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Abstract—It is a well-known fact that the progress of
personal communication devices leads to serious concerns
about privacy in general, and location privacy in particular.
As a response to these issues, a number of Location-Privacy
Protection Mechanisms (LPPMs) have been proposed during
the last decade. However, their assessment and comparison
remains problematic because of the absence of a systematic
method to quantify them. In particular, the assumptions about
the attacker’s model tend to be incomplete, with the risk of a
possibly wrong estimation of the users’ location privacy.

In this paper, we address these issues by providing a
formal framework for the analysis of LPPMs; it captures,
in particular, the prior information that might be available
to the attacker, and various attacks that he can perform.
The privacy of users and the success of the adversary in his
location-inference attacks are two sides of the same coin. We
revise location privacy by giving a simple, yet comprehensive,
model to formulate all types of location-information disclosure
attacks. Thus, by formalizing the adversary’s performance,
we propose and justify the right metric to quantify location
privacy. We clarify the difference between three aspects of the
adversary’s inference attacks, namely their accuracy, certainty,
and correctness. We show that correctness determines the
privacy of users. In other words, the expected estimation error
of the adversary is the metric of users’ location privacy. We
rely on well-established statistical methods to formalize and
implement the attacks in a tool: the Location-Privacy Meter that
measures the location privacy of mobile users, given various
LPPMs. In addition to evaluating some example LPPMs, by
using our tool, we assess the appropriateness of some popular
metrics for location privacy: entropy and k-anonymity. The
results show a lack of satisfactory correlation between these
two metrics and the success of the adversary in inferring the
users’ actual locations.

Keywords-Location Privacy; Evaluation Framework; Loca-
tion Traces; Quantifying Metric; Location-Privacy Meter

I. INTRODUCTION

Most people are now equipped with smart phones with

many sophisticated sensors and actuators closely related to

their activities. Each of these devices is usually equipped

with high-precision localization capabilities, based for ex-

ample on a GPS receiver or on triangulation with nearby

base stations or access points. In addition, the environment

is more and more populated by sensors and smart devices,

with which smart phones interact.

The usage of these personal communication devices,

although providing convenience to their owners, leaves an

almost indelible digital trace of their whereabouts. A trace

is not only a set of positions on a map. The contextual

information attached to a trace tells much about the in-

dividuals’ habits, interests, activities, and relationships. It

can also reveal their personal or corporate secrets. It can

expose the users to unwanted advertisement and location-

based spams/scams, cause social reputation or economic

damage, and make them victims of blackmail or even physi-

cal violence. Additionally, information disclosure breaks the

balance of power between the informed entity and the entity

about which this information is disclosed.

In the meantime, the tools required to analyze such

traces have made tremendous progress: sophisticated data

mining algorithms can leverage on fast growing storage and

processing power, facilitating, for example, the analysis of

multiple databases in parallel. This means that the negative

side-effects of insufficient location privacy are becoming

more and more threatening.

Users should have the right to control the amount of

information (about themselves) that is disclosed and shared

with others. This can be achieved in several ways. Users

can share a minimum amount of information, or share it only

with few trusted entities. Privacy policies can be put in place

to force organizations to protect their users’ privacy. Finally,

systems can be designed in a privacy-conscious manner, so

they do not leak information to untrusted entities.

This paper refers to the last ambition. However, our goal

here is not to design yet another location privacy protection

mechanism (LPPM), but rather to try to make progress on

the quantification of the performance of an LPPM. This is

an important topic, because (i) human beings are notoriously

bad estimators of risks (including privacy risks), (ii) it is the

only way to make meaningful comparisons between different

LPPMs and (iii) the research literature is not yet mature

enough on the topic.

Let us develop this last reason. In specific areas, sev-

eral contributions have been made to quantify privacy,

be it for databases [8], for anonymity protocols [3], for

anonymization networks [24], or for RFID privacy [25].

Yet, in the field of location privacy, notwithstanding many

contributions from different disciplines (such as databases,

mobile networks, and ubiquitous computing) for protecting

location privacy, the lack of a unified and generic formal

framework for specifying protection mechanisms and also

for evaluating location privacy is evident. This has led to the

divergence of (nevertheless interesting) contributions and,

hence, has caused confusion about which mechanisms are
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more effective. The adversary model is often not appro-

priately addressed and formalized, and a good model for

the knowledge of the adversary and his possible inference

attacks is missing. This can lead to a wrong estimation of

the location privacy of mobile users. There is also often con-

fusion between the different dimensions of the adversary’s

performance in his attacks, notably the accuracy, certainty

and correctness of his estimation of the users’ traces.

In this paper, leveraging on previous contributions in the

field of (location) privacy, we propose a generic theoretical

framework for modeling and evaluating location privacy. We

make the following contributions.

• We provide a generic model that formalizes the ad-

versary’s attacks against private location-information

of mobile users. In particular, we rigorously define

tracking and localization attacks on anonymous traces

as statistical inference problems.

• We rely on well-established statistical methods to eval-

uate the performance of such inference attacks. We for-

malize the adversary’s success and we clarify, explain

and justify the right metric to quantify location privacy:

The adversary’s expected estimation error.

• We provide a tool: the Location-Privacy Meter is devel-

oped based on our formal framework and is designed

for evaluating the effectiveness of various location-

privacy preserving mechanisms.

• We show the inappropriateness of some existing met-

rics, notably entropy and k-anonymity, for quantifying

location privacy.

The paper is organized as follows. In Section II, we

provide a detailed description of the framework we propose

for the quantification of LPPMs and show how location-

privacy threats can be defined and evaluated correctly. In

Section III, we introduce an instantiation of the framework

into an operational tool: Location-Privacy Meter. In Sec-

tion IV, we show the usage of the tool on evaluating LPPMs

and assessing existing location-privacy metrics. We discuss

the related work in Section V and conclude in Section VI.

II. THE FRAMEWORK

In this section, we present our framework for location

privacy. This allows us to precisely define location pri-

vacy and specify its relevant components and entities in

various settings and also to evaluate the effectiveness of

various location-privacy preserving mechanisms with respect

to different attacks. We define a location-privacy framework

(system) as a tuple of the following inseparable elements:

〈U ,A, LPPM,O, ADV, METRIC〉, where U is the set of

mobile users, A represents the set of possible actual traces

for the users, and LPPM stands for the location-privacy

preserving mechanism that acts on the actual traces a (a

member of A) and produces the observed traces o (a

member of O, which is the set of observable traces to

an adversary ADV). The adversary ADV is an entity who

U Set of mobile users
R Set of regions that partition the whole area
T Time period under consideration
A Set of all possible traces
O Set of all observable traces
U ′ Set of user pseudonyms
R′ Set of location pseudonyms
N Number of users
M Number of regions
T Number of considered time instants
N ′ Number of user pseudonyms
M ′ Number of location pseudonyms
f Obfuscation function
g Anonymization function
au Actual trace of user u
ou Obfuscated trace of user u
oi Observed trace of a user with pseudonym i
Au Set of all possible (actual) traces of user u
Ou Set of all possible obfuscated traces of user u

Oσ(u) Set of all observable traces of user u

P u Profile of user u
φ(.) Attacker’s objective
X Set of values that φ(.) can take

Table I
NOTATIONS

implements some inference (reconstruction) attacks to infer

some information about a having observed o and by relying

on his knowledge of the LPPM and of the users’ mobility

model. The performance of the adversary and his success in

recovering the desired information about a is captured by an

evaluation metric METRIC. The success of the adversary

and the location-privacy of users are two sides of the same

coin, which are coupled together using METRIC.

In the following subsections, we present and specify all

the entities and components of our framework and illustrate

their inter-relationship. The tool that we have developed

according to the framework, Location-Privacy Meter, and

the theoretical details of the implemented methods will be

explained in Section III.

The summary of the notations is presented in Table I.

The framework is shown in Figure 1. Throughout the paper,

we use bold capital letters to denote random variables,

lower case letters to denote realizations of random variables,

and script letters to denote sets within which the random

variables take values. For example, a random variable X

takes values x in X . At times, the members of a set are also

sets, but the distinction will be clear from the context.

