. The MAUI solver is invoked asynchronously from the
mobile device to avoid affecting the interactive performance of the
application.

In more detail, we start with the application’s call graph G =
(V,E). The call graph represents the call stack as the program
executes. Each vertex v ∈ V represents a method in the call stack,
and each edge e = (u, v) represents an invocation of method v
from method u. We annotate each vertex v ∈ V with the energy it
takes to execute the method locally El

v , the time it takes to execute
the method locally, T l

v , and the time it takes to execute the method
remotely, T r

v . We annotate each edge e = (u, v) with the time it
takes to transfer the necessary program state Bu,v when u calls v,
and the energy cost of transferring that state Cu,v . Each vertex v
is also annotated with the parameter rv that indicates if the method
is marked remoteable. If a method is called from within a loop,

all these costs are scaled up by a factor that corresponds to the
profiler’s estimate of the number of loop iterations.

Formally, MAUI solves the following 0-1 integer linear program-
ming (ILP) problem shown below. The solver solves for variable
Iv . Iv is the indicator variable: Iv = 0 if method v is executed
locally and is 1 if executed remotely.

maximize
∑
v∈V

Iv × El
v −

∑
(u,v)∈E

|Iu − Iv| × Cu,v

such that:
∑
v∈V

((1− Iv)× T l
v) + (Iv × T r

v))

+
∑

(u,v)∈E

(|Iu − Iv| ×Bu,v) ≤ L

and Iv ≤ rv, ∀v ∈ V

The first term in the objective function is the total energy saved
by executing methods remotely – the savings are essentially the en-
ergy cost if the method had been executed locally. The second term
in the objective function captures the energy cost of data transfer to
execute a method remotely. Note that data transfer incurs an energy
cost only if the two methods u and v are not both executed in the
same location. The first constraint stipulates that the total time to
execute the program be within L. The second constraint stipulates
that only methods marked remoteable can be executed remotely.

7. EVALUATION
In this section, we evaluate MAUI’s ability to improve the en-

ergy consumption and performance of smartphone applications, us-
ing a combination of macrobenchmarks (in Section 7.2) and mi-
crobenchmarks (in Section 7.3).

7.1 Methodology
We used an HTC Fuze smartphone running Windows Mobile 6.5

with the .NET Compact Framework v3.5. For the MAUI server, we
used a regular dual-core desktop with a 3 GHZ CPU and 4 GB of
RAM running Windows 7 with the .NET Framework v3.5. Note
that the .NET Compact Framework running on the smartphone is
more restrictive than the one running on the MAUI server. The
server is equipped with an NDIS intermediate driver that inserts
packet queuing delays to control the RTT of the path between the
smartphone and the server (without adding any delay, the path be-
tween the smartphone and the server has an RTT of 10 ms in our
setup). We measure energy on the phone using a hardware power
meter [25] attached to the smartphone’s battery. This power meter
samples the current being drawn from the battery at 5000 Hz.

We evaluate MAUI’s benefits on four applications. Three of
these applications were already pre-built and running on Windows
Mobile phones: a face-recognition application, a highly-interactive
video game, and a chess game. Although these applications are
relatively simple, they each contain on the order of 10 remoteable
methods. We developed the fourth application from scratch – a
real-time voice-based language translator (Spanish to English). The
language translator must use remote execution to run on the smart-
phone because its memory resource requirements exceed those of-
fered locally by the smartphone.

7.2 Macrobenchmarks
We now look at three macrobenchmarks that characterize

MAUI’s ability to reduce energy, improve performance, and bypass
the resource limitations of smartphones.
1. MAUI’s primary goal is to reduce the energy consumption of
mobile applications. How much does MAUI reduce energy con-
sumption of mobile applications?

2. In addition to saving energy, MAUI can also improve the per-
formance of mobile applications. This is especially important for
interactive applications, such as games. How much does MAUI im-
prove the performance of mobile applications?
3. MAUI also allows developers to build applications that cannot
currently be supported on mobile devices because of their resource
requirements. Can MAUI run resource-intensive applications?

