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ABSTRACT
Despite the tremendous growth in the cellular data network usage
due to the popularity of smartphones, so far there is rather lim-
ited understanding of the network infrastructure of various cellular
carriers. Understanding the infrastructure characteristics such as
the network topology, routing design, address allocation,and DNS
service configuration is essential for predicting, diagnosing, and
improving cellular network services, as well as for delivering con-
tent to the growing population of mobile wireless users. In this
work, we propose a novel approach for discovering cellular infras-
tructure by intelligently combining several data sources,i.e.,server
logs from a popular location search application, active measure-
ments results collected from smartphone users, DNS requestlogs
from a DNS authoritative server, and publicly available routing up-
dates. We perform the first comprehensive analysis to characterize
the cellular data network infrastructure of four major cellular carri-
ers within the U.S. in our study.

We conclude among other previously little known results that
the current routing of cellular data traffic is quite restricted, as it
must traverse a rather limited number (i.e., 4–6) of infrastructure
locations (i.e., GGSNs), which is in sharp contrast to wireline In-
ternet traffic. We demonstrate how such findings have direct impli-
cations on important decisions such as mobile content placement
and content server selection. We observe that although the local
DNS server is a coarse-grained approximation on the user’s net-
work location, for some carriers, choosing content serversbased on
the local DNS server is accurate enough due to the restrictedrout-
ing in cellular networks. Placing content servers close to GGSNs
can potentially reduce the end-to-end latency by more than 50%
excluding the variability from air interface.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communi-
cation; C.2.3 [Network Operations]: Network monitoring; C.4
[Performance of Systems]: Measurement techniques; C.4 [Performance
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1. INTRODUCTION
On the Internet, IP addresses indicate to some degree the identity

and location of end-hosts. IP-based geolocation is widely used in
different types of network applications such as content customiza-
tion and server selection. Using IP addresses to geolocate wireline
end-hosts is known to work reasonably well despite the prevalence
of NAT, since most NAT boxes consist of only a few hosts [7].
However, one recent study [5] exposed very different characteris-
tics of IP addresses in cellular networks,i.e., cellular IP addresses
can be shared across geographically very disjoint regions within
a short time duration. This observation suggests that cellular IP
addresses do not contain enough geographic information at asuffi-
ciently high fidelity. Moreover, it implies only a few IP gateways
may exist for cellular data networks, and that IP address manage-
ment is much more centralized than that for wireline networks, for
which tens to hundreds of Points of Presence (PoPs) are spread out
at geographically distinct locations.

There is a growing need to improve mobile content delivery,
e.g.,via a content distribution network (CDN) service, given the
rapidly increasing mobile traffic volume and the fact that the per-
formance perceived by mobile users is still much worse than that
for DSL/Cable wireline services [17]. For mobile content, the ra-
dio access network, cellular backbone, and the Internet wireline all
have impact and leave space for further improvement [2, 1, 30]. A
first necessary step is to understand the cellular network structure.

The lack of geographic information of cellular IP addressesbrings
new challenges for mobile service providers, who attempt tode-
liver content from servers close to users. First, it is unclear where
to place the content servers. As shown later, cellular data networks
have very few IP gateways. Therefore, it is critical to first identify
those IP gateways to help decide where to place content servers.
Second, unlike wireline networks, cellular IP addresses themselves
often cannot accurately convey a user’s location, which is critical
information needed by the CDN service to determine the closest
server. In this work, we show how these challenges can be ad-
dressed by leveraging the knowledge of the cellular networkin-
frastructure.

Cellular data networks have not been explored much by the re-



search community to explain the dynamics of cellular IP addresses
despite the growing popularity of their use. The impact of the cellu-
lar architecture on the performance of a diverse set of smartphone
network applications and on cellular users has been largelyover-
looked. In this study, we perform the first comprehensive charac-
terization study of the cellular data network infrastructure to ex-
plain the diverse geographic distribution of cellular IP addresses,
and to highlight the key importance of the design decisions of the
network infrastructure that affect the performance, manageability,
and evolvability of the network architecture. Understanding the
current architecture of cellular data networks is criticalfor future
improvement.

Since the observation of the diversity in the geographic distri-
bution of cellular IP address in the previous study [5] indicates
that there may exist very few cellular IP data network gateways,
identifying the location of these gateways becomes the key for cel-
lular infrastructure characterization in our study. The major chal-
lenge is exacerbated by the lack of openness of such networks. We
are unable to infer topological information using existingprobing
tools. For example, merely sending traceroute probes from cellular
devices to the Internet IP addresses exposes mostly privateIP ad-
dresses along the path within the UMTS architecture. In the reverse
direction, only some of the IP hops outside the cellular networks re-
spond to traceroute probes.

To tackle these challenges, instead of relying on those cellular
IP hops, we use the geographic coverage of cellular IP addresses
to infer the placement of IP gateways following the intuition that
those cellular IP addresses with the same geographic coverage are
likely to have the same IP allocation policy,i.e., they are managed
by the same set of gateways. To obtain the geographic coverage,
we use two distinct data sources and devise a systematic approach
for processing the data reconciling potential conflicts, combined
with other data obtained via simple probing and passive dataanaly-
sis. Our approach of deploying a lightweight measurement tool on
smartphones provides the network information from the perspec-
tive of cellular users. Combining this data source with a location
search service of a cellular content provider further enhances our
visibility into the cellular network infrastructure.

One key contribution of our work is the measurement methodol-
ogy for characterizing the cellular network infrastructure, which
requires finding the relevant address blocks, locating them, and
clustering them based on their geographic coverage. This enables
the identification of the IP gateways within cellular data networks,
corresponding to the first several outbound IP hops used to reach
the rest of the Internet. We draw parallels with many past stud-
ies in the Internet topology characterization, such as the Rocketfuel
project [31] characterizing ISP topologies, while our problem high-
lights additional challenges due to the lack of publicly available in-
formation and the difficulties in collecting relevant measurement
data. We enumerate our key findings and major contributions be-
low.

• We designed and evaluated a general technique for distin-
guishing cellular users from WiFi users using smartphones
and further differentiating network carriers based on cellu-
lar IP addresses. Compared with other heuristics such as
querying IP addresses fromwhoisdatabase and distinguish-
ing cellular carriers based on key words such as “mobility”
and “wireless” from the organization name, our technique
collects the ground truth observed by smartphone devices
by deploying a lightweight measurement tool for popular
smartphone OSes. Distributed as a free application on major
smartphone application markets, it can tell the carrier name

for 99.97% records of a popular location search application
which has 20,000 times more records than the application.

• We comprehensively characterized the cellular network in-
frastructure for four major U.S. carriers including both UMTS
and EVDO networks by clustering their IP addresses based
on their geographic coverage. Our technique relies on the
device-side IP behavior easily collected through our lightweight
measurement tool instead of requiring any proprietary infor-
mation from network providers. Our characterization method-
ology is applicable to all cellular access technologies (2G,
3G, or 4G).