A. Mobile Users

We consider U = {u1, u2, ..., uN} a set of N mobile users

who move within an area that is partitioned into M distinct

regions (locations) R = {r1, r2, ..., rM}. See Figure 2 for

an example of partitioning an area into regions. Time is

discrete, and the set of time instants when the users may

be observed is T = {1, ..., T}. The level of space and time

granularity depends on the precision that we want, on the

size of the area, and on the total length of the observation
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Figure 1. Elements of the proposed location-privacy framework. The users produce actual traces, which are then anonymized and obfuscated by the LPPM
to produce anonymous observed traces. The attacker uses a set of training traces to create, via the knowledge construction (KC) mechanism, a mobility
profile for each user in the form of a Markov Chain transition probability matrix. Having the user mobility profiles and the observed traces, the adversary
tries to reconstruct (infer) the actual traces. The only element of the framework not shown here is the metric that evaluates the success of the adversary’s
reconstruction attack by comparing the results of the attack with the users’ actual traces.

period. For example, regions can be of a city/block size, and

two successive time instants can be a day/hour apart.

The spatiotemporal position of users is modeled through

events and traces. An event is defined as a triplet 〈u, r, t〉,
where u ∈ U , r ∈ R, t ∈ T . A trace of user u is a T -size

vector of events au = (au(1), au(2), ..., au(T )). The set of

all traces that may belong to user u is denoted by Au. Notice

that, of all the traces in Au, exactly one is the true trace that

user u created in the time period of interest (t = 1...T ); this

one is called the actual trace of user u, and its events are

called the actual events of user u. The set of all possible

traces of all users is denoted by A = Au1
×Au2

×. . .×AuN
;

the member of A that was actually created by the N users

is denoted by a, so it is also the set of actual traces.

B. Location-Privacy Preserving Mechanisms

Mobile users share their location with possibly untrusted

entities in various location-based services, or may unwill-

ingly expose their location to curious eavesdropping entities

through the wireless channel. In addition to these types of

sharing, their location traces can be made public for research

purposes. In all these scenarios, an adversarial entity can

track the users over the observation period, unless their

actual traces are properly modified and distorted before

being exposed to others, i.e., before becoming observable.

The mechanism that performs this modification in order

to protect the users’ location-privacy is called a Location-

Privacy Preserving Mechanism (LPPM).

LPPMs can be implemented in different manners and ar-

chitectures: online vs. offline, and centralized vs. distributed.

In the offline manner, all the traces are available to the

LPPM, for example in a database, whereas in the online

manner, the modification is performed on-the-fly while users

visit new regions as time progresses. The modification can

be performed in the centralized architecture by a trusted

third party (mostly known as the central anonymity server

or privacy proxy) as opposed to being done by the users or

on their mobile devices in a distributed architecture, where

modifications are (mostly) done independently from each

other. Next, we abstract away these details and provide a

generic model for LPPMs.

A location-privacy preserving mechanism LPPM receives

a set of N actual traces, one for each user, and modifies them

in two steps. In the obfuscation process, the location of each

event is obfuscated, i.e., replaced by a location pseudonym

in the set R′ = {r′1, ..., r
′
M ′}. In the anonymization process,

the traces are anonymized, i.e., the user part of each trace is

replaced by a user pseudonym in the set U ′ = {u′
1, ..., u

′
N ′}.

Notice that each region may be obfuscated to a different

location pseudonym each time it is encountered, whereas

each user is always obfuscated to the same user pseudonym

(as in this paper we focus on evaluating users’ location-

privacy from their location traces). Also, note that the

information used by an LPPM to obfuscate an event varies
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Figure 2. Example of locations and obfuscation. The area within which
users move is divided into M = 29 regions. Consider user u whose actual
location is region r12 at a given time t. Different obfuscation methods will
replace r12 with a different location pseudonym r′ ∈ R′: r′ = {14} in
the perturbation method, r′ = {12, 15, 26} in the adding dummy regions

method, r′ = {9, 10, 11, 12, 13, 14, 15} in the reducing precision method,
and r′ = ∅ in the location hiding method.

depending on its type and architecture. For example, an

online mechanism in the distributed architecture only looks

at the current event for obfuscation, whereas an online

mechanism in the centralized architecture can consider all

so-far generated events from all of the users at the time of

obfuscating the current event.

Formally, an obfuscated event is a triplet 〈u, r′, t〉, where

u ∈ U , r′ ∈ R′, and t ∈ T . As before, an obfuscated

trace of user u is a T -size vector of obfuscated events ou =
(ou(1), ou(2), ..., ou(T )). The set of all possible obfuscated

traces of user u is denoted by Ou.

An obfuscation mechanism is a function that maps a trace

au ∈ Au to a random variable Ou that takes values in the

set Ou. The probability density function of the output is f :

fau
(ou) = Pr{Ou = ou|Au = au}. (1)

For the obfuscation, the LPPM covers various methods

that reduce the accuracy and/or precision of the events’

spatiotemporal information:

• perturbation (adding noise)

• adding dummy regions

• reducing precision (merging regions)

• location hiding

These methods probabilistically map a region in an event

to a location pseudonym in R′. For these methods, it suffices

that the set R′ be the power set of R, i.e., R′ ≡ P(R).
Figure 2 illustrates different obfuscation functions.

An anonymization mechanism is a function Σ chosen

randomly among the functions that map U to U ′. The random

function Σ is drawn according to a probability density

function g:

g(σ) = Pr{Σ = σ}. (2)

In this paper, we will consider only one anonymization

mechanism: random permutation. That is, the set U ′ is

{1, 2, . . . , N}, a permutation of the users is chosen uni-

formly at random among all N ! permutations and each user’s

pseudonym is his position in the permutation.

A location-privacy preserving mechanism LPPM is a

pair (f, g). Given a set of actual traces {au1
, ..., auN

}, the

mechanism LPPM applies f to obfuscate each trace, thus

generating a set of obfuscated traces {ou1
, ..., ouN

}, which

are instantiations of the random variables {Ou1
, ..., OuN

}. It

then applies g on that set, thus generating a set of obfuscated

and anonymized traces {oσ(u1), oσ(u2), ..., oσ(uN )}, where

σ(·) is an instantiation of the random function Σ.

Now, we can summarize the operation of the LPPM with

the following probability distribution function that gives the

probability of mapping a set of actual traces a ∈ A to a set

of observed traces o ∈ O = O1 ×O2 × . . . ×ON :

LPPMa(o) = Pr
{
∩N

i=1OΣ(ui) = oσ(ui)| ∩
N
i=1 Aui

= aui

}

(3)

Broadly speaking, the aim of the adversary is to invert

this mapping: Given o, he tries to reconstruct a.

C. Adversary

In order to evaluate an LPPM accurately, we must model

the adversary against whom the protection is placed. Hence,

the adversary model is certainly an important, if not the most

important, element of a location-privacy framework. An

adversary is characterized by his knowledge and attack(s).

A framework should specify how the adversary obtains and

constructs his knowledge, how to model his knowledge and

what attacks he performs in order to reconstruct users’

location-information.

The adversary is assumed to know the anonymization

and obfuscation probability distribution functions f and

g. The adversary may also have access to some training

traces (possibly noisy or incomplete) of users, and other

public information about locations visited by each user, such

as their home and workplace. From this information, the

adversary constructs a mobility profile Pu for each user

u ∈ U . In Section III-B, one way of constructing the

adversary’s knowledge is explained in detail as part of the

location-privacy meter tool.
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Given the employed LPPM (i.e., f and g), the users’

profiles {(u, Pu)}u∈U , and the set of observed traces

{o1, o2, ..., oN} that are produced by the LPPM, the attacker

runs an inference (reconstruction) attack and formulates his

objective as a question of the U−R−T type. Schematically,

in such a question, the adversary specifies a subset of users,

a subset of regions and a subset of time instants, and asks

for information related to these subsets. If the adversary’s

250



objective is to find out the whole sequence (or a partial

subsequence) of the events in a user’s trace, the attack is

called a tracking attack. The attacks that target a single

event (at a given time instant) in a user’s trace, are called

localization attacks. These two categories of attacks are

examples of presence/absence disclosure attacks [21]: they

infer the relation between users and regions over time. In

contrast, if the physical proximity between users is of the

adversary’s interest, we call the attack a meeting disclosure

attack (i.e., who meets whom possibly at a given place/time).