7.2.1 How Much Energy Does MAUI Save For
Mobile Applications?

Figure 9 presents a comparison of the energy consumption
of three applications (the face-recognition application, the video
game, and the chess game) when executing in six different scenar-
ios. In the first scenario, the applications are running standalone
on the smartphone. In the next four scenarios, we use MAUI to
offload code to a server over a link with different RTT values (10
ms, 25 ms, 50 ms, and 100 ms). In the final scenario, MAUI of-
floads code over a 3G interface. In the case of the video game and
chess, code offload over 3G consumes more energy than local exe-
cution, and thus MAUI’s optimizer refuses to perform the offload.
However, we modified MAUI to force the code offload when run-
ning over 3G to measure its energy consumption. We refer to this
modification as MAUI∗ in the Figure. Note that we did not use the
voice translation application because it cannot run standalone on
the smartphone.

As seen in Figure 9, the face recognition application can achieve
drastic energy savings when using MAUI. When the server is
nearby, the energy savings reach one of order of magnitude; as the
latency to the server is increasing, MAUI saves less energy. In fact,
the energy consumed when offloading code over 3G is 2.5 times
higher than offloading code to a nearby server. The energy savings
for both video and chess are less drastic but they remain signifi-
cant; when offloading to a nearby server, MAUI saves 27% energy
for the video game and 45% for chess.

7.2.2 How Much Does MAUI Improve the
Performance of Mobile Applications?

We ran the applications in the same six scenarios but instead
measured performance rather than energy consumption and we
present the results in Figure 10. The performance results are also
impressive; offloading the code to a nearby server reduces the la-
tency of performing face recognition by one order of magnitude
from 19 seconds down to less than 2 seconds. At these performance
levels, face recognition becomes an interactive application.

For the video game, MAUI offloads one method (called “Move-
Complex”), whereas for chess, MAUI offloads two methods: “Se-
lect Piece” and “Move Piece”. The results shown are averaged over
20 executions. For the video game, MAUI also provides substan-
tial performance improvements: the nearby MAUI server reduces
latency by a factor of 4.8; this latency reduction effectively double
the game’s refresh rate from 6 frames per second to 13. For chess,
offloading using MAUI when the RTT is higher than 25 ms can hurt
performance; for example, the “SelectPiece” method takes longer
to execute when the RTT is 50 ms. The worst case for performance
is offload over 3G: the ‘Select Piece” method for chess incurs an
77% performance overhead and the “Fire Bullet” method for the
video game incurs a 54% overhead.

7.2.3 Can MAUI Run Resource-Intensive
Applications?

Figure 11 shows the memory consumption and CPU utilization
over time of our translator application when running on a PC with
a 2 GHz Intel Core2 CPU and 2 GB of RAM. The peak memory

30 MOVE CHESS GAME400 FRAMES of VIDEO GAMEONE RUN FACE RECOGNITION

0

30

60

90

120

150

E
n

e
rg

y
 (

Jo
u

le
s)

0

20

40

60

E
n

e
rg

y
 (

Jo
u

le
s)

0

5

10

15

20

25

30

35
E

n
e

rg
y

 (
Jo

u
le

s)

Smartphone only
MAUI (Wi-Fi, 10ms RTT)
MAUI (Wi-Fi, 25ms RTT)
MAUI (Wi-Fi, 50ms RTT)
MAUI (Wi-Fi, 100ms RTT)
MAUI* (3G, 220ms RTT)

Figure 9: A comparison of MAUI’s energy consumption. We compare the energy consumption of running three applications standalone
on the smartphone versus using MAUI for remote execution to servers that are successively further away (the RTT is listed for each case).
The graph on the left shows one run of the face recognition application; the graph in the middle shows running the video game for
400 frames; the graph on the right shows running the chess game for 30 moves. MAUI∗ is a slight modification to MAUI to bypass the
optimizer and to always offload code. Without this modification, MAUI would have not performed code offload in the case of the video
game and chess because offload ends up hurting energy performance.