• We observed that the traffic for all four carriers traverses
through only 4–6 IP gateways, each encompassing a large
geographic coverage, implying the sharing of address blocks
within the same geographic area. This is fundamentally dif-
ferent from wireline networks with more distributed infras-
tructure. The restricted routing topology for cellular net-
works creates new challenges for applications such as CDN
service.

• We performed the first study to examine the geographic cov-
erage of local DNS servers and discussed in depth its impli-
cation on content server selection. We observe that although
local DNS servers provide coarse-grained approximation for
users’ network location, for some carriers, choosing content
servers based on local DNS servers is reasonably accurate for
the current cellular infrastructure due to restricted routing in
cellular networks.

• We investigated the performance in terms of end-to-end de-
lay for current content delivery networks and evaluated the
benefit of placing content servers at different network loca-
tions,i.e.,on the Internet or inside cellular networks. We ob-
served that pushing content close to GGSNs can potentially
reduce the end-to-end latency by 50% excluding the variabil-
ity from air interface. Our observation strongly encourages
CDN service providers to place content servers inside cellu-
lar networks for better performance.

The rest of this paper is organized as follows. We first describe
related work in §2. §3 describes the high-level solution to discover
IP gateways in cellular infrastructure. §4 explains the main method-
ology in the data analysis and the data sets studied. The results
in characterizing cellular data network infrastructure along the di-
mensions of IP address, topology, local DNS server, and routing
behavior are covered in §5. We discuss the implications of these
results in §6 and conclude in §7 with key observations and insights
on future work.

2. RELATED WORK
Our study is motivated by numerous previous measurement stud-

ies [34, 38, 22],e.g.,Rocketfuel [31] to characterize various prop-
erties of the Internet through passive monitoring using data such as
server logs and packet traces, as well as active measurementsuch as
probing path changes. Efforts on reverse engineering properties of
the Internet [32] have been shown to be quite successful; however,
very little work has been done in the space of cellular IP networks.
Complementary to our study, the most recent work by Keralapura
et al. profiled the browsing behavior by investigating whether there
exists distinct behavior pattern among mobile users [20]. Their
study implemented effective co-clustering on large scale user-level
web browsing traces collected from one cellular provider. As far as



we know, our study is the first to comprehensively characterize cel-
lular IP networks covering all the major cellular carriers in the U.S.,
focusing on key characteristics such as network topological prop-
erties and dynamic routing behavior. From the characterization of
the cellular data network structure, we also draw conclusions on
content placement, which is essential given the rapidly growing de-
mand for mobile data access.

We build our work upon a recent study by Balakrishnanet al. [5]
in which they highlighted unexpected dynamic behavior of cellular
IP addresses. Our work performs a more complete and general
study covering a wider set of properties, illustrating carrier-specific
network differences, explaining the observed diverse geographic
distribution of cellular IP addresses, also investigatingassociated
implications of observed network designs.

Although there have been studies characterized the CDNs rela-
tive to the end users accessing from the wireline networks [23, 29,
10, 26, 16], very little attention has been paid to the cellular users.
These previous studies are mainly from two perspectives,i.e.,con-
tent placement and server selection. Our work is complementary
to these studies by investigating the implication of cellular network
infrastructure on mobile data placement and server selection. To
our best knowledge, our study is the first to investigate the content
placement and content server selections for cellular users.

Previous studies on cellular networks can be classified approx-
imately into several categories, namely from ISP’s view point of
managing network resources [13, 33], from end-user’s perspectives
of optimizing energy efficiency and network performance at the de-
vice [4, 39, 6], and finally developing infrastructure support for im-
proving mobile application performance [8, 28] and security [24].
Our work is complementary to them by exposing the internal design
of the cellular data network structure that can be useful to guide
such optimization efforts.

There have also been several measurement studies in understand-
ing the performance and usage of cellular networks. One recent
study focuses on mobile user behavior from the perspective of ap-
plications such as [36] which characterized the relationship be-
tween users’ application interests and mobility. Other examples
include a study of the interaction between the wireless channels
and applications [21], performance study of multimedia stream-
ing [11], and performance of TCP/IP over 3G wireless with rate
and delay variation [9]. Note that our work fills an importantvoid
in the space of cellular data network by focusing on the network ar-
chitectural design: IP address allocation, local DNS service setup,
and routing dynamics.

3. OVERVIEW
In this section, we describe the cellular data network architec-

ture, followed by an overview of our methodology for characteriz-
ing the cellular data network infrastructure.

3.1 Cellular Data Network Architecture
Despite the difference among cellular technologies, a cellular

data network is usually divided into two parts, the Radio Access
Network (RAN) and the Core Network. The RAN contains differ-
ent infrastructures supporting 2G technologies (e.g.,GPRS, EDGE,
1xRTT, etc.) and 3G technologies (e.g.,UMTS, EVDO,etc.), but
the structure of the core network does not differentiate between
2G and 3G technologies. In this study we focus on the core net-
work, in particular, the gateways that hide the cellular infrastruc-
tures from the external network, as identifying the gateways is the
key to explain the geographically diverse distribution of cellular
addresses [5].

Figure 1 illustrates the typical UMTS/EDGE network. The RAN

Figure 1: The UMTS/EDGE network architecture.

architecture, which allows the connectivity between user handsets
and the core network, depends on the radio access technology: it
consists of the Base Transceiver Station (BTS) and the Base Sta-
tion Controller (BSC) for EDGE (2G), and the Node B and the Ra-
dio Network Controller (RNC) for UMTS (3G). The core network,
which is shared by both 2G’s and 3G’s RANs, is comprised of the
Serving GPRS Support Node (SGSN) and the Gateway GPRS Sup-
port Node (GGSN). To start a data session, a user first communi-
cates with its local SGSN that delivers its traffic to a GGSN. The
SGSN requests the DNS server for the GGSN via the user’s access
point name (APN). The DNS server decides which GGSN serves
the data session accordingly [27]. Once the GGSN is determined,
the communication between the SGSN and the GGSN is tunneled,
so GGSN is the first IP hop and is followed by multiple hops such
as NAT and firewalls within the core network. Being the first router
for the connected cellular device, the GGSN is responsible for IP
address assignment, IP pool management, address mapping, QoS,
authentication,etc.[12].

The EVDO network has an architecture very similar to the UMTS
network except that the Packet Data Serving Node (PDSN) in the
EVDO core network serves as a combination of both the SGSN and
the GGSN in the UMTS core network. Without explicit explana-
tion, our statements for the UMTS network are applicable to the
EVDO network as well.

To support the future 4G LTE (Long Term Evolution) network,
the GGSN node will be upgraded to a common anchor point and
gateway (GW) node, which also provides backward compatibility
to other access technologies such as EDGE and UMTS [18]. The
functionality of GW is largely similar to that of GGSN. Therefore,
our proposed methodology, which focuses on identifying GGSNs
in the cellular infrastructure, is still broadly applicable.