An example of a very general tracking attack is the one

that aims to recover the actual trace of each user. That is,

it targets the whole set of users and the whole set of time

instants, and it asks for the most likely trace of each user, or

even for the whole probability distribution of traces for each

user. More specific objectives can be defined, which lead

to all sorts of presence/absence/meeting disclosure attacks:

Specify a user and a time, and ask for the region where the

user was at the specified time; specify a user and a region,

and ask for the times when the user was there; specify a

subset of regions, and ask for the (number of) users who

visited these regions at any time.

In this paper, we provide an algorithm that implements the

most general tracking attack; with the results of this attack

at hand, many other objectives can be achieved. For some

specific types of objectives we design attacks that are much

faster and less computationally intensive than the general

attack. The details will be explained in Section III-D.

D. Evaluation

At a high level, the adversary obtains some obfuscated

traces o, and, knowing the LPPM and the mobility profiles

of the users, he tries to infer some information of interest

about the actual traces a. As we have mentioned, the possible

objectives of the adversary range from the very general (the

traces a themselves) to the specific (the location of a user at

a specific time, the number of users at a particular location

at a specific time, etc.).

Nevertheless, usually, neither the general nor the specific

objectives have a single deterministic answer. The actual

traces are generated probabilistically from the mobility pro-

files, and the observed traces are generated probabilistically

by the LPPM. So, there are many traces a that might have

produced the observed traces o. The same goes for the more

specific objectives: There are many regions where a user

might have been at a particular time. The output of the

attack can be a probability distribution on the possible out-

comes (traces, regions, number of users), the most probable

outcome, the expected outcome under the distribution on

outcomes (the average number of users), or any function

of the actual trace. We call φ(·) the function that describes

the attacker’s objective. If its argument is the actual trace a,

then its value φ(a) is the correct answer to the attack. X is

the set of values that φ(·) can take for a given attack (M

regions, N users, MT traces of one user, etc.).

The probabilistic nature of the attacker’s task implies that

he cannot obtain the exact value of φ(a), even if he has an

infinite amount of resources. The best he can hope for is

to extract all the information about φ(a) that is contained

in the observed traces. The extracted information is in the

form of the posterior distribution Pr(x|o), x ∈ X , of the

possible values of φ(a) given the observed traces o. We call

uncertainty the ambiguity of this posterior distribution with

respect to finding a unique answer – that unique answer need

not be the correct one; see the discussion on correctness later.

The uncertainty is maximum, for example, if the output of a

localization attack is a uniform distribution on the locations.

On the contrary, the uncertainty is zero if the output is a

Dirac distribution on one location.

Of course, the attacker does not have infinite resources.

Consequently, the result of the attack is only an estimate

P̂r(x|o) of the posterior distribution Pr(x|o). We call in-

accuracy the discrepancy between the distributions P̂r(x|o)
and Pr(x|o).

Neither the uncertainty metric nor the inaccuracy metric,

however, quantify the privacy of the users. What matters for

a user is whether the attacker finds the correct answer to his

attack, or, alternatively, how close the attacker’s output is to

the correct answer. Knowing the correct answer, an evaluator

of the LPPM calculates a distance (or expected distance)

between the output of the attack and the true answer. The

choice of distance depends on the attack; we give examples

in Section IV. We call this distance the correctness of the

attack, and we claim that this is the appropriate way to

quantify the success of an attack.
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It is important that the accuracy and the certainty not

be mistaken to be equivalent to the correctness of the

attack. Even an attacker with infinite resources will not

necessarily find the true answer, as he might have observed

only an insufficient number of traces. But he will extract

all the information that is contained in the traces, so the

accuracy will be maximum. If the accuracy is maximum, and

simultaneously the observed traces point to a unique answer

– so the certainty is also maximum – the correctness still

need not be high. It is possible, for instance, that the user

did something out of the ordinary on the day the traces were

collected; what he did is still consistent with the observed

trace, but as it is not typical for the user it is assigned a low

probability/weight in the attack output.

1) Accuracy: We compute the accuracy of each element

of the distribution P̂r(x|o), x ∈ X , separately. That is, we
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Figure 3. Accuracy, Certainty, and Correctness of the adversary. The

adversary is estimating P̂r(x|o) where the true value for x (correct guess)
is xc. In this example, x can get three discrete values. The black dot shows

the estimate P̂r(x|o) for different x and the lines show the confidence
interval for a given confidence level chosen by the adversary. As it is
shown in the figures, the accuracy of the estimation is independent of
its certainty and correctness. Moreover, the level of correctness does not
convey anything about the level of certainty, and high certainty does
not mean high correctness. The only correlation between certainty and
correctness is that low certainty usually (depending on the size of X and
the distance between its members) implies low correctness.

estimate the posterior probability Pr(x|o) for each possible

value x of φ(a). We quantify the accuracy with a confidence

interval and a confidence level. By definition, the probability

that the accurate value of Pr(x|o) is within the confidence

interval is equal to the confidence level.

The extreme case is that the interval is of zero length (i.e.,

a point) and the confidence level is 1 (i.e., the attacker is

absolutely confident that the point estimate is accurate). An

attacker using more and more accurate estimation tools could

achieve this extreme case, thus making P̂r(x|o) converge to

Pr(x|o). However, achieving such ultimate accuracy might

be prohibitively costly. So, the adversary will in general

be satisfied with some high enough level of accuracy (i.e.,

large enough confidence level, and small enough confidence

interval). When the accuracy reaches the desired level, or

the resources of the adversary are exhausted, the probability

P̂r(x|o) with some confidence interval is the estimate of the

adversary.

2) Certainty: We quantify the certainty with the entropy

of the distribution P̂r(x|o). The entropy shows how uniform

vs. concentrated the estimated distribution is and, in conse-

quence, how easy it is to pinpoint a single outcome x out

of X . The higher the entropy is, the lower the adversary’s

certainty is.

Ĥ(x) =
∑

x

P̂r(x|o) log
1

P̂r(x|o)
(4)

3) Correctness: The correctness of the attack is quanti-

fied using the expected distance between the true outcome

xc ∈ X and the estimate based on the P̂r(x|o). In general,

if there is a distance ‖ · ‖ defined between the members of

X , the expected distance can be computed as the following

sum, which is the adversary’s expected estimation error:
∑

x

P̂r(x|o)‖x − xc‖ (5)

As an example, if the distance is defined to be equal to

0 if and only if x = xc and to be equal to 1 otherwise,

then the incorrectness can be calculated to be 1− P̂r(xc|o),
which is the probability of error of the adversary.

The value xc is what the users want to hide from the ad-

versary. The higher the adversary’s correctness is, the lower

the privacy of the targeted user(s) is. Hence, correctness is

the metric that determines the privacy of users.

In summary, the adversary achieves the maximum accu-

racy for his estimates P̂r(x|o) that is possible under his

resource constraints. He can measure the success of the

attack by computing the certainty over the results. However,

to measure users’ privacy, the evaluator of an LPPM must

consider the true value xc and measure the adversary’s

correctness. Notice that the adversary does not know the

value of xc, hence he cannot evaluate this aspect of his

performance. Figure 3 illustrates through some examples

the independence of these three aspects (of the adversary’s

performance) from each other.

III. LOCATION-PRIVACY METER:

IMPLEMENTATION OF OUR FRAMEWORK AS A TOOL

In this section, we present Location-Privacy Meter, a

realization of our framework as a tool to measure location

privacy. We have developed a modular tool based on the

framework presented in Figure 1 and multiple reconstruction

(inference) attacks are designed to evaluate the effectiveness

of LPPMs with respect to different adversaries. The tool,

available online [1], is developed in the C++ language, so

it is fast and it can be ported to various platforms. As will

be explained further, designers of new LPPMs can easily

specify various LPPM functions in our tool in order to

compare the users’ location privacy in different schemes.

In the following subsections, we explain in detail the

specifications of different modules of the tool and also

the algorithms that we use in Location-Privacy Meter. The

evaluation of some LPPMs will be presented in Section IV.

A. Location-Privacy Preserving Mechanisms

In the current implementation of the tool, we have devel-

oped two main LPPM obfuscation mechanisms that appear
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frequently in the literature: precision reducing (merging

regions) and location hiding. The anonymization mechanism

is the random permutation.