30 MOVE CHESS GAME400 FRAMES of VIDEO GAMEONE RUN FACE RECOGNITION

0

300

600

900

1200

1500

1800

Select Piece Move Piece

E
xe

cu
ti

o
n

 D
u

ra
ti

o
n

 (
m

s)

0

300

600

900

1200

1500

1800

Move Complex

E
x
e

cu
ti

o
n

 D
u

ra
ti

o
n

 (
m

s)

0

3,000

6,000

9,000

12,000

15,000

18,000

21,000

Identify Face

E
xe

cu
ti

o
n

 D
u

ra
ti

o
n

 (
m

s)

Smartphone only
MAUI (Wi-Fi, 10ms RTT)
MAUI (Wi-Fi, 25ms RTT)
MAUI (Wi-Fi, 50ms RTT)
MAUI (Wi-Fi, 100ms RTT)
MAUI* (3G, 220ms RTT)

Figure 10: A comparison of MAUI’s performance benefits. We compare the performance of running three application standalone on
the smartphone versus using MAUI for remote execution to servers that are successively further away (the RTT is listed for each case).
The graph on the left shows one run of the face recognition application; the graph in the middle shows running the video game for 400
frames; the graph on the right shows running the chess game for 30 moves.

consumption of the speech recognizer is approximately 110 MB,
which is higher than the maximum memory limit for a single pro-
cess on a typical smartphone (32 MB for our HTC Fuze or 48 MB
for an iPhone). MAUI enabled us to bypass the smartphone’s limits
on an application’s memory footprint.

7.3 Microbenchmarks
We now look at four microbenchmarks that characterize the be-

havior of both the MAUI solver and the MAUI proxy.
1. MAUI uses an optimization framework to decide what code to
offload to a remote server. Upon invoking a function whose code
can be offloaded, MAUI solves a 0-1 integer linear problem to de-
cide where the function should execute. What is the performance
overhead of MAUI’s optimizer?
2. Deciding where to execute each method of a program is chal-
lenging because it requires a global view of the program’s behav-
ior. As Section 6 describes (and Figure 8 shows), the decision of
whether to offload a method depends on more than just its own
computational cost and its state. Is the MAUI solver effective at

identifying offload opportunities based on a global view of the pro-
gram?
3. The MAUI proxy keeps track of what state it has already sent
to the remote server, and it ships incremental deltas to the re-
mote server rather than the entire state for those cases where the
deltas are smaller. How effective are incremental deltas at reduc-
ing MAUI’s data transfer overhead?
4. The MAUI solver receives new information from the profiler on
a periodic basis as the program executes. Does the solver adapt to
changing network conditions and to changes in the computational
costs of individual methods?

7.3.1 What is the Overhead of MAUI’s Solver?
To measure the overhead of MAUI’s optimizer, we instrumented

the optimizer to record how long it takes to solve each instance of
the integer linear programming (ILP) problem. We found that the
solver takes 18 ms on average to solve the call graph of the chess
application and 46 ms for the video game. Our results show that
the ILP problems arising from MAUI’s program partitioning needs
can be solved quickly.

0

20

40

60

80

100

31:40.8 33:07.2 34:33.6 36:00.0

C
P

U
 C

o
n

su
m

p
ti

o
n

 (
%

)

Time

CPU 1

0

20

40

60

80

100

31:40.8 33:07.2 34:33.6 36:00.0

C
P

U
 C

o
n

su
m

p
ti

o
n

 (
%

)

Time

CPU 2

0

20

40

60

80

100

120

31:40.8 33:07.2 34:33.6 36:00.0

C
o

n
su

m
e

d
 R

A
M

 (
M

B
y

te
s)

Time

RAM

Figure 11: Profiling the Speech Recognition Engine on the MAUI Server. The MAUI server is a 2 GHz Intel Core2 CPU with 2 GB of
RAM. The load of one CPU is shown in the graph on the left, whereas the other CPU is shown in the middle. The graph on the right
shows the RAM consumed by the speech engine.