3.2 Solution Overview
Despite the growing popularity of smartphones, cellular data net-

works have not been explored much by the research community to
explain the dynamics of cellular IP addresses. Besides the chal-
lenge of keeping tracking of cellular IP addresses, to identify GGSNs
in the cellular infrastructure, another challenge is the lack of open-
ness of such networks. Outbound probing via traceroute fromthe
cellular devices to the Internet IP addresses exposes mostly private
IP addresses along the path for UMTS networks due to the place-
ment of NAT boxes. These NAT boxes and firewalls prevent the
inbound traceroute probing to reach into the cellular backbones as
well.

Identifying GGSNs in the cellular infrastructure is the keyto ex-
plain the geographically diverse distribution of cellularaddresses
discovered by the recent study [5]. GGSNs serve as the gateway
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Figure 2: Workflow of the solution: black boxes correspond to
data, manipulated by processing modules (white boxes).

between the cellular and the Internet infrastructure and thus play
an essential role in determining the basic network functions, e.g.,
routing and address allocation. In our study, we leverage the ge-
ographic coverage of cellular addresses to infer the placement of
GGSNs, assuming that prefixes sharing similar IP behaviors are
likely to have the same IP allocation policy,i.e., they are managed
by the same GGSN. Considering geographic coverage as one type
of IP behaviors, we cluster prefixes based on the feature of geo-
graphic coverage, and infer the placement of GGSNs according to
the prefix clusters that we generated.

As depicted by Figure 2, to get the geographic location of cel-
lular IP addresses, we leverage a popular location search service
whose server logs public IP address and GPS location of users(i.e.,
the mobile service log). We use the mobile service log to generate
prefix-to-geographic-coverage mappings. In order to identify cellu-
lar addresses and to further differentiate different cellular providers,
we also deploy a measurement tool for mainstream smartphone
OSes to build a database (i.e., mobile application log) for prefix-
to-carrier mappings. They provide the ground truth for determin-
ing the cellular provider who owns a certain IP address block. By
correlating prefix-carrier mappings with prefix-geographic cover-
age mappings, we can obtain the prefix-to-geographic-coverage-
to-carrier mappings for clustering. Once the clustering isfinished,
we validate the clustering results via three independent ways: clus-
tering using the mobile application log, identifying the placement
of local DNS servers in cellular networks, and classifying tracer-
oute paths. Based on our findings during clustering and validation,
we investigate implications of the cellular infrastructure on content
delivery service for mobile users.

Note that we designed our methodology to be generally applica-
ble for any data cellular network technologies (2G, 3G, and 4G),
and particularly from the perspective of data requirement.Any
mobile data source that contains IP addresses, location informa-
tion, and network carrier information can be used for our purpose
of characterizing the cellular data network infrastructure. Based
on our experience of deploying smartphone applications, itis not
difficult to collect such data.

In §4, we detail our methodology for identifying cellular ad-
dresses and cellular providers. The discovery of the geographic

coverage of cellular prefixes and clustering techniques areelabo-
rated in §5.1.

4. MEASUREMENT DATA AND PREPRO-
CESSING

In this section, we describe the data sets used for analysis and
the additional experiments carried out to supplement thesedata for
identifying the key properties of interest. Note that due toprivacy
concerns, without compromising the usefulness of the results, we
have anonymized the carrier by assigning a letter,i.e., Carrier A
through D, to identify each of the four carriers studied which have
significant footprint in the U.S. Similarly, we assign a unique ID to
each address block and assign a symbol to each ASN.

4.1 DataSource1 – server logs

Operator 3G
Records # BGP # /24

# ASNs(%) prefixes prefixes

Carrier A UMTS 43.34% 54 16,288 1
Carrier B UMTS 7.09% 12 41 1
Carrier C EVDO 1.51% 202 15,590 2
Carrier D EVDO 1.22% 172 11,205 1
* - 100% 16,439 121,567 1,862

Table 1: Statistics ofDataSource1(server logs).

The first data set used is from server logs associated with a pop-
ular location search service for mobile users. We refer to this data
source asDataSource1. It contains the IP address, the timestamp,
and the GPS location of mobile devices. The GPS location is re-
quested by the application and is measured from the device. The
data set ranges from August 2009 until September 2010, containing
several million records. This comprehensive data set covers 16,439
BGP prefixes, 121,567 /24 address blocks from 1,862 AS numbers.
However,DataSource1does not differentiate the carrier for each
record. Later we discuss how to mapDataSource1’s records to
corresponding cellular carriers or WiFi networks with the help of
DataSource2’s prefix-to-carrier table in §4.3. Users of the search
service may also use WiFi besides cellular networks to access the
service.

Table 1 shows the breakdown of the records among the four
major U.S. cellular providers forDataSource1. 43.34% of all the
records inDataSource1are mapped to Carrier A due to the dispro-
portionate popularity of the service among different mobile users.
Despite this bias, we still find sufficient information to character-
ize the other three major carriers. 46.71% ofDataSource1is from
WiFi users, and 0.13% is from cellular carriers besides the four ma-
jor carriers. Note that one cellular carrier may be mapped tomore
than one AS number (ASN),e.g.,Carrier C corresponds to more
than one ASN.

The long-term and nation-wideDataSource1is the major data
source that we rely on to map cellular prefixes to their geographic
coverage after we aggregate cellular IP addresses to prefixes based
onRouteViews’s BGP update announcements [3].

4.2 DataSource2 – active measurements
The second main data source of our analysis comes from an

application that we have widely deployed on three popular smart-
phone platforms: iPhone OS, Android, and Windows Mobile (WM).
We refer to this data source asDataSource2, with the basic statis-
tics shown in Table 2. The application is freely available for mo-
bile users to download for the purpose of evaluating and diagnosing
their networks from which we can collect common network char-



Platform # # # BGP # /24 #
users carriers prefixes prefixes ASNs

iPhone 25K - 1 5.2(1.8)K 10.8(2.8)K 1.2K(268)
Android 28K 278(36)2 2.7(1.1)K 7.3(3.1)K 720(179)
WM 9K 516(66) 1.6(0.5)K 5.7(3.5)K 545(121)
other 63K 571(87) 7.6(2.9)K 23(9.3)K 1.5K(387)
1 On iPhone OS, we cannot tell the serving carrier.
2 Numbers inside parentheses refer to the U.S. users only.

Table 2: Statistics ofDataSource2(smartphone app).

acteristics such as the IP address, the carrier name, the local DNS
server, and the outbound traceroute path. The hashed uniquede-
vice ID provided by the smartphone application developmentAPI
allows us to distinguish devices while preserving user privacy. Our
application also asks users for access permission for theirGPS lo-
cation. So far, this application has already been executed more
than 143,700 times on 62,600 distinct devices.DataSource2cov-
ers about the same time period asDataSource1: from September
2009 till October 2010. Given that the application is used globally,
we observe a much larger number of carriers, many of which are
outside the U.S.