The precision reducing obfuscation mechanism reduces

the precision of a region by dropping the low-order bits

of the region identifier. If, as in our case, the whole area is

divided into a grid pattern of regions, the x and y coordinates

of the region can be obfuscated separately. The number of

dropped bits determines the level of obfuscation. Let µx and

µy be the number of dropped bits in the x and y coordinates,

respectively. This is a deterministic obfuscation in which, for

example, µx = 1 will map regions r12 and r13 (in Figure 2)

to the same location pseudonym, as they are on the 4th and

5th column of the same row.

In the location hiding mechanism, every event is indepen-

dently eliminated (i.e., its location is replaced by ∅) with

probability λh: location hiding level.

An LPPM designer can easily import her LPPM into our

tool by specifying the probability density function LPPM
(see (3)), or, equivalently, by specifying an anonymization

function and an obfuscation function.

B. Knowledge of the Adversary

In this section, we provide a model for constructing the

a priori knowledge of the adversary to be used in the

various reconstruction attacks. The schema of the knowledge

construction (KC) module is illustrated in Figure 1.

The adversary collects various pieces of information about

the mobility of the users. In general, such information can

be translated to events; perhaps the events can be linked into

transitions, i.e., two events of the same user with successive

timestamps; perhaps they can be further linked into a partial

trace or even a full trace. The quality of these events to the

adversary might be varied, e.g., they might contain noise. It

is conceivable that the adversary obtains information, such

as a user’s home address, that is not obviously translatable

to an event. Then the adversary can create typical events

(or traces) that encode that information, i.e., successive

appearances of a user at his home location between the

evening and the morning hours.

All this prior mobility information on each user is encoded

in one of two ways: Either in the form of some traces, or as

a matrix of transition counts TCu. The traces can be noisy

or they might be missing some events. The TCu matrix is of

dimension M ×M and its ij entry contains the number of i

to j region transitions that u has created and have not been

encoded as traces. Any knowledge of the general movement

within the regions, i.e., how a typical user moves, that cannot

be attributed to a particular user can be incorporated in the

TC matrices. In addition to this mobility information on

the users, the adversary also considers the general mobility

constraints of users within regions. For example, it might not

be possible to move between two far-away regions in one

time instant, or cross a border between two regions because

of some physical obstacles.

The adversary makes the assumption that user mobility

can be modeled as a Markov Chain on the set of regions R.

So, the mobility profile Pu of a user is a transition matrix

for that user’s Markov Chain. The entry Pu
ij , i, j = 1..M

of Pu is the probability that u will move to region rj

in the next time slot, given that he is now in region ri.

The objective of the adversary is to construct Pu starting

with the prior mobility information (traces and TCu). The

construction is done with Gibbs sampling [20] to find the

conditional probability distribution of the entries of the MC

matrix, given the prior information. Then, one MC matrix

is created out of the distribution, for instance by averaging.

How restrictive is the Markovian assumption on user

mobility? For example, if T represents one full day, users

will have different mobility patterns depending on the time

of day. A Markov Chain can still model this situation with

arbitrary precision at the cost of increasing the number of

states. There will be two (or three, or more) interconnected

Markov Chains, corresponding to different time periods of

the day: morning and evening, or morning, afternoon and

evening, or even more fine-grained. Each MC is defined on

the set of regions R, so it still has M states, but each has

different transition probabilities. The M states of each MC

are labeled not only by a region, but also by the period of

the day that they correspond to. Finally, there are appropriate

transitions from the morning states to the afternoon states,

from the afternoon states to the evening states, and so on. So,

the model is extensible to more general mobility models, but

to keep the presentation simple we assume that T represents

one single time period.

Hereafter, we explain how to create the profile Pu of

user u from a training trace TTu with missing data, and

a transition count matrix TCu. Note that the method that

we have implemented considers multiple training traces per

user. However, to simplify the presentation we consider only

one trace. Moreover, as we are talking about profiling each

user separately, we omit the subscript/superscript u.

The ultimate goal is to estimate the parameters of the

underlying Markov Chain (i.e., the matrix P ). As the training

trace TT is incomplete (i.e., we do not have the location of

the user at all time instants), we also need to fill in the

missing data at the same time. Let ET be an estimated

completion for TT . Formally, we estimate the profile P of

the user with the expectation E[P |TT, TC]. To compute this

expectation we will sample from the distribution

Pr(P |TT, TC) =
∑

ET

Pr(P, ET |TT, TC). (6)

However, sampling directly from Pr(P, ET |TT, TC)
is not straightforward; it involves computing the sum

of terms whose number grows exponentially with the

length of the trace. Hence, we use Gibbs sampling, a
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Monte Carlo method, as it only takes polynomial time

to produce a sample from the conditional distributions

Pr(P |ET, TT, TC) and Pr(ET |P, TT, TC). In order to

sample from Pr(P, ET |TT, TC), we create a homogeneous

Markov Chain on the state space of P and ET in an iterative

procedure. Starting from an initial value for ET {0}, Gibbs

sampling produces pairs (P {l}, ET {l}) as follows:

P {l} ∼ Pr(P |ET {l−1}, TT, TC) (7)

ET {l} ∼ Pr(ET |P {l}, TT, TC) (8)

Convergence properties of the Gibbs sampling for this

problem are studied in [20]. We are interested in the

sequence of the P
{l}
ij values; it is not a Markov chain,

but it is ergodic and converges at geometric rate to a

stationary distribution, which is the desired Pr(P |TT, TC).

We compute Pij for every i, j as the average of P
{l}
ij over

all samples l.

Now, the only remaining question is how to sample from

the distributions (7) and (8). In order to sample a P {l}

from (7), we assume that the rows of the transition matrix

P are independent, and we produce samples for each row

separately. We also consider a Dirichlet prior for each row

Pi. Hence, the lth sample for row Pi comes from the

following distribution:

Dirichlet
(
{TCij + Cntij(ET {l−1}) + ǫij}j=1..M

)
(9)

where Cntij(·) is the number of transitions from region ri

to rj in a trace, and ǫij is a very small positive number if,

according to the mobility constraints, it is possible to move

from ri to rj in one time instant (otherwise ǫij is zero).

To sample an ET {l} from (8), we follow the simplifi-

cation proposed in [20] and iteratively construct ET {l} by

performing T successive samplings, for t = 1, . . . , T , from

P
{l}
ET (t−1)ET (t)b(TT (t)|ET (t))P

{l}
ET (t)ET (t+1)

∑
r∈R P

{l}
ET (t−1)rb(TT (t)|r)P

{l}
rET (t+1)

. (10)

The values P
{l}
ET (0)ET (1) and P

{l}
ET (T )ET (T+1) are defined to

be 1. The function b(r|ET (t)), r ∈ TT is equal to 0 if r 6= ∅
and r 6= ET (t). Otherwise, it is equal to 1. Note that the

function b(ri|rj) can also represent the noise function if the

training trace is noisy: b(ri|rj) is the probability that rj is

reported as ri.

C. Tracking Attacks

We now describe two tracking attacks and their implemen-

tations. Recall from Section II-C that in a tracking attack the

adversary is interested in reconstructing complete or partial

actual traces, i.e., in sequences of events, rather than just

isolated events.

1) Maximum Likelihood Tracking Attack: The objective

of this attack is to find the jointly most likely traces for all

users, given the observed traces. Formally, the objective is

to find

argmax
σ,A

Pr(σ, A|O). (11)

Notice that the maximization above is done in a space with

N !MT elements, so a brute force solution is impractical.

We proceed by running this attack in two phases: first

deanonymization and then deobfuscation. The deanonymiza-

tion phase finds the most likely assignment of users to

obfuscated traces. Notice that it is not correct to simply

assign to each user the trace that she is most likely to have

created, because more than one user might be assigned to the

same trace. The most likely assignment is a joint assignment;

it maximizes the product
∏

u∈U P (oσ(u)|P
u) over all N !

user-to-trace assignments.