1.0

18.6

0

5

10

15

20

MAUI Solver Naïve Solver

C
o

n
su

m
e

d
 E

n
e

rg
y

 (
Jo

u
le

s)

Figure 12: The energy consumed by the face recognition appli-
cation for different code offload solvers. We ran the application
using both the MAUI solver and a naïve solver takes a local view
of the program.

7.3.2 Does MAUI Require a Global View of the
Program to Identify Offload Opportunities?

To answer this question, we constructed a much simpler solver
as an alternative to MAUI. This naïve solver considers each method
separately; a method is offloaded only if its remote execution (i.e.,
the cost of transferring its state) consumes less energy than its local
execution. We used both the MAUI solver and the naïve solver to
solve the call graph shown in Figure 8, which is a simplified version
of the call-graph for the face recognition application. Figure 12
shows that the MAUI solver consumed two orders of magnitude
less energy than the naïve solver. By taking a local view of each
method, the naïve solver decided to execute all methods locally,
whereas MAUI chose to offload parts of the application.

7.3.3 How Effective are Incremental Deltas at
Reducing MAUI’s Data Transfer Overhead?

We instrumented MAUI to measure the amount of data ex-
changed with a remote server when offloading code both with and
without using the incremental deltas optimization. Figure 13 shows
the benefits of transferring deltas rather than the entire uncom-
pressed state, for the video game for each subsequent execution
of the offloaded method. After the first two iterations, when the
method is still being initialized, MAUI benefits from using incre-

0

5

10

15

20

25

0 5 10 15 20 25
O

ff
lo

a
d

e
d

 D
a

ta
 (

K
B

y
te

s)

Iteration Number

Uncompressed State

Incremental Deltas

Figure 13: The Performance of the Incremental Deltas to and
from the Remote Server. MAUI uses incremental deltas when
offloading code to a remote server. In the case of the video game,
this optimization reduces the amount of state transferred from 23
KB to 12 KB, on average.

mental deltas: this optimization reduces the amount of state trans-
ferred by a factor of two from 23 KB to 12 KB.

7.3.4 Does the MAUI Solver Adapt to Changing
Network Conditions and CPU Costs?

To answer this question, we examine the decisions that the
MAUI solver makes for the modified version of the video game2.
As we mentioned in Section 4.3, we restructured the video game
to improve its offload behavior. At the same time, we extended the
game’s functionality to include physics modeling, using an off-the-
shelf physics engine [33]. In particular, we modified the missiles
fired by the enemies to act as homing missiles, which means that
we increase the chance that the missiles will hit the player. Be-
cause the physics calculations are CPU intensive, when the number
of active missiles becomes larger, the CPU cost of HandleMissles()
grows significantly.

The modified game’s structure is as follows: there is a top-level
method called DoLevel() which performs the vast majority of the
video game’s computation that can be offloaded, because it does not
draw directly to the screen. DoLevel() in turn invokes HandleEn-
emies(), HandleMissiles(), and HandleBonuses(). The size of the
2All the results we presented earlier were for the unmodified ver-
sion of the video game.

game state that needs to be transferred in order to offload DoLevel()
is just over 11 KB. When MAUI decides to offload DoLevel(), it
will also offload the HandleEnemies(), HandleMissiles(), Handle-
Bonuses() methods because they do not require any additional state
to be transferred. Of the three Handle methods, only HandleMis-
siles() performs a significant amount of computation because of the
physics modelling, and only when there are a moderate number of
active missiles. The size of the missile state that needs to trans-
ferred in order to offload only HandleMissiles() is small: each ad-
ditional active missile adds approximately 60 bytes of state transfer
overhead.