Note that this method of collecting data provides some ground
truths for certain data which is unavailable inDataSource1, e.g.,
IP addresses associated with cellular networks instead of Internet
end-points via WiFi network can be accurately identified because
of the API offered by those mobile OSes.

4.3 Correlating Across Data Sources
One important general technique we adopt in this work, com-

monly used by many measurement studies, is to intelligentlycom-
bine multiple data sources to resolve conflicts and improve accu-
racy of the analysis. This is necessary as each data source alone
has certain limitations and is often insufficient to provideconclu-
sive information.

CorrelatingDataSource1andDataSource2allows us to tell based
on the IP address whether each record inDataSource1is from cel-
lular or WiFi networks and recognize the correct carrier names
for those cellular records. Under the assumption that a longest
matching prefix is entirely assigned to either a cellular network
or an Internet wireline network, the overall idea for correlating
DataSource1andDataSource2depicted by Figure 2 is as follows.
Both data sources directly provide the IP address information: Each
record inDataSource1contains the GPS location information re-
ported by the device allocated with the cellular IP address;while
DataSource2contains the carrier names of those cellular IP ad-
dresses. We first map IP addresses in both data sets into their
longest matching prefixes obtained from routing table data of Route-
Views. After mapping cellular IP addresses into prefixes, we have
a prefix-to-location table fromDataSource1and a prefix-to-carrier
table fromDataSource2. Note that the prefix-to-location mapping
is not one-to-one mapping because one IP address can be present
at multiple locations over time. Combining these two tablesresults
in a prefix-to-carrier-to-location table, which is used to infer the
placement of GGSNs after further clustering discussed later.

We believe that cellular network address blocks are distinct from
Internet wireline host IP address blocks for ease of management.
To share address blocks across distinct network locations requires
announcing BGP routing updates to modify the routes for incoming
traffic, affecting routing behavior globally. Due to the added over-
head, management complexity, and associated routing disruption,
we do not expect this to be done in practice and thus assume that
a longest matching prefix is either assigned to cellular networks or

Internet wireline networks. That is why we map the IP addresses in
both data sets to their longest matching prefixes.

Two issues still require additional consideration: (a) building the
prefix-to-carrier mapping viaDataSource2, and (b) evaluating the
overlap betweenDataSource1andDataSource2to investigate any
potential limitation of usingDataSource2as the prefix-to-carrier
ground truth.

4.3.1 Recognizing cellular IP addresses and carriers
We expectDataSource2to provide the ground truth for differen-

tiating IP addresses from cellular networks and identifying the cor-
responding carriers of cellular IP addresses. Each record in Data-
Source2contains the network type,i.e.,cellular vs. WiFi, reported
by APIs provided by the OS. The carrier name is only availableon
Android and Windows Mobile due to the API limitation on iPhone
OS. After mapping IP addresses to their longest matching BGPpre-
fixes, we can build a table mapping from the BGP prefix to the car-
rier name for Android and Windows Mobile separately. Although
we cannot have a prefix-to-carrier table from iPhone OS, we can
produce a WiFi-prefix list tracking all the prefixes reportedas WiFi
networks, and use this WiFi-prefix list to validate Android’s and
Windows Mobile’s prefix-to-carrier tables. These WiFi prefixes are
associated with public IP addresses of the edge networks, likely a
DSL or cable modem IP in the case of home users.

We justify the accuracy of Windows Mobile’s and Android’s
prefix-to-carrier tables using the iPhone OS’s WiFi-prefix list. We
believe iPhone OS’s WiFi-prefix list is accurate because there are
only limited device types using iPhone OS,i.e., iPhone 4G, iPhone
3G, iPhone 3GS, and iPod Touch, which we tested locally and ob-
served to accurately report the network type. Given a prefix-to-
carrier table, we compare it with WiFi-prefix list to detect any po-
tential conflicts,i.e., a case when a prefix in the prefix-to-carrier
table appears in the WiFi-prefix list as well. A conflict happens
only if one IP address in a BGP prefix is considered as a WiFi
address by theDataSource2on iPhone OS but listed as a cellular
address on Android or Windows Mobile. By comparison, we ob-
serve 306 conflicts for Windows Mobile’s prefix-to-carrier table,
yet no conflict for Android. The reason may be thatDataSource2
on Windows Mobile failed to tell the network type on some plat-
forms since the Windows Mobile OS is customized for each type
of phone. Therefore, we use Android’s prefix-to-carrier table as
the authoritative source for identifying the carrier of each record in
DataSource1data set.

4.3.2 Overlap between data sources

Set # BGP % in % in
prefixes DataSource1 DataSource2

DataSource1∪ 2 453 - -
DataSource1∩ 2 259 99.97% 98.96%
∈ DataSource1/∈2 181 0.03% -
∈ DataSource2/∈1 13 - 1.04%

Table 3: Overlap betweenDataSource1 & DataSource2.

Characterizing the overlap between our two data sources helps
us estimate the effectiveness of usingDataSource2to identify the
carrier name ofDataSource1’s cellular prefixes. Moreover, a sig-
nificant overlap can confirm the representativeness of bothData-
Source1and DataSource2on cellular IP addresses as those two
data sources are collected independently.

We first compare the overlap betweenDataSource1andData-
Source2’s records in the U.S. in terms of number of prefixes within
the four carriers as shown in Table 3. AlthoughDataSource1and



DataSource2do not overlap much in terms of number of prefixes,
e.g.,181 prefixes inDataSource1are excluded byDataSource2, in
terms of number of records the overlap is still significant due to the
disappropriate usage of prefixes,i.e.,overlapped prefixes contribute
to the majority. 99.97% ofDataSource1’s records are covered by
the prefixes shared by bothDataSource1andDataSource2. There-
fore, we have high confidence in identifying the majority of cellular
addresses based onDataSource2. In addition, the big overlap in-
dicates that both data sources are likely to represent the cellular IP
behavior of active users well.

5. IDENTIFYING GGSN CLUSTERS
As mentioned in §3, discovering the placement of GGSNs is the

key to understanding the cellular infrastructure, explaining the di-
verse geographic distribution of cellular addresses. Thisillumi-
nates the important characteristics of cellular network infrastruc-
ture that affect performance, manageability, and evolvability. We
leverage the information of the geographic coverage of cellular ad-
dress blocks to infer the placement of each GGSN because those
address blocks sharing the similar geographic coverage arelikely
managed by the same GGSN. In this section, we (1) identify the
geographic coverage of the cellular prefixes inDataSource1; (2)
cluster those prefixes according to the similarity of their geographic
coverage; and (3) infer the placement of GGSNs from the differ-
ent types of clusters. To validate the clustering results wepresent
three validation techniques based onDataSource2, DNS request
logs from a DNS authoritative server, andtraceroute probing re-
spectively.