The most likely assignment is found as follows. First,

the likelihood P (ox|Pu), x ∈ U ′, u ∈ U is computed for

all O(N2) trace-user pairs (ox, u). For the case when the

obfuscation function operates on each region separately, we

compute the likelihood for each pair with the Forward-

Backward algorithm [18]. With this algorithm, each likeli-

hood computation takes time O(TM2) by taking advantage

of the recursive nature of the likelihood that we want

to compute. In particular, we define the forward variable

αt(r), t ∈ T , r ∈ R as

αt(r) = Pr{ox(1), ox(2), . . . , ox(t), ax(t) = r|Pu}, (12)

which is the joint probability of the observed trace ox up

to time t and that the actual location of the user with

pseudonym x is r at time t, given that the pseudonym x is

associated with user u. Notice that, if we can compute the

forward variable at all regions at time T , i.e., αT (r), r ∈ R,

then the desired likelihood is simply

P (ox|P
u) = Pr{ox(1), ox(2), . . . , ox(t), ax(t) = r|Pu}

=

rM∑

r=r1

αT (r). (13)

For the recursive computation of the forward variables we

use the fact that

αt+1(r) =

(
rM∑

ρ=r1

αt(ρ)Pu
ρr

)
fr(ox(t + 1)),

1 ≤ t ≤ T − 1, r ∈ R. (14)

Within the sum there is one term for each way of reaching

region r at time t+1, i.e., having been at each of the regions

ρ ∈ R at time t. After computing the sum, we only need

to multiply with the probability of obfuscating region r to

the location pseudonym observed at time t + 1. The only

remaining issue is the initialization of the forward variables:

α1(r) = πu
r fr(ox(1)), r ∈ R. (15)
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The vector πu
r , r ∈ R is the steady state probability vector

for the mobility profile of u.

For the computation of the likelihood we do not need

the backward variables (which is where the rest of the

algorithm’s name comes from). We will, however, define

and use them in Section III-D on Localization attacks.

The whole likelihood computation for one trace-user pair

can be done in M(M + 1)(T − 1)+ M multiplications and

M(M − 1)(T − 1) additions. If the obfuscation function

operates on the whole trace simultaneously, rather than on

each region individually, the worst case computation will

take time O(TMT ).

Having computed the likelihoods for all trace-user pairs,

we complete the deanonymization phase of the attack by as-

signing exactly one trace to each user. To this end, we create

an edge-weighted bipartite graph of traces and users, where

the weight of the edge between user u and trace ox is the

likelihood P (ox|Pu). Then, we find the Maximum Weight

Assignment (MWA) in this graph. We use the Hungarian al-

gorithm, which has time complexity of order O(N4). Faster

algorithms exist, but the Hungarian algorithm is simple, and

the MWA only needs to be computed once in this attack;

the MWA is also an instance of a linear program, so linear

program solvers can be used. The outcome is a matching of

users and traces, such that the product
∏

u∈U P (oσ(u)|P
u)

is maximized over all N ! user-to-trace assignments.

Given the maximum weight assignment, we proceed to

the second phase of the attack: We find the most likely

deobfuscation for the trace assigned to each user. We use

the Viterbi algorithm [18] to do that. More formally, the

most likely deobfuscation is

arg max
au∈Au

Pr{au(t), t = 1, . . . , T |ou(t), t = 1, . . . , T}.

(16)

The Viterbi algorithm is a dynamic programming algo-

rithm. We define δt(r) as

δt(r) = max
au(s)s=1,...,t−1

Pr { au(s)s=1,...,t−1, au(t) = r,

ou(s)s=1,...,t−1|P
u} , (17)

which is the joint probability of the most likely trace

au(·)t−1
1 that at time t is at region r, and the trace observed

up to time t. Maximizing this quantity is equivalent to

maximizing (16). Then, similarly as before, we recursively

compute the values at time T , i.e., δT (r).

δt(r) = max
ρ∈R

(
δt−1(ρ)Pu

ρr

)
fr(ou(t)),

2 ≤ t ≤ T, r ∈ R. (18)

The initialization in this case is

δ1(r) = πrfr(ou(1)), r ∈ R. (19)

From the values δT (r), we compute the joint probability

of the most likely trace and the observations by computing

max
r∈R

δT (r). (20)

Of course, we are interested in the most likely trace itself,

not only in its probability. The most likely trace is computed

by keeping track, at each time 2 ≤ t ≤ T , of the argument

(region ρ) that maximizes (18) and, for t = T , the one that

maximizes (20). Then, we can backtrack from time T back

to time 1 and reconstruct the trace.

Parenthetically, notice that finding the most likely trace

is exactly equivalent to finding the shortest path in an

edge-weighted directed graph. The graph’s MT vertices are

labeled with elements of the set R×T , i.e., for each time t

there are M vertices corresponding to each of the M regions.

There are edges only from vertices labeled with time t to

vertices labeled t + 1, 1 ≤ t ≤ T − 1. The weight of an

edge (t, r) → (t + 1, ρ) is equal to − logPu
rρfρ(ou(t + 1)).

Indeed, minimizing the sum of negative logarithmic terms

is equivalent to maximizing the product of the original

probabilities.

Having completed the two phases of the attack, we ob-

serve that the trace computed is not necessarily a maximum

for (11). Indeed from (11), it follows that:

argmax
σ,a

Pr(σ, a|O) = argmax
σ,a

Pr(a|σ, O) Pr(σ|O)

= arg max
σ,a

∏

i

Pr(Au = aui
|Oσ(ui)) Pr(σ|O).

Indeed, MWA does maximize the second term (actually, it

maximizes Pr(O|σ) over all σ, which is equivalent to max-

imizing Pr(σ|O)) and Viterbi does maximize the first (i.e.,

Pr(a|σ, O)). But, it is possible that an assignment σ∗ and

a set of traces a∗ that jointly maximize the total likelihood

(Pr(σ, a|O)) are different from the results obtained from the

MWA and Viterbi algorithms separately.

However, we consider such cases as pathological: In the

MWA, a user u is mapped to an obfuscated trace ou that

he has high likelihood of producing. That is, u is likely

to produce unobfuscated traces that are, in turn, likely to

be obfuscated to ou. In other words, the unobfuscated traces

that are typical for u are likely to be obfuscated to ou. There

might be a nontypical outlier (a∗) that is more likely than

the most likely typical trace, but that optimal combination

would be isolated in the A space. As such, choosing the

outlier would not be robust to small changes in, for example,

the mobility model.

2) Distribution Tracking Attack: We now consider the

most general type of tracking attack, one which computes

the distribution of traces for each user, rather than just the

most likely trace:

Pr{∩N
i=1Aui

= aui
,Σ = σ|o1, o2, . . . , oN} (21)
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The implementation of this attack uses the Metropolis-

Hastings (MH) algorithm on the product of the space A
with the space of all possible permutations σ. The purpose

of the MH algorithm is to draw independent samples (from

the space A × Σ) that are identically distributed according

to the desired distribution (21). The algorithm makes use

of the fact that the desired distribution, briefly written as

Pr{a, σ|o}, is equivalently:

Pr{a, σ|o} =
Pr{o|a, σ}Pr{σ|a}Pr{a}

Pr{o}
(22)

The denominator is a normalizing factor that is hard

to compute, but it does not depend on a. The algorithm

allows us to sample from the distribution Pr{a, σ|o} without

computing the denominator Pr{o}. However, the numerator

needs to be easy to compute, which is true in our case: We

compute the probability Pr{o|a, σ} using (1); the probability

Pr{σ|a} is constant and equal to 1
N ! , as we use random per-

mutation as the anonymization function; and the probability

Pr {a} is computed from the users’ profiles.

At a high level, the MH algorithm performs a random

walk on the space of possible values for (a, σ). The tran-

sition probabilities of the random walk are chosen so that

its stationary distribution is the distribution from which we

want to sample.

First of all, we need to find a feasible initial point for the

walk (i.e., a point that does not violate the mobility profile

of any user; it is not a trivial matter to find such a point). We

use the output of the maximum likelihood tracking attack.

We then need to define a neighborhood for each point

(a, σ). We define two points (a, σ) and (a′, σ′) to be

neighbors if and only if exactly one of the three following

conditions holds:

• The components σ and σ′ differ in exactly two places.

That is, N − 2 out of the N traces are assigned to

the same users in both σ and σ′, and the assignment

of the remaining two traces to users is switched. The

components a and a′ are identical.