To demonstrate how the solver adapts to changing network con-
ditions and CPU costs, we examine the solver’s behavior in two
specific scenarios: 1) shortly after the game begins, when there are
no active missiles; and 2) after the game has been running for some
time and the enemies can fire up to five active missiles. When no
missiles are active, MAUI will offload DoLevel() only when the
round-trip latency to the MAUI server is less than 10 ms. When
the latency is greater than 10 ms, no methods are offloaded. Af-
ter the game progresses and the enemies have five active missiles,
MAUI will offload DoLevel() when the latency is less than 30 ms,
and when the latency to the MAUI server is between 30 ms and 60
ms, it will only offload HandleMissiles() but not DoLevel(). This
is because the state transfer required to offload HandleMissiles()
is much smaller than that required to offload DoLevel(). Finally,
when the latency exceeds 60 ms, the solver decides not to offload
anything. This example demonstrates that the MAUI solver can
make dynamic decisions to save energy that incorporate changes in
the network conditions as well as changes in the CPU consumption
of individual methods over time.

8. RELATED WORK
Over the last two decades, there has been much work on sup-

porting remote execution for mobile applications. Most of this
previous work used remote execution to increase the performance
and improve the availability of of resources, such as faster CPU’s
and more RAM, for mobile applications. Some previous efforts
sought to balance the thirst for performance with energy conserva-
tion, because these goals can sometimes be contradictory [10]. In
contrast, MAUI’s primary goal is using remote execution to save
energy. With MAUI, code is offloaded to a remote server only if
MAUI predicts that remote execution ends up saving energy. De-
spite the difference in goals, MAUI borrows many techniques and
ideas from these previous efforts.

8.1 Program Partitioning
One common approach for remote execution is to rely on pro-

grammers to modify the program to handle partitioning, state mi-
gration, and adaptation to changes in network conditions. In
Spectra [9, 10], programmers provide execution plans on how
to partition an application given different fidelities, which is an
application-specific measure of quality of service. At runtime,
Spectra monitors the connectivity to a remote server and chooses
the execution plan that maximizes a user-provided utility function.
Chroma [1, 3] builds on ideas from Spectra while making an ef-
fort to reduce the burden on the programmer. Chroma allows pro-
grammers to specify “tactics” (strategies for how a program can uti-
lize infrastructure resources) using a declarative language. While
Spectra requires users to provide the utility function to the system,
Chroma relies on an external system called Prism [2] to automati-
cally construct these utility functions by tracking users. Both Spec-
tra and Chroma borrow ideas from Odyssey [30], an initial system
that investigated operating system support for applications adapt-

ing their fidelity to changes in network bandwidth, CPU load, and
battery conditions. Another common previous approach, used by
Protium [41], manually partitions applications into local viewers
that execute on a mobile device, and remote servers that execute
the application logic. Although MAUI’s architecture borrows ideas
from all these systems, MAUI reduces the burden on programmers
by automating many of the steps needed for program partitioning.

There are many earlier efforts on lightweight approaches to code
migration, including systems for mobile objects, such as Emer-
ald [18], Network Objects [4], Obliq [5], Rover [17], and Agent
Tcl [12]. The focus of these systems is primarily on enabling code
and data to easily move between nodes in a distributed system. To
the best of our knowledge, none of these systems attempted to hide
distribution from the programmer, nor did they focus on automating
migration to optimize for energy consumption.

Previous work also investigated the use of automatic program
partitioning [16, 23, 28, 29]. Coign [16] provides coarse-grain au-
tomatic partitioning of DCOM applications into client and server
components without source-code modification. Kremer et al. [23]
propose using static analysis to select tasks for remote execution
to save energy. In [28] the authors propose statically partitioning a
C-like program into a collection of nodelevel nesC programs that
run on sensor motes. Hydra [40] provides support for offloading
computation to specialized processors such as GPUs, NICs, and
disk controllers, and it uses an ILP to decide what code to offload.
Wishbone [29] uses a profile-based approach to partition applica-
tions, specified as a data-flow graph of operators, between sensor
nodes and servers. MAUI retrofits many of these ideas to today’s
mobile landscape, where mobile devices and remote servers use
different instruction set architectures (unlike [16]) and where mo-
bile applications differ from the data-collection applications that
typically run on sensor networks.