5.1 Clustering Cellular IP Prefixes
On the Internet, an IP address can often provide a good indica-

tion of geolocation, albeit perhaps only at a coarse-grained level,
as shown by numerous previous work on IP-based geolocation [25,
15, 19, 37]. However, for cellular networks, it is uncertaindue to a
lack of clear association of IP addresses with physical network lo-
cations, especially given the observed highly dynamic nature of IP
addresses assigned to a mobile device [5]. In this section, we derive
geographic coverage of cellular address blocks inDataSource1to
study the allocation properties of cellular IP addresses. We have
previously described our methodology how to identify cellular ad-
dresses and their corresponding carriers in §4: by aggregating IP
addresses to prefixes, we can identify the presence of a prefixat
different physical locations based on the GPS information in Data-
Source1.

As discussed in §3, we expect that address blocks with similar
geographic coverage are likely be subjected to similar address allo-
cation policy. From our data sets, we do observe similarity of ge-
ographic coverage present across address blocks. In Figure3, both
/24 address blocks 22 and 5 from Carrier A have more records inthe
Southeast region. The geographic coverage of these two prefixes is
clearly different from the distribution of all Carrier A’s addresses
in DataSource1shown in Figure 3(c), which is influenced by the
population density as well as Carrier A’s user base. Moreover, we
confirm and further investigate the observation in study [5]that a
single prefix can be observed at many distinct locations, clearly
illustrating that the location property of cellular addresses differs
significantly from that of Internet wireline addresses. Thelarge ge-
ographic coverage of these /24 address blocks also indicates that
users from both Florida and Georgia are served by the same GGSN
within this region.

We intend to capture the similarity in geographic coverage through
clustering to better understand the underlying network structure.
Also, to verify our initial assumption that carriers do not aggregate

their internal routes, we repeat the clustering for /24 address blocks
instead of for BGP prefixes by aggregating addresses into /24ad-
dress blocks. If cellular carriers do aggregate their internal routes,
the number of clusters based on /24 address blocks should be larger
than that based on BGP prefixes.

The logical flow to systematically study the similarity of geo-
graphic coverage is as follows. Firstly, we quantify the geographic
coverage. By dividing the entire U.S. continent intoN grids, we
assign each prefix aN-dimension feature vector, each element cor-
responding to one grid and the number of records located in this
grid from this prefix. As a result, the normalized feature vector
of each prefix is the probability distribution function (PDF) of the
girds where this prefix appears. Secondly, we cluster prefixes based
on their normalized feature vectors using thebisect k-meansalgo-
rithm for each of the four carriers. The choice ofN, varying from
15 to 150 does not affect the clustering results, this is because the
geographic coverage of each cluster is so large that the clustering
results are insensitive to the granularity of the grid size.

The process of clustering prefixes consists of two steps: (i)pre-
filtering prefixes with very few records; and (ii) tuning the max-
imum tolerable average sum of squared error (SSE) ofbisect k-
means. We present the details next.

5.1.1 Pre-filtering Prefixes with Very Few Records
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Figure 5: Distribution of # records for prefixes.

Before clustering, we perform pre-filtering to exclude prefixes
with very few records so that the number of clusters would notbe
inflated due to data limitations. Note that aggressive pre-filtering
may lead to losing too many records inDataSource1.

One intuitive way to filter out those prefixes is to set a thresh-
old on the minimum number of records that a prefix must have.
However, the effectiveness of this pre-filtering depends onthe dis-
tribution of the number of records of prefixes. We plot the comple-
mentary cumulative distribution function (CCDF) of the number of
records of prefixes in Figure 5. All the four carriers have bi-modal
distributions on the number of records of prefixes, implyingthat we
can easily choose the threshold without losing too many records. In
our experiments, we choose a threshold for each prefix to be 1%of
its carrier’s records.

5.1.2 Tuning the SSE inbisect k-meansAlgorithm
To compare the similarity across prefixes and further cluster them

we use thebisect k-meansalgorithm [35] which automatically de-
termines the number of clusters with only one input parameter, i.e.,
maximum tolerable SSE. In each cluster, consisting of multiple ele-
ments, SSE is the average distance from the element to the centroid
of the cluster. A smaller value of SSE generates more clusters. The
clustering quality is determined by the geographic coverage simi-
larity of the prefixes within a cluster, which is measured by SSE.
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Figure 3: Similarity of the geographic coverage for Carrier A’s prefixes.
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Figure 4: Sensitivity analysis of the SSE inbi-sect kmeans.

Figure 4 depicts how SSE, as a measure of the quality of cluster-
ing, affects the number of clusters generated for the four carriers.
We vary the choice of SSE from 0.01 to 0.99 with increment 0.01.
Since there may be multiple stable numbers of clusters, we select
the one with the largest range of SSE values. For example, the
number of clusters for Carrier A is 4 instead of 3 because it covers
[0.2, 0.6] when the number is 4 while it only covers [0.68, 0.78]
when the number is 3. From Figure 4, we can also observe that
every carriers has an obvious longest SSE range that resultsin a
stable number of clusters, indicating that (i) the geographic cov-
erage across prefixes in the same cluster is very similar; andthat
(ii) the geographic coverage of the prefixes across clustersis very
different.

5.1.3 Clustering Results
We address the problems of pre-filtering and tuning SSE forbi-

sect k-meansclustering in the last two sections. Table 4 shows the
parameters we used in pre-filtering and clustering and the cluster-
ing results. Aggressive filtering does not happen as every carrier
contains at least 99% of the original records after pre-filtering. For
Carriers A, B, and C, comparing the clustering at the BGP pre-
fix level vs. the /24 address block level, we do not observe any
difference in the number of the clusters generated and the cluster
that every address block belongs to. Unlike Carriers A, B, and
C, Carrier D does have finer-grained clusters based on its /24ad-
dress blocks. We observe that some Carrier D’s prefix-level clusters
are further divided into smaller clusters at the level of /24address
blocks. These results answer our previous question on the existence
of internal route aggregation. Since no internal route aggregation
observed for Carriers A, B, and C, BGP prefixes are sufficiently
fine-grained to characterize the properties of address blocks. For
Carrier D, although the clustering based on /24 address blocks is
finer-grained, it does not affect our later analysis. We haveapplied
the clustering onDataSource1’s records month by month as well,
but we do not see any different numbers of clusters for these 4car-
riers.

Figure 6 shows the geographic coverage of each Carrier A’s clus-
ter, from the perspective of the U.S. mainland ignoring Alaska and
Hawaii, illustrating the diversity across clusters as wellas the un-
expected large geographic coverage of every single cluster. Note
that each cluster consists of prefixes with similar geographic cov-

erage. Each Carrier A’s cluster has different geographic spread and
center,i.e., Cluster 1 mainly covers the Western, Cluster 2 mainly
covers the Southeastern, Cluster 3 mainly covers the Southern and
the Mid-Eastern, which are two very disjoint geographic areas, and
Cluster 4 mainly covers the Eastern. However, note that the clus-
ters are not disjoint in its geographic coverage,i.e., overlap exists
among clusters although those clusters have different geographic
centers. For example, comparing Figure 6(b) and 6(d), we canob-
serve that Cluster 2 and Cluster 4 overlap in the Northeast region.