• The components a and a′ differ in exactly one place.

That is, the location of exactly one user at exactly one

timeslot is different. All other locations are unchanged.

The components σ and σ′ are identical.

• Points (a, σ) and (a′, σ′) are identical. That is, a point

is assumed to be included in its own neighborhood.

We finally define a proposal density function that deter-

mines the candidate neighbor to move to at the next step;

this function also influences the convergence speed of the

algorithm. For simplicity, we use a uniform proposal density,

so the candidate is selected randomly among all neighbors.

To perform the random walk, suppose that the cur-

rent point is (a, σ) and the selected candidate is

(a′, σ′). Then, (a′, σ′) is accepted with probability

min{Pr{o|a′,σ′}Pr{a′}
Pr{o|a,σ}Pr{a} , 1}. If (a′, σ′) is rejected, then we

repeat the procedure of selecting and probabilistically ac-

cepting a neighbor. If it is accepted, it is logged as a step in

the random walk. However, it is not an independent sample,

as it is correlated with (a, σ). Only after making enough

steps to overcome the inherent correlation among successive

steps is a step stored as an independent sample. After storing

enough independent samples, the algorithm stops.

How many independent samples are enough? The attacker

collects as many samples as needed to satisfy his accuracy

requirements. The confidence interval for the chosen confi-

dence level must be shorter than the desired length. Suppose

the attacker needs to collect n independent samples.

How many steps of the random walk must be taken

between each pair of successive samples to ensure the inde-

pendence of these n samples? There are standard statistical

tests of independence; our choice is the Turning Point test.

The basic idea of this test is that, among three successive

independent and identically distributed samples, all 3! = 6
possible orderings are equiprobable. Given three numerical

values xi−1, xi, xi+1, a turning point exists at i if and only if

xi is either larger than both xi−1, xi+1 or smaller than both

xi−1, xi+1. If the three numerical values are independent

and identically distributed, then the probability of a turning

point is 2
3 . Then, given a large enough number of values, n

in our case, the number of turning points is approximately

Gaussian with mean 2n−4
3 and variance 16n−29

90 .

So, we test if the number of turning points in our sequence

of n MH samples can be claimed to be Gaussian with this

mean and variance. If so, we stop. Otherwise, we make more

steps in the random walk and skip more and more of the

logged intermediate steps before storing each sample.

It should be emphasized that the Distribution Tracking

attack can answer all kinds of U-R-T questions. The

attacker can specify a very wide range of objectives as

functions of a sample of the MH algorithm. Then, the

attacker computes this function on each independent sample,

and the sample average of the computed values is the

estimate of the attacker’s objective. In this case, the accuracy

and certainty metrics would be computed on the values that

the function returns, rather than directly on the MH samples.

Despite its generality, the Distribution Tracking attack is

computationally intensive. So, it might make sense to use

heuristics to find the distribution of traces for each user.

An important heuristic is to consider, as we have al-

ready seen, only the most likely deanonymization. Then

we find the posterior distribution of nonobfuscated traces

separately for each user-to-obfuscated-trace assignment that

the deanonymization produced. Formally, the objective is to

find the pdf

max
σ

Pr(σ, a|O). (23)

The implementation of this heuristic is simply to find the

MWA, as explained in the Maximum Likelihood Tracking

attack, and then run Metropolis-Hastings for each user-trace
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pair separately. That is, MH would run on each space Au

separately for each u, and of course the neighborhood of a

point would be restricted to single location changes, as there

can be no changes in the username part.

D. Localization Attacks

In localization attacks, a typical question is to find the

location of a user u at some time t. The most general answer

to such a question is to compute

Pr{au(t) = r|ou, Pu} (24)

for each r ∈ R. The output for the attacker is a distribution

on the possible regions, from which he can select the most

probable, or form an average, etc. For this attack, the attacker

needs to know or estimate the observed trace that user u

created, perhaps by using the Maximum Weight Assignment,

which is what we have implemented.

Of course, he can perform the attack for each of the

observed traces, as it is not very computationally intensive.

In particular, these probabilities can be easily computed

with the Forward-Backward algorithm. In the section on

the Maximum Likelihood Tracking attack, we described the

computation of the forward variables

αt(r) = Pr{ox(1), ox(2), . . . , ox(t), ax(t) = r|Pu}. (25)

The backward variables are defined to be

βt(r) = Pr{ox(t+1), ox(t+2), . . . , ox(T )|ax(t) = r, Pu},
(26)

that is, βt(r) is the probability of the partial trace from time

t + 1 to the end, given that the region at time t is r and

given that user u created the trace.

Again, we can recursively compute the backward variables

using the fact that

βt(r) =

rM∑

ρ=r1

Pu
rρfρ(ox(t + 1))βt+1(ρ),

t = T − 1, T − 2, . . . , 1, r ∈ R. (27)

Notice that the computation takes place backwards in

time. The initialization (at time T ) of the backward variables

is arbitrary:

βT (r) = 1, r ∈ R. (28)

Having computed the backward variables, the probability

Pr{au(t) = r|ou} is then equal to

Pr{au(t) = r|ou, Pu} =
αt(r)βt(r)

Pr(ou|Pu)
. (29)

The variable αt(r) accounts for the observations up to

time t and region r at time t, and βt(r) accounts for the

remainder of the observed trace, given that the region at t

is r. The term Pr(ou|P
u) is a normalization factor that was

earlier computed as
∑rM

r=r1
αT (r). An alternative way of

computing it is as
∑rM

r=r1
αt(r)βt(r), which more directly

shows its role as a normalization factor.

E. Meeting Disclosure Attacks

In a meeting disclosure attack, a typical objective specifies

a pair of users u and v, a region r, and a time t, and then

it asks whether this pair of users have met at that place

and time. The probability of this event is computed as the

product Pr{au(t) = r|ou, Pu}Pr{av(t) = r|ov , P v} by

using the results of the localization attack. A more general

attack would specify only a pair of users and ask for the

expected number of time instants that they have met in

any region. Such questions can be answered by using the

results of the localization attack for each user ui as will

be explained in Section IV. Yet another question would not

specify any usernames, but only a region and a time. The

objective would be the expected number of present users

in the region at that time. Again, a localization attack for

each user would be the first step as will be explained in

Section IV.

IV. USING THE TOOL: EVALUATION OF LPPMS

In this Section, we pursue two main goals:

• We show a few examples of using the Location-Privacy

Meter to quantify the effectiveness of LPPMs against

various attacks.

• We evaluate the appropriateness of two popular met-

rics, namely, k-anonymity and entropy, for quantifying

location privacy.

In order to use the Location-Privacy Meter, we first

need to provide and specify (i) the location traces that we

obfuscate/anonymize, (ii) the LPPMs that we implement,

and (iii) the attacks that we perform.

The location traces that we use belong to N = 20 ran-

domly chosen mobile users (vehicles) from the epfl/mobility

dataset at CRAWDAD [17]. Each trace contains the location

of a user every 5min for 8hours (i.e., T = 96). The area

within which users move (the San Francisco bay area) is

divided into M = 40 regions forming a 5 × 8 grid.

We use two location-privacy preserving mechanisms that

are explained in Section III-A: precision reducing with

parameters µx, µy (the number of dropped low-order bits

from the x, y coordinate of a region, respectively), and

location hiding with parameter λh (the probability of hiding

a region). Let LPPM(µx, µy, λh) denote an LPPM with

these specific parameters. The traces are also anonymized

using a random permutation function (i.e., each user is

assigned a unique pseudonym from 1 to N ).

In order to consider the strongest adversary, we feed

the knowledge constructor (KC) module with the users’

actual traces. We run the inference mechanisms explained in

Sections III-C and III-D and obtain results for the following

U-R-T attack scenarios:

• LO-ATT: Localization Attack: For a given user u and

time t, what is the location of u at t? (Since the location
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is a random variable, the answer is the probability

distribution over the regions).

• MD-ATT: Meeting Disclosure Attack: For a given pair

of users u and v, what is the expected number of

meetings between u and v? Put differently, at how many

time instants in T the two users are in the same region.

• AP-ATT: Aggregated Presence Attack: For a given

region r and time t, what is the expected number of

users present in r at t?