Another approach is to build replication into mobile applications
and to use distributed protocols to synchronize the application’s
replicas. In such systems, the mobile user can run the applica-
tion using any of the available replicas, whether they are local or
remote. Data staging [11] and fluid replication [20] propose op-
portunistic use of “surrogates” (nearby untrusted and unmanaged
public machines) as staging servers for the applications’ replicas.
Slingshot [39] extends this earlier work by adding the capability
of dynamically instantiating replicas of “stateful” applications. All
these systems also rely on the programmer to partition the applica-
tions and to build in support for replication.

Finally, of all the extensive previous work on program partition-
ing and remote execution, the system that is closest to MAUI is
the OLIE system [13]. OLIE performs dynamic partitioning of
Java applications at runtime, with little burden on the program-
mer. The OLIE runtime monitors network conditions and profiles
the program behavior. However, one of the principal differences is
the focus of OLIE’s dynamic offloading engine on overcoming the
memory resource constraints of mobile devices, in constrast with
MAUI’s focus on reducing energy consumption.

8.2 Process and VM Migration
Another approach to remote execution is providing operat-

ing system support for process migration, as in systems such as
Sprite [8] and Amoeba [26]. More recently, Zap [31] enabled pro-
cess migration using OS support for checkpoint and restart. Recent
work on live migration of virtual machines [7] enables moving an
entire OS and all its running applications, and the CloneCloud sys-
tem [6] and Cloudlets [37] suggest applying this technique to mo-
bile device environments. All these approaches drastically reduce
the burden on the programmer, which is also one of MAUI’s goals.

However, MAUI’s focus on energy savings made us choose a de-
sign that is more aggressive and exploits more opportunities to of-
fload code. This includes the ability to offload portions of a single
application; we did not want to restrict MAUI’s code migration to
the granularity of a whole process or an entire OS.

9. CONCLUSIONS
In this paper we proposed MAUI, a system that enables fine-

grained energy-aware offload of mobile code to the infrastructure.
MAUI uses the benefits of managed code to reduce the burden on
programmers to deal with program partitioning while maximiz-
ing the energy benefits of offloading code. This paper presented
how MAUI partitions programs, how it profiled them, and how it
formulated and solved program partitioning as a 0-1 integer lin-
ear programming problem. Throughout our presentation of MAUI
architecture, we also showed several examples of low-level chal-
lenges discovered during our implementation. Our results showed
that MAUI’s energy savings and performance are impressive (up to
one order of magnitude for one of our applications).

10. REFERENCES
[1] R. Balan, J. Flinn, M. Satyanarayanan, S. Sinnamohideen,

and H.-I. Yang. The Case for Cyber Foraging. In The 10th
ACM SIGOPS European Workshop, Saint-Emilion, France,
September 2002.

[2] R. K. Balan. Simplifying Cyber Foraging. PhD thesis, School
of Computer Science, Carnegie Mellon University, 2006.

[3] R. K. Balan, M. Satyanarayanan, S. Park, and T. Okoshi.
Tactics-Based Remote Execution for Mobile Computing. In
Proceedings of the 3rd International Conference on Mobile
Systems, Applications, and Services (MobiSys), San
Francisco, CA, 2003.

[4] A. Birrell, G. Nelson, S. Owicki, and E. Wobber. Network
Objects. In Proc. of the Fourteenth ACM Symposium on
Operatings Systems Principles (SOSP), 1993.