We further quantify the overlap among clusters at grid level.
Given a grid, based on all the records located in this grid, wecount
how many records are from each prefix. Since we know which clus-
ter each prefix belongs to, we can calculate the fraction of records
for each grid contributed by different clusters. As a result, for each
grid overlapped by multiple clusters, we have a probabilitydistri-
bution function (PDF) on the cluster covering this grid. Based on
the PDF, we can calculate the Shannon entropy for each grid. For
example, four clusters have 300, 700, 600, and 400 records atgrid
X respectively, then the PDF for gridX is [0.3,0.7,0.6,0.4] whose
Shannon entropy is−0.3lg0.3−0.7lg0.7−0.6lg0.6−0.4lg0.4.
Smaller values of the entropy reflect smaller overlapping degree,
e.g.,if all the records for a grid are from the same cluster, the grid
has an entropy of−∞. Given the number of clusters isN, the theo-
retical maximum entropy for a grid is lgN.

Figure 8 draws the CDF of the entropy of the grid. We can ob-
serve that overlap at grid level is quite common for all four carri-
ers,e.g.,Carrier A’s median entropy value close to 1 means that the
records in the corresponding grids are evenly divided by twoclus-
ters. We conjecture two reasons for the overlap. The first reason is
due to load balancing. Because of user mobility, the regional load
variation can be high. Higher overlapping degree is better for main-
taining service quality. Moreover, in the extreme case if one cluster
has a failure, the overlap can increase the reliability of the cellular
infrastructure by shifting the load to adjacent clusters. Another rea-
son is that users commute across the boundary of adjacent clusters.
For example, a user inDataSource1gets an IP address at a region
covered by one cluster, subsequently moves to a nearby region cov-
ered by another cluster while still maintaining the data connection.
This will result in records showing the overlap between the first and
the second cluster in adjacent regions.

Figure 9 shows the clustering results for all four carriers.Al-



Carr. Thres. # prefixes SSE # clusters (% of records)[# of prefixes] per cluster
BGP /24 BGP /24 BGP /24 BGP /24 BGP /24

A 500 300 20 35 0.6 0.5 4 4 (28,19,27,26) [6,5,5,4] (18,24,25,27) [11,8,8,8]
B 500 300 11 11 0.5 0.5 5 5 (10,14,40,19,17) [1,2,3,2,2] (10,14,40,17,19) [1,2,3,2,2]
C 500 50 63 245 0.5 0.5 6 6 (28,24,10,7,9,19)[17,11,8,7,6,14] (50,24,3,3,12,5)[130,59,11,11,23,11]

D1 100 100 155 177 0.7 0.2 6 10 (30,10,13,22,9,14) (32,6,6,11,6,7,9,4,4,8,4)
[28,25,28,28,22,24] [27,23,16,16,12,14,11,8,7,7,10]

1 Carrier D’s clustering based on /24 address blocks is different with that based on BGP prefixes, which indicates the existence of internal routing

Table 4: Parameters and results for clustering on BGP and /24address blocks usingbisect k-means.
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Figure 6: Geographic coverage of each Carrier A’s cluster.
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Figure 7: Clustering Carrier A’s local DNS servers.
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Figure 8: CDF of the entropy of the clusters at the grid level.

though we have already noticed the overlap among clusters inFig-
ure 6, we are still interested in the dominant geographic coverage
of each cluster by assigning every grid to its dominant cluster by
majority voting. We make the following observations:

1. All 4 carriers we studied appear to cover the entire U.S. with
only a handful of clusters (4–6), each covering a large geo-
graphic area, differing significantly from the Internet back-
bone design.

2. There appears to be some “outlier” cases with sparse pres-
ence for each cluster in addition to consistent load balancing
patterns. We conjecture that this is caused by limited choice
of GGSNs for a small set of devices that use a special set of
APNs to which not all GGSNs are available for use.

3. Besides those “outliers”, overlap among clusters commonly
exists at many locations,e.g., the geographic area around
Michigan is clearly covered by three of four Carrier A’s clus-
ters. We believe the overlap is due to load balancing and user
mobility.

4. Clusters do not always appear to be geographically contigu-
ous. There are clearly cases where traffic from users are
routed through clusters far away instead of the closest one,
e.g.,Carrier A’s Cluster 3 covers both the Great Lake area
and the Southern region. We believe this is due to SGSNs
performing load balancing of traffic across GGSNs in differ-
ent data centers.

5. The clustering for /24 address blocks is the same as that for
BGP prefixes for Carriers A, B, and C confirming that there
is no internal route aggregation performed by their cellular
IP networks. However, Carrier D has finer-grained cluster-
ing for /24 address blocks than that for visible BGP prefixes.
Despite this observation, its number of clusters for /24 ad-
dress blocks is only 10 which is still very limited.

In our analysis, we discover that the infrastructure of cellular net-
works differs significantly from the infrastructure of wireline net-
works. The cellular networks of all four carriers exhibit only very
few types of geographic coverage. As we expected, the type of
geographic coverage reflects the placement of IP gateways. Since
the GGSN is the first IP hop, we can conclude the surprisingly re-
stricted IP paths of cellular data network. This network structure
implies that routing diversity is limited in cellular networks, and
that content delivery service (CDN) cannot deliver contentvery
close to cellular users as each cluster clearly covers largegeo-
graphic areas.

5.2 Validating Clusters
We validate the clustering result in three independent ways: clus-

tering usingDataSource2’s records, identifying the placement of
local DNS servers in cellular networks, and classifying traceroute
paths.
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Figure 9: Clusters of all four carriers.

5.2.1 Validation via DataSource2
Although the size ofDataSource2is much smaller than that of

DataSource1, we can still useDataSource2to validate the cluster-
ing results obtained fromDataSource1. We repeat the clustering
on the prefixes with more than 100 records from theDataSource2.
Besides, we repeat the clustering on different types of device, i.e.,
Android, iPhone, and WM based onDataSource2’s records. The
clustering results are consistent with those ofDataSource1in terms
of the number of clusters and the cluster that each prefix belongs
to. Moreover, all the observations fromDataSource1listed in §5.1
consistently apply toDataSource2.

5.2.2 Validation via Local DNS Server Based Group-
ing

Carrier # user # records # LDNS # clusters

A 289 384 12 4
B 574 1045 4 1
C 704 884 12 3
D 122 142 15 3

Table 5: Statistics of local DNS experiments.