The metric to evaluate location privacy of users in all three

attacks is the failure of the adversary in finding the correct

answer: his incorrectness. For LO-ATT, according to (5), the

privacy of user u at time t is computed as

LPLO-ATT (u, t) =
∑

r∈R

p̂u,t(r)‖r − au(t)‖ (30)

where au(t) is the actual location of u at time t, and the

distance ‖r − au(t)‖ is equal to 0 if r = au(t) (i.e., correct

estimation by the adversary), and it is equal to 1 otherwise.

Moreover, p̂u,t(r) = P̂r{au(t) = r|ou, Pu} as described in

Section III-D.

For MD-ATT, let Zt
u,v = 1au(t)=av(t) be the random

variable that indicates whether u and v meet at time t. The

adversary estimates their expected number of meetings over

all time instants

Ê(
∑

t

Zt
u,v) =

∑

t

P̂r(Zt
u,v = 1) =

∑

t

∑

r

p̂u,t(r)p̂v,t(r)

The actual number of meetings between u and v is∑
t 1au(t)=av(t). Hence, according to (5), the privacy of u

and v is

LPMD-ATT(u, v) = ‖Ê(
∑

t

Zt
u,v) −

∑

t

1au(t)=av(t)‖, (31)

whose values range from 0 and T .

For AP-ATT, let Y u
r,t = 1au(t)=r be the random variable

that indicates whether u is in r at t. The adversary estimates

the expected value of
∑

u Y u
r,t which is

Ê(
∑

u

Y u
r,t) =

∑

u

P̂r(Y u
r,t = 1) =

∑

u

p̂u,t(r)

The actual number of users in region r at t is
∑

u 1au(t)=r.

Hence, according to (5), the privacy of users at time t for

region r is

LPAP-ATT (r, t) = ‖Ê(
∑

u

Y u
r,t) −

∑

u

1au(t)=r‖, (32)

and its values range from 0 to N .

Figure 4 illustrates the results that we have obtained

about the effectiveness of the precision-reduction and

location-hiding LPPMs against these three attacks. Each

row in the figure corresponds to one attack. The left-

hand column shows the results for the LPPM with pa-

rameters (0, 0, 0.0), (0, 0, 0.1), ..., (0, 0, 0.9), and the right-

hand column shows the results for the LPPM with
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Figure 4. The system-level location-privacy against attacks LO-ATT(a),
MD-ATT(b) and AP-ATT(c). Left-hand and right-hand side plots show the
attack results against LPPM(0, 0, ∗) and LPPM(1, 3, ∗), respectively.
The last parameter of LPPMs (hiding level λh) is shown on the x-axis.
The boxplot shows, in particular, the median, 25th and 75th percentiles.
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parameters (1, 3, 0.0), (1, 3, 0.1), ..., (1, 3, 0.9). Recall that

LPPM(µx, µy, λh) denotes the location-privacy preserving

mechanism with parameters µx and µy as the number

of dropped low-order bits from the x and y coordinates,

respectively, and with parameter λh as the probability of

hiding a region. Each box-and-whisker diagram (boxplot)

shows the system level location-privacy of users for a

specific set of LPPM parameters against a specific attack.

The bottom and top of a box show the 25th and 75th

percentiles, and the central mark shows the median value.

The ends of the whiskers represent the most extreme data

points not considered as outliers, and the outliers are plotted

individually.

By system-level location-privacy, we collectively refer to

the privacy values (expected error - incorrectness) achieved

for all possible combinations of attack parameters ((u, t)
for LO-ATT, (u, v) for MD-ATT, (r, t) for AP-ATT). The

system-level location-privacy is represented by the median

privacy value, shown in the boxplot as the central mark

in the box. We also plot the 25th and 75th percentiles

of the privacy value in order to show the diversity of

adversary’s expected error. As an example, the first boxplot

in Figure 4(a).ii, which is associated with 0.0 in the x-axis,

shows LPLO-ATT (u, t) for all u and t, using LPPM(1, 3, 0.0).
We expect to see improvement in location privacy, as we

increase the level of obfuscation. We also expect to observe

convergence of location privacy to its near maximum value,

when we set the location-hiding level equal to 0.9 (i.e.,

90% of the users’ locations are hidden from the adversary).

Unsurprisingly, we observe these two things in the plots:

Reading a plot from left to right we see the effect of increas-

ing the hiding level λh (0.0 to 0.9) for constant precision-

reducing levels µx and µy . Namely, the privacy always

increases, although the effect is much more pronounced in

LO-ATT(first row). By comparing corresponding boxes of

two adjacent plots, i.e., same hiding levels, we see the added

value of the precision-reducing mechanism (on the left, µx

and µy are both 0; on the right, µx is 1 and µy is 3). Again,

the clearest improvement happens in LO-ATT.

An interesting conclusion is that the effect of the LPPM

is most positive against LO-ATT, which is, in a sense, the

most intrusive attack of the three: it targets the exact location

of a single user at a single time. The other two attacks,

especially AP-ATT, are more related to statistics of the user

mobility, so there could even be legitimate reasons that

one would want to collect that information. For instance, a

researcher who studies the geographical distribution of users

would be interested in the number of users in a region. We

can conclude that the tested LPPMs protect users’ location-

privacy against malicious adversaries, but they still provide

information for less harmful activities.

Now, we assess the appropriateness of two metrics,

namely k-anonymity and entropy, for quantifying location

privacy. Note that any other heuristic metric can be evaluated
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Figure 5. Comparison of location-privacy metrics. The x-axis shows the
users’ location-privacy based on the incorrectness metric (30). The y-axis
shows (a) the normalized entropy of the adversary’s estimation, (b) the
normalized k-anonymity. Each point in the plot represents the location
privacy of some user at some time for two metrics (incorrectness vs entropy
in (a), incorrectness vs k-anonymity in (b)). “∗”s are the location privacy
values achieved from LPPM(2, 3, 0.9) as a strong mechanism, “·”s are
the values for LPPM(1, 2, 0.5) as a medium mechanism, and “◦”s are the
values for LPPM(1, 0, 0.0) as a weak mechanism. The two metrics would
be fully correlated only if all points were on the diagonal (0, 0) to (1, 1).

in the same way. We focus on LO-ATT, and we assess

these metrics by testing to what extent they are correlated

to the success of the adversary in correctly localizing users

over time (i.e., the incorrectness metric LPLO-ATT (u, t)).
We choose three LPPMs: LPPM(1, 0, 0.0) as a weak

mechanism, LPPM(1, 2, 0.5) as a medium mechanism, and

LPPM(2, 3, 0.9) as a strong mechanism.

In Section II-D, we use entropy to measure the uncertainty

of the adversary. Here, we assess the normalized entropy of

the pdf of the location of user u at time t, as a metric for
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her location privacy. The normalized entropy is computed

as follows:

NHLO-ATT (u, t) =
−
∑

r∈R p̂u,t(r) log(p̂u,t(r))

log(M)
(33)

where log(M) is the maximum entropy over M regions.

According to the k-anonymity metric, the location-privacy

of a user u at a given time t is equal to the number of

users who satisfy all of the following conditions: (i) they

are anonymous, (ii) they obfuscate their location by merging

regions (which includes their actual location), (iii) their

obfuscated location (i.e., the set of merged regions) is a

superset of the obfuscated location of u at t. We divide this

number of users by N , the total number of users, to have

the normalized k-anonymity:

NKLO-ATT(u, t) =
1

N

∑

v∈U

1av(t)∈ou(t)∧ou(t)⊆ov(t) (34)

Figure 5 illustrates the relation between the incorrect-

ness of the adversary LPLO-ATT (u, t) and the two above-

mentioned metrics: normalized entropy NHLO-ATT (u, t), and

normalized k-anonymity NKLO-ATT(u, t). We see that the en-

tropy is more correlated to the adversary’s incorrectness than

k-anonymity is. However, both entropy and k-anonymity

misestimate the true location privacy of users.

Let us focus on Figure 5(a). All but few of the points fall

into the “NH < LP ” triangle, which means that, in this

setting, the entropy metric underestimates location privacy.