[5] L. Cardelli. A Language with Distributed Scope. In Proc. of
the 22nd Symposium on Principles of Programming
Languages (POPL), 1995.

[6] B.-G. Chun and P. Maniatis. Augmented Smartphone
Applications Through Clone Cloud Execution. In Proc. of
the 8th Workshop on Hot Topics in Operating Systems
(HotOS), Monte Verita, Switzerland, May 2009.

[7] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live Migration of
Virtual Machines. In Proceedings of the 2nd ACM/USENIX
Symposium on Networked Systems Design and
Implementation (NSDI), 2005.

[8] F. Douglis and J. Ousterhout. Transparent Process Migration:
Design Alternatives and the Sprite Implementation. Software
- Practice and Experience, 21(8):757–785, August 1991.

[9] J. Flinn, D. Narayanan, and M. Satyanarayanan. Self-Tuned
Remote Execution for Pervasive Computing. In Proc. of the
8th Workshop on Hot Topics in Operating Systems (HotOS),
Schloss Elmau, Germany, May 2001.

[10] J. Flinn, S. Park, and M. Satyanarayanan. Balancing
Performance, Energy, and Quality in Pervasive Computing.
In Proc. of the 22nd International Conference on Distributed
Computing Systems (ICDCS), Vienna, Austria, July 2002.

[11] J. Flinn, S. Sinnamohideen, N. Tolia, and M. Satyanaryanan.
Data Staging on Untrusted Surrogates. In Proceedings of the
2nd USENIX Conference on File and Storage Technologies
(FAST), San Francisco, CA, March – April 2003.

[12] R. S. Gray. Agent Tcl: a flexible and secure mobile-agent
system. In TCLTK’96: Proceedings of the 4th USENIX
Tcl/Tk Workshop, 1996, Monterey, CA, 1996.

[13] X. Gu, K. Nahrstedt, A. Messer, I. Greenberg, and
D. Milojicic. Adaptive Offloading Inference for Delivering
Applications in Pervasive Computing Environments. In
Proceedings of the First IEEE International Conference on
Pervasive Computing and Communications (PerCom), 2003.

[14] D. Hesse. Sprint’s CEO Dan Hesse Chats with Charlie Rose.
http://blueroomsolution.com/showthread.
php?t=5689, 2007.

[15] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and
P. Bahl. Anatomizing Application Performance Differences
on Smartphones. In Proc. of the 8th International Conference
on Mobile Systems, Applications, and Services (MobiSys),
San Francisco, CA, June 2010.

[16] G. C. Hunt and M. L. Scott. The Coign Automatic
Distributed Partitioning System. In Proc. of the 3rd
Symposium on Operating Systems Design and
Implementation (OSDI), New Orleans, LA, February 1999.

[17] A. D. Joseph, A. F. deLespinasse, J. A. Tauber, D. K.
Gifford, and M. F. Kaashoek. Rover: A Toolkit for Mobile
Information Access. In Proceedings of the Fifteenth
Symposium on Operating Systems Principles (SOSP), 1995.

[18] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-Grained
Mobility in the Emerald System. ACM Transactions on
Computer Systems, 6(1):109–133, 1988.

[19] A. Kansal and F. Zhao. Fine-Grained Energy Profiling for
Power-Aware Application Design. In Proceedings of the 1st
Workshop on Hot Topics in Measurement & Modeling of
Computer Systems (HotMetrics), Annapolis, MD, June 2008.

[20] M. Kim, L. Cox, and B. Noble. Safety, Visibility, and
Performance in a Wide-Area File System. In Proc. of the 3rd
Symposium on Operating Systems Design and
Implementation (OSDI), Boston, MA, Dec. 2002.

[21] J. Kincaid. YouTube Mobile Uploads Up 400% Since iPhone
3GS Launch. http://www.techcrunch.com/2009/
06/25/youtube-mobile-uploads-up-400
-since-iphone-3gs-launch/, 2009.