The configuration of the local DNS infrastructure is essential to
ensure good network performance. Besides performance concerns,
local DNS information is often used for directing clients tothe
nearest cache server expected to have the best performance.This
is based on the key assumption that clients tend to be close totheir
configured local DNS servers, which may not always hold [29].In
this work, we perform the first study to examine the placementand
configuration of the local DNS servers relative to the cellular users
and the implication of the local DNS configuration of cellular users
on mobile content delivery. It is particularly interestingto study
the correlation between the local DNS server IP and the device’s
physical location. Since DNS servers are expected to be placed at
the same level as IP gateways,i.e., GGSNs, we expect to see sim-
ilar clusters of cellular local DNS servers based on the geographic
coverage.

To collect a diverse set of local DNS server configurations, we
resort to ourDataSource2application by having the client send a
specialized DNS request for a unique but nonexistent DNS name
which embeds the device identifier and the timestamp (id_timestamp_
example.com) to a domain (example.com) where we have access
to the DNS request logs on the authoritative DNS server. The de-
vice identifier,id_timestamp, is used for correlating the corre-
sponding entry in theDataSource2’s log which stores the infor-
mation such as the GPS information, the IP address,etc. The
timestamp ensures that the request is globally unique so that it is
not cached. This is a known technique used in previous studies
for recording the association between clients and their local DNS
servers [23]. Since most DNS servers operate in the iterative mode,

from the authoritative DNS server, we can observe the formatted
incoming DNS requests from local DNS servers.

We summarize our results in Table 5. The four carriers appear
to have different policies for configuring local DNS servers. All
the local DNS servers of Carrier A across the country fall into one
/19 address block. Carrier B altogether only has four distinct DNS
IP addresses within two different /24 address blocks, although it
has four GGSN clusters. This implies that Carrier B’s local DNS
servers are unlikely located directly at cellular network gateways,
as a single /24 prefix usually constitutes the smallest routing unit.
For Carrier C, we observe 12 local DNS server IP addresses within
3 different /24 address blocks. This indicates that, just like Carrier
B’s clusters, Carrier C’s clusters share local DNS servers as well,
since Carrier C has more clusters than the /24 address blocksof its
local DNS servers. For Carrier D, we observe 15 IP addresses of
local DNS servers in 12 /24 address blocks.

For each carrier, we cluster its local DNS servers based on their
geographic coverage without any other prior knowledge and show
the results in Figure 7. Comparing the clusters based on the local
DNS servers with previous clustering based on prefixes in §5.1, we
observe that Carrier A’s clusters for local DNS servers match very
well with the clusters for address blocks (shown in Figure 7). Car-
riers A’s users sharing the same local DNS server IP belong tothe
same cluster based on cellular prefixes. This serves as another inde-
pendent validation for previous clustering. Carrier B’s users across
the U.S. all share the same four local DNS servers, while Carriers
C’s and D’s clusters based on local DNS servers are “one-to-many”
mapped to their clusters based on address blocks, indicating that
their local DNS servers are shared across multiple clustersas well.

On the current Internet, local DNS-based server selection is widely
adopted by commercial CDNs. For Carriers A, C, and D, since
their local DNS servers are "one-to-one" or "one-to-many" mapped
to GGSNs, server selection based on local DNS servers cannotbe
finer-grained than the GGSN level. For Carrier B, server selection
can be even worse because all Carrier B’s local DNS servers are
used across the entire U.S.

5.2.3 Validating viatracerouteProbing
Since the clusters created based on cellular prefixes shouldcor-

respond to the prefixes serving clients within the same network lo-
cation, we use bi-directional traceroute to further validate this. For
the inbound direction, for each prefix of these four carriersin Data-
Source1, we run traceroute on 5PlanetLabnodes at geographically
distinct locations within the U.S. to one IP address in this prefix for
four days. We make the following observations.

• Stability of traceroute paths at IP level: All traceroute paths
obtained from our experiments are found to be very stable
without any change at DNS or IP level.

• Stability of traceroute paths at the prefix level: To the same

id_timestamp_example.com
id_timestamp_example.com
example.com
id_timestamp


prefix, the last 5 visible hops in the traceroute path from dif-
ferentPlanetLabnodes are consistently the same.

• Similarity of traceroute paths to prefixes in the same cluster:
For Carriers A, C and D, prefixes in the samebisect k-means
cluster share the same traceroute path at DNS or IP level vali-
dating their geographic proximity. For Carrier B, each prefix
has a distinct traceroute path, making validation more chal-
lenging.

• Location correlation between traceroute paths and the clus-
ter’s region: For some Carriers A’s, B’s, and C’s clusters,
we can infer the GGSN locations from the DNS name of the
hops along the path; while for others there is insufficient in-
formation to determine router locations. Table 6 shows for
the last inferred location along the inbound traceroute path to
some clusters with location information inferred from router
DNS names. They all agree with the geographic coverage of
these clusters.

Cluster Coverage DNS key word Location

A.1 WEST WA WA
A.2 SOUTHEAST GA GA
A.3 SOUTH DLSTX DALLAS, TX

B.1 MIDDLE CHI CHICAGO, IL
B.2 SOUTHEAST FL FL
B.3 SOUTHEAST ATLGA ATLANTA, GA
B.4 WEST TUSTIN TUSTIN, CA
B.5 SOUTH DLSTX DALLAS, TX

C.1 EAST CLE CLEVELAND, OH
C.2 WEST SCL SALT LAKE CITY, UT
C.3 NORTHWEST SEA SEATTLE, WA
C.4 MIDDLE AURORA AURORA, CO
C.5 SOUTH HOU HOUSTON, TX
C.6 EAST NEWARK NEWARK, NJ

Table 6: Inferred locations for clusters using router DNS names
of traceroute paths to the clusters.

Similar to the inbound direction, the outbound traceroute can val-
idate the clustering to some degree.DataSource2application runs
ICMP traceroute from the device to an Internet server. Assigning
the outbound traceroute path to the prefix, we have the following
observations:

• For all four carriers, their traceroute paths in the same cluster
have the same path pattern,i.e.,the sequence of IP addresses
or the sequence of address blocks are the same. All clus-
ters are “one-to-one” or “one-to-many” mapped to traceroute
path patterns, so each cluster has very different traceroute
patterns from the others.

• The prefixes in the same Carrier A’s cluster always go through
the same set of IP addresses, while for Carriers B, C, and D,
their prefixes in the same cluster always go through the same
set of /24 address blocks. Therefore we can always tell a pre-
fix’s corresponding cluster based on the IP addresses or the
/24 address blocks that appear along the traceroute path.

6. IMPLICATIONS ON CONTENT DELIV-
ERY NETWORKS

Based on the previous characterization of cellular data network
infrastructure, we highlight the key impact of cellular infrastructure
by examining its implication on content delivery networks from the
perspectives of content placement and server selection.