For example, consider the “∗”s on the NH = 0.6 horizontal

line, all of whose entropy is 0.6. The incorrectness metric

(LP ) of these points ranges from 0.6 to 1. Or, consider the

vertical line LP = 1, where there are “∗”s corresponding to

values of NH ranging from 0.2 to 0.7. In both cases, the

estimation of location privacy by NH is up to 5 times less

than the true location privacy of users, which makes it an

unappropriate and loose lower bound for location privacy.

We observe the same phenomenon in the results of the two

other LPPMs (represented by “·”s and “◦”s).

The results are even worse for k-anonymity in Figure 5(b)

as there is less correlation between NK and LP . In fact,

k-anonymity in some cases underestimates location privacy

(consider the area where NK < 0.5 and LP > 0.5) and in

some other cases (NK > 0.5 and LP < 0.5) overestimates

it. Hence, this is not an appropriate estimator for location

privacy either.

V. RELATED WORK

There are several papers in the field of location privacy

that aim at clarifying the way to effectively protect users’

location privacy by classifying the problems and studying

various unaddressed issues and missing elements in this field

of research. We will discuss these papers in the beginning

of this section. These papers cover a range of different

concerns, but highlight the following two urgent topics:

• Understanding the threats and formalizing the attacks

on location privacy

• Designing a standard and appropriate evaluation metric

for location privacy based on a sound theoretical model

that can be used to compare various schemes

Krumm [14] studies various computational location pri-

vacy schemes: those that can be formally specified and

quantitatively measured. The authors regard the accuracy

of location privacy metrics as the key factor in the progress

of computational location privacy, and emphasize the im-

portance of finding a single (or a small set of sufficient)

quantifier for location privacy.

Decker [6] gives an overview of location privacy threats

and studies the effects of various countermeasures on pro-

tecting location privacy. The author also discusses which

protection mechanisms (such as obfuscation, anonymization)

are appropriate for different location-based services, consid-

ering the specification and requirements of those services.

Shokri et al. [21], [22] survey various LPPMs and also

the metrics used for measuring location privacy (called

uncertainty-based, error-based and k-anonymity). The au-

thors compare various metrics qualitatively and show that

metrics such as entropy and k-anonymity are inadequate for

measuring location privacy. The authors rely on a number

of common-sense examples to justify the results.

Duckham [7] proposes a few rules as the key principles

of research on location privacy, which make this field of

research different from other research topics in privacy. The

author refers to the predictable mobility of humans, the

constraints of the area within which people move, the effects

of location-based applications on privacy, the effectiveness

of centralized vs. distributed protection mechanisms and,

last but not least, the importance of a formal definition of

fundamental terms (such as the precision and accuracy of

information) in the design of protection mechanisms.

All the above-mentioned papers, of course, have been a

source of inspiration for our research in this paper. However,

despite the fact that we share common concerns (especially

the two emphasized items in the beginning of this Section)

neither these papers, nor any other paper we know about,

provide a framework with which LPPMs can be evaluated

quantitatively. Our work is a realization of the goals and

concerns of the research community and provides a modular

platform every part of which can be separately analyzed

and be improved upon; for example, by simulating more

powerful attacks using other inference techniques.

Other papers related to our work implement particular

attacks to show the predictability and uniqueness of users’

location traces, and some of them evaluate the efficacy of

specific protection mechanisms. Each paper uses a different

model to state the problem and evaluate location privacy. In

spite of this diversity, this provides us with tools that can

potentially be used in a generic framework.
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A prominent example of such papers is [15], in which

Liao et al. propose a framework for recognizing mobile

users’ activities based on the places they visit and also

the temporal patterns of their visit. The authors develop

an inference technique based on Markov Chain Monte

Carlo (MCMC) methods and show how users’ activities are

dependent on their mobility traces. The paper does not talk

about the consequences of these techniques, if used by an

adversary, on users’ privacy. However, it shows the relation

between location privacy (i.e., to what extent a user’s identity

is unlinkable to a location) and the general privacy of mobile

users (e.g., their activities and habits). Thus, it explains

the value of protecting mobile users’ location-privacy for

preventing the loss of their general privacy.

Other papers define the users’ (location) privacy as the

extent to which the users’ names (real identities) can be

derived from their traces. In our terms, they address “what

is the likelihood that an anonymous trace belongs to a given

user.” In fact, the results show the uniqueness of users’

mobility patterns.

Bettini et al. [2] state that location traces can act as

quasi-identifiers of mobile users and lead to identification

of anonymous traces. Hence, they propose a k-anonymity

method to protect users’ anonymity.

Hoh et al. [12] and Krumm [13] focus on finding users’

identities based on their home addresses. Hence, they run

some inference attacks on location traces to find the home

address of the user to which the trace belongs. The effec-

tiveness of various protection mechanisms such as spatial

cloaking (hiding), noise (perturbation), and rounding (reduc-

ing precision) on foiling these attacks are also evaluated.

Mulder et al. [5] show that anonymous location traces,

even at a low space granularity (i.e., at the level of the size

of the GSM cells) and spanning a short time period (a few

hours), can be re-identified, given the mobility profiles of

the individuals.

Golle and Partridge [10] discuss the anonymity of

home/work location pairs. The authors show that knowing

home and work addresses is enough to de-anonymize the

location traces of most of the users (especially in the United

States, where they obtained their results). Freudiger et al.

[9] use more advanced clustering algorithms to show mobile

users’ privacy-erosion over time as they make use of various

types of location-based services.

In the same vein of the previous works, Ma et al. [16]

show that published anonymous mobility traces can be iden-

tified using statistical inference methods such as maximum

likelihood estimators, if the adversary has access to some

samples of those traces with known user names.

Note that these papers in general only highlight the

vulnerability of location traces to de-anonymization by an

adversary with access to different types of information.

However, there are very few research contributions where

the authors focus on how traceable a user is; that is, the

extent to which the adversary can correctly reconstruct a

complete trace from partial fragments. An example of this

line of investigation is [11], in which Hoh and Gruteser

propose a tracking attack based on multi-target tracking al-

gorithms [19] (using a Kalman filter) can help the adversary

to link different pieces of a user’s anonymous trace. The

authors propose a path confusion method in which traces

of different users are perturbed to create confusion in the

tracking algorithm. They also formulate an optimization

problem to solve the tradeoff between location privacy and

usefulness of the perturbed traces.

In our paper, as opposed to the enumerated related work,

we jointly consider obfuscation and anonymization methods

and develop generic attacks that can be used against any

LPPM. The framework we propose in this paper enables us

to formalize and evaluate various LPPMs. To the best of our

knowledge, the Location-Privacy Meter is the first generic

tool developed to evaluate location privacy of location traces.

Finally, we should mention that modeling and formalizing

evaluation frameworks for privacy has recently been the

focus of researchers in other domains. Good examples of this

movement are differential privacy (for databases, typically)

proposed by Dwork [8], a framework to evaluate anonymity

protocols by Chatzikokolakis et al. [3], an evaluation frame-

work for MIX networks by Troncoso and Danezis [4], [24],

and a privacy model for RFIDs by Vaudenay [25].

For a more in-depth survey of various privacy-preserving

methods, metrics and attacks in the location-privacy litera-

ture, the reader is referred to [14], [21], [23].
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VI. CONCLUSION

In this paper, we have raised the questions “what is loca-

tion privacy?” and “how can location privacy be quantified,

given an adversary model and a protection mechanism?”

In order to address these questions, we have established a

framework in which various entities, which are relevant to

location privacy of mobile users, have been formally defined.

The framework enables us to specify various LPPMs and

attacks. Within this framework, we were also able to unravel

various dimensions of the adversary’s inference attacks. We

formally justify that the incorrectness of the adversary in

his inference attack (i.e., his expected estimation error)

determines the location privacy of users.

We have developed an operational tool, named Location-

Privacy Meter, as a realization of our framework. A designer

of an LPPM can easily specify and integrate her algorithm
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in this tool for evaluation. Relying on well-established

statistical methods, we have implemented a generic attack

that can be used to answer all sorts of information disclosure

questions. We have also developed some specific attacks,

such as localization attacks, that are more targeted and hence

more time-efficient.

As a follow-up to this work, we will add new modules

with which we can support pseudonym changes over time

for users, in order to capture all possible LPPM algorithms.

We would also like to incorporate the location-based appli-

cations into the framework and analyze the effectiveness of

LPPMs with respect to these applications.
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