[22] P. Kougiouris. Use Reflection to Discover and Assess the
Most Common Types in the .NET Framework.
http://msdn.microsoft.com/en-us/
magazine/cc188926.aspx#S3, 2002.

[23] U. Kremer, J. Hicks, and J. M. Rehg. Compiler-Directed
Remote Task Execution for Power Management. In
Proceedings of The Workshop on Compilers and Operating
Systems for Low Power (COLP), Philadelphia, PA, October
2000.

[24] J. Lewin. iPhone Users 30 Times More Likely To Watch
YouTube Videos. http://www.podcastingnews
.com/2008/03/19/iphone-users-30-times
-watch-youtube-videos/, 2008.

[25] Monsoon Solutions Inc. Monsoon Power Monitor.
http://www.msoon.com/.

[26] S. Mullender, G. van Rossum, A. Tanenbaum, R. van
Renesse, and H. van Staveren. Amoeba - A Distributed
Operating System for the 1990s. IEEE Computer, 23:44–53,
1990.

[27] National Office of Pollution Prevention (Canada). Canadian
Consumer Battery Baseline Study - Final Report. Submitted
to Environment Canada, http://www.ec.gc.ca/
nopp/docs/rpt/battery/en/toc.cfm, 2007.

[28] M. Neubauer and P. Thiemann. From Sequential Programs to
Multi-Tier Applications by Program Transformation. In
Proc. of the Symposium on Principles of Programming
Languages (POPL), Long Beach, CA, January 2005.

[29] R. Newton, S. Toledo, L. Girod, H. Balakrishnan, and
S. Madden. Wishbone: Profile-based Partitioning for
Sensornet Applications. In Proceedings of the 6th USENIX
symposium on Networked systems design and
implementation (NSDI), Boston, MA, April 2009.

[30] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton,
J. Flinn, and K. Walker. Agile Application-Aware Adaptation
for Mobility. In Proc. of the ACM Symposium on Operating
System Principles (SOSP), 1997.

[31] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The Design and
Implementation of Zap: A System for Migrating Computing
Environments. In Proceedings of the Fifth Symposium on
Operating Systems Design and Implementation (OSDI),
2002.

[32] M. R. Palacin. Recent advances in rechargeable battery
materials: a chemists perspective. Chem Soc Review,
38:2565–2575, 2009.

[33] Physics2D.Net.
http://code.google.com/p/physics2d/.

[34] R. A. Powers. Batteries for low power electronics.
Proceedings of the IEEE, 83:687–693, April 1995.

[35] R. S. Prasad, M. Murray, C. Dovrolis, and K. Claffy.
Bandwidth Estimation: Metrifcs, Measurement Techniques,
and Tools. IEEE Network, 17(6):27–35, Nov–Dec 2003.

[36] J. Richter. CLR via C#. Microsoft Press; 2nd edition, 2006.
[37] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The

Case for VM-based Cloudlets in Mobile Computing. IEEE
Pervasive Computing, 8(4), 2009.

[38] S. Savage. Sting: a TCP-based Network Measurement Tool.
In Proceedings of the 2nd USENIX Symposium on Internet
Technologies and Systems (USITS), Boulder, CO, October
1999.

[39] Y.-Y. Su and J. Flinn. Slingshot: Deploying Stateful Services
in Wireless Hotspots. In Proc. of the 3rd International
Conference on Mobile Systems, Applications, and Services
(MobiSys), Seattle, WA, June 2005.

[40] Y. Weinsberg, D. Dolev, T. Anker, M. Ben-Yehuda, and
P. Wyckoff. Tapping into the Fountain of CPUs – On
Operating System Support for Programmable Devices. In
Proc. of the 13th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2008.

[41] C. Young and Y. N. Lakshman. Protium, an Infrastructure for
Partitioned Applications. In Proceedings of the 8th Workshop
on Hot Topics in Operating Systems (HotOS), Schloss
Elmau, Germany, May 2001.