6.1 Content Placement
On today’s Internet, CDN plays an important role of reducingthe

latency for accessing web content. The essential idea behind CDN
is to serve users from nearby CDN servers that replicate the content
from the origin server located potentially far away. By character-
izing the cellular infrastructure, we have observed that the current
restrictive cellular topology route all traffic through only a handful
GGSNs. Therefore, no matter how close to a CDN server the user
is, the content still has to go through the GGSN before reaching the
destination. The possible reasons for such a restrictive topology
design by routing all traffic through GGSNs include simplicity and
ease of management,e.g.,billing and accounting. Furthermore, it
is also easy to enforce policies for security and traffic management.
This certainly has negative implication on content delivery.

It is not simple to adapt an existing CDN service,e.g., Akamai
andLimelight, directly to cellular networks due to routing restric-
tions. One possible alternative is deploying CDN servers within
cellular networks to be closer to end users so that the trafficdoes
not have to go through GGSNs to reach the content on the Inter-
net. There has been some startup effort of placing boxes between
the RNC and the SGSN to accelerate data delivery and lighten data
traffic growth [30], but this design brings additional challenges to
management due to the increased number of locations traffic can
terminate. Without the support of placing CDN servers inside cel-
lular core networks, placing them close to GGSNs becomes a quick
solution for now, and this solution is clearly limited due tothe prop-
erty of the GGSN serving a large geographic region of users.

In DataSource2’s application, we measure the ping RTT to 20
Internet servers (landmark servers) located across the U.S. to study
the end-to-end latency. The latency to the landmark serversis an
approximation on the latency to the content placed at different net-
work locations on the Internet. The 20 servers that we chooseare
very popular servers geographically distributed across 20states. To
estimate the benefit of placing content close to GGSN, we compare
the latency to landmark servers with the latency to the first cellular
IP hop,i.e., the first IP hop along the outbound path where GGSN
is located.

Each timeDataSource2’s application runs, it only probes these
landmark servers twice to save the resource consumption on de-
vices. In order to eliminate the variability from air interface so that
we can isolate the impact from the wireline hops, we follow the
splitting method in §5.1 dividing the U.S. continent intoN grids.
Within each grid, we compare the minimum RTT to the first cellu-
lar IP hop against these 20 landmark servers. In Figure 10(a), we
show the absolute difference between the latency to the firstcellu-
lar IP hop and the latency to the landmark servers. Figure 10(b)
shows the percentage of the latency saving. Because these 20land-
mark servers are widely distributed across the U.S., the minimum
latency to landmark servers should be a good estimation of the la-
tency to the current content providers. We can observe that placing
content close to the GGSN can reduce the end-to-end latency by
50%. Note that the 50% improvement have already eliminated the
variability from air interface. This clearly motivates CDNservice
providers to push mobile content close to GGSNs.

6.2 Server Selection
Besides the challenge of mobile content placement, server selec-

tion is another important issue for CDN service providers. Some
existing CDN services,e.g., AkamaiandLimelight, choose the con-
tent server based on the incoming DNS requests from the local
DNS server assuming the address of the local DNS can accurately
represent the location of those end hosts behind the local DNS
server. However, this assumption rarely holds for cellularnetworks.
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Figure 10: Latency to the first cellular IP hop vs. 20 landmarkservers on the Internet.

In §5.2.2, we know that Carriers A, C, and D have different local
DNS servers for different GGSN clusters, while Carrier B’s clus-
ters share the same set of local DNS servers. Although Carriers
A, C, and D have different local DNS server for different GGSN
clusters, the IP addresses are very similar. Without the information
of the correlation between the local DNS server and the GGSN
cluster, it is difficult to choose content servers for different GGSN
clusters according to their local DNS server IP address. As Carrier
B’s GGSN clusters share the same set of local DNS servers, it is
impossible to choose content servers for different GGSN clusters
based on the DNS request alone.

Interestingly even if content providers can obtain the accurate
physical location based on some application-level knowledge,e.g.,
Google Gears [14], directing the traffic to the content server phys-
ically closest to the mobile device can be grossly suboptimal due
to the placement of the GGSN and the cellular network routingre-
strictions. Traffic still needs traverse through the GGSN, despite
the close proximity between the mobile device and the content
server. To estimate the difference in performance between choos-
ing a server physically closest to the mobile device and one closest
to the GGSN node, we do the following analysis. Using the GPS
location information reported byDataSource2’s application, in all
the experiments from Carrier A’s Cluster 2, we compare the latency
to the landmark server closest to the mobile device with the latency
to the landmark server closet to the corresponding GGSN,i.e.,one
landmark server located at Georgia (according to Table 6 in §5.2.3).
Note, similar to §5.1 and §6.1, we split Cluster 2’s geographic cov-
erage into grids, aggregate RTTs in the same grid, and compare
based on the minimum RTTs as well. Figure 11 shows that the la-
tency to the closet landmark server has high probability to be larger
than the latency to the Georgia landmark server and on average by
about 10 – 20ms, indicating that choosing the server according to
the physical location of the mobile device is suboptimal dueto the
routing restriction imposed by GGSNs.

Overall, if mobile content providers want to adopt the short-term
solution to reduce the end-to-end latency, they have to solve two
issues: (i) placing content servers as close as to GGSNs; and(ii) ef-
fectively directing traffic to the content server closest tothe GGSN
that originates the traffic based on information such as the correla-
tion between local DNS servers and GGSNs.

7. CONCLUDING REMARKS
In this paper, we comprehensively characterized the infrastruc-

ture of cellular data network of four major wireless carriers within
the U.S. including both UMTS and EVDO technology. We un-
veiled several fundamental differences between cellular data net-
works and the wireline networks in terms of placement of GGSNs,
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Figure 11: Difference in latency to the closest landmark server
from the mobile device vs. to the server closest to the GGSN.

local DNS server behavior, and routing properties. One of the most
surprising findings is that cellular data networks have severe restric-
tion on routing by traversing only a few limited GGSNs to interface
with external Internet networks. We observed that all 4 carriers we
studied divide the U.S. among only 4–6 GGSNs, each serving a
large geographic area. Since the GGSN is the first IP hop, it im-
plies that CDN servers cannot consistently serve content close to
end users.

Our study also showed that in the best case local DNS servers
for some carriers can be close to GGSNs. Since traffic from and
to local DNS servers and cellular users must traverse one of those
few GGSNs, using local DNS servers and the knowledge of the
mapping to the GGSN to identify the best server to deliver mobile
content currently can be sufficient despite the routing restrictions.

Regarding content placement, we investigated and comparedtwo
choices: (i) placing content at the boundary between the cellular
backbone and the Internet; and (ii) placing content at the GGSN
in the cellular backbone. We observed that pushing content close
to GGSNs could potentially reduce the end-to-end latency bymore
than 20%. If pushing content into the proprietary cellular back-
bone is not permitted, placing content at the boundary stillgives
considerable benefit.

We believe our findings in characterizing the infrastructure for
cellular data networks directly motivate future work in this area.
Our observations on the cellular infrastructure guide CDNsto pro-
vide better service to mobile users, and our methodology fordis-
covering cellular data network properties will continue toreveal
new behavior as cellular networks evolve.
